Submitted:
20 March 2024
Posted:
20 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. CX3CL1 and Its Regulation of Chemotaxis and Adhesion
2.1. Structural Characteristics of CX3CL1 and Its Cellular Distribution
2.2. Functions of Membrane-Anchored CX3CL1
2.3. Functions of Soluble CX3CL1
2.4. Regulation Mechanisms of CX3CL1 Expression
3. CX3CL1 and Its Receptor in Viral Infection and Associated Diseases
3.1. CX3CL1 and Its Receptor in HIV Infection
3.2. CX3CL1 and Its Receptor in COVID-19
3.3. CX3CL1 and Its Receptor in Influenza
3.4. CX3CL1 and Its Receptor in Respiratory Syncytial Virus Infection
3.5. CX3CL1 and Its Receptor in Cytomegalovirus Infection
3.6. CX3CL1 and Its Receptor in Other Viral Diseases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A Corbet, G.; Burke, J.M.; Parker, R. Nucleic acid–protein condensates in innate immune signaling. EMBO J. 2022, 42, e111870. [Google Scholar] [CrossRef]
- Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef]
- de Munnik, S.M.; Smit, M.J.; Leurs, R.; Vischer, H.F. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front. Pharmacol. 2015, 6, 40–40. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef]
- Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997, 385, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Lloyd, C.; Zhou, H.; Dolich, S.; Deeds, J.; Gonzalo, J. A.; Vath, J.; Gosselin, M.; Ma, J.; Dussault, B.; et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 1997, 387, (6633), 611–7. [Google Scholar] [CrossRef]
- Raport, C.J.; Schweickart, V.L.; Eddy, R.L.; Shows, T.B.; Gray, P.W. The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues. Gene 1995, 163, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Apostolakis, S.; Spandidos, D. , Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta pharmacologica Sinica 2013, 34, (10), 1251–6. [Google Scholar] [CrossRef]
- Julia, V. CX3CL1 in allergic diseases: not just a chemotactic molecule. Allergy 2012, 67, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Subbarayan, M. S.; Joly-Amado, A.; Bickford, P. C.; Nash, K. R. , CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacology & therapeutics 2022, 231, 107989. [Google Scholar]
- Herbst, R.S.; Soria, J.-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Pillai, P.S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Pothlichet, J.; Meunier, I.; Davis, B. K.; Ting, J. P.; Skamene, E.; von Messling, V.; Vidal, S. M. , Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS pathogens 2013, 9, (4), e1003256. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Li, R.; Negro, R.; Cheng, J.; Vora, S.M.; Fu, T.-M.; Wang, A.; He, K.; Andreeva, L.; Gao, P.; et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 2021, 184, 5759–5774. [Google Scholar] [CrossRef] [PubMed]
- Faure, S.; Meyer, L.; Costagliola, D.; Vaneensberghe, C.; Genin, E.; Autran, B.; Delfraissy, J. F.; McDermott, D. H.; Murphy, P. M.; Debre, P.; et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 2000, 287, (5461), 2274–7. [Google Scholar] [CrossRef]
- Vomaske, J.; Melnychuk, R.M.; Smith, P.P.; Powell, J.; Hall, L.; DeFilippis, V.; Früh, K.; Smit, M.; Schlaepfer, D.D.; Nelson, J.A.; et al. Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility. PLOS Pathog. 2009, 5, e1000304. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. K.; Yip, P. K.; Malcangio, M. , The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009, 29, (21), 6945–54. [Google Scholar] [CrossRef]
- Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor Necrosis Factor-α-converting Enzyme (ADAM17) Mediates the Cleavage and Shedding of Fractalkine (CX3CL1). J. Biol. Chem. 2001, 276, 37993–38001. [Google Scholar] [CrossRef]
- Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003, 102, 1186–1195. [Google Scholar] [CrossRef]
- Winter, A.N.; Subbarayan, M.S.; Grimmig, B.; Weesner, J.A.; Moss, L.; Peters, M.; Weeber, E.; Nash, K.; Bickford, P.C. Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J. Neuroinflamm. 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Inoue, K. Potential significance of CX3CR1 dynamics in stress resilience against neuronal disorders. Neural Regen. Res. 2022, 17, 2153–2156. [Google Scholar] [CrossRef] [PubMed]
- Tardaguila, M.; Mira, E.; Garcia-Cabezas, M. A.; Feijoo, A. M.; Quintela-Fandino, M.; Azcoitia, I.; Lira, S. A.; Manes, S. , CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer research 2013, 73, (14), 4461–73. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Liao, C.; Zhao, Z.; Gao, H.; Huang, R.; Chen, J.; Wu, F.; Zeng, F.; Zhang, Y.; et al. PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci. Ther. 2024, 30, e14566. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Zhuge, F.; Ni, L.; Nagata, N.; Yamashita, T.; Mukaida, N.; Kaneko, S.; Ota, T.; Nagashimada, M. , CX3CL1/CX3CR1 interaction protects against lipotoxicity-induced nonalcoholic steatohepatitis by regulating macrophage migration and M1/M2 status. Metabolism: clinical and experimental 2022, 136, 155272. [Google Scholar] [CrossRef]
- Mikolajczyk, T.P.; Szczepaniak, P.; Vidler, F.; Maffia, P.; Graham, G.J.; Guzik, T.J. Role of inflammatory chemokines in hypertension. Pharmacol. Ther. 2020, 223, 107799. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Mao, J.; Zhao, Q.; Zhao, B.; Liu, Z.; Lu, B.; Zhang, L.; Mao, X.; Zhang, Y.; Wang, D.; et al. “Find-eat” strategy targeting endothelial cells via receptor functionalized apoptotic body nanovesicle. Sci. Bull. 2023, 68, 826–837. [Google Scholar] [CrossRef]
- Stangret, A.; Dykacz, W.; Jablonski, K.; Wesolowska, A.; Klimczak-Tomaniak, D.; Kochman, J.; Tomaniak, M. , The cytokine trio—visfatin, placental growth factor and fractalkine—and their role in myocardial infarction with non-obstructive coronary arteries (MINOCA). Cytokine & growth factor reviews 2023, 74, 76–85. [Google Scholar]
- Qiao, S.; Cheng, Y.; Liu, M.; Ji, Q.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Chemoattractants driven and microglia based biomimetic nanoparticle treating TMZ-resistant glioblastoma multiforme. J. Control. Release 2021, 336, 54–70. [Google Scholar] [CrossRef]
- Benham, H.; Nel, H.J.; Law, S.C.; Mehdi, A.M.; Street, S.; Ramnoruth, N.; Pahau, H.; Lee, B.T.; Ng, J.; Brunck, M.E.G.; et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients. Sci. Transl. Med. 2015, 7, 290ra87. [Google Scholar] [CrossRef] [PubMed]
- Cormican, S.; Negi, N.; Naicker, S.D.; Islam, N.; Fazekas, B.; Power, R.; Griffin, T.P.; Dennedy, M.C.; MacNeill, B.; Malone, A.F.; et al. Chronic Kidney Disease Is Characterized by Expansion of a Distinct Proinflammatory Intermediate Monocyte Subtype and by Increased Monocyte Adhesion to Endothelial Cells. J. Am. Soc. Nephrol. 2023, 34, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Vallon-Eberhard, A.; Zigmond, E.; Farache, J.; Shezen, E.; Shakhar, G.; Ludwig, A.; Lira, S.A.; Jung, S. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 2011, 118, e156–e167. [Google Scholar] [CrossRef] [PubMed]
- International Human Genome Sequencing, C. , Finishing the euchromatic sequence of the human genome. Nature 2004, 431, (7011), 931–45. [Google Scholar] [CrossRef]
- Rossi, D.L.; Hardimanb, G.; Copeland, N.G.; Gilbert, D.J.; Jenkinsc, N.; Zlotnika, A.; Bazan, J. Cloning and Characterization of a New Type of Mouse Chemokine. Genomics 1998, 47, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Dong, H.; Wu, Y.; Tian, W.; Liu, L. Gene Expression Profiling of Cx3cl1 in Bone Marrow Mesenchymal Stem Cells by Osteogenic Induction. OMICS: A J. Integr. Biol. 2009, 13, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Bloom, E. T.; Okazaki, T.; Nagano, Y.; Yoshie, O.; Imai, T. , Fractalkine in vascular biology: from basic research to clinical disease. Arteriosclerosis, thrombosis, and vascular biology 2004, 24, (1), 34–40. [Google Scholar] [CrossRef]
- Jones, B.A.; Beamer, M.; Ahmed, S. Fractalkine/CX3CL1: A Potential New Target for Inflammatory Diseases. Mol. Interv. 2010, 10, 263–270. [Google Scholar] [CrossRef]
- Matsumiya, T.; Ota, K.; Imaizumi, T.; Yoshida, H.; Kimura, H.; Satoh, K. , Characterization of synergistic induction of CX3CL1/fractalkine by TNF-alpha and IFN-gamma in vascular endothelial cells: an essential role for TNF-alpha in post-transcriptional regulation of CX3CL1. Journal of immunology 2010, 184, (8), 4205–14. [Google Scholar]
- Imaizumi, T.; Yoshida, H.; Satoh, K. , Regulation of CX3CL1/fractalkine expression in endothelial cells. Journal of atherosclerosis and thrombosis 2004, 11, (1), 15–21. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Cho, C.-H.; Park, K.-G.; Lee, H.J.; Lee, S.; Park, S.K.; Lee, I.-K.; Koh, G.Y. Tumor Necrosis Factor-α Induces Fractalkine Expression Preferentially in Arterial Endothelial Cells and Mithramycin A Suppresses TNF-α-Induced Fractalkine Expression. Am. J. Pathol. 2004, 164, 1663–1672. [Google Scholar] [CrossRef]
- Ihara, S.; Hirata, Y.; Hikiba, Y.; Yamashita, A.; Tsuboi, M.; Hata, M.; Konishi, M.; Suzuki, N.; Sakitani, K.; Kinoshita, H.; et al. Adhesive Interactions between Mononuclear Phagocytes and Intestinal Epithelium Perturb Normal Epithelial Differentiation and Serve as a Therapeutic Target in Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, 1219–1231. [Google Scholar] [CrossRef]
- Fong, A.M.; Robinson, L.A.; Steeber, D.A.; Tedder, T.F.; Yoshie, O.; Imai, T.; Patel, D.D. Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow. J. Exp. Med. 1998, 188, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski-Lenoir, D.; Chen, S.; Feng, L.; Maki, R.; Bacon, K.B. Characterization of Fractalkine in Rat Brain Cells: Migratory and Activation Signals for CX3CR-1-Expressing Microglia. J. Immunol. 1999, 163, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Kansra, V.; Groves, C.; Gutierrez-Ramos, J.C.; Polakiewicz, R.D. Phosphatidylinositol 3-Kinase-dependent Extracellular Calcium Influx Is Essential for CX3CR1-mediated Activation of the Mitogen-activated Protein Kinase Cascade. J. Biol. Chem. 2001, 276, 31831–31838. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.N.; Harrison, J.K. Proline 326 in the C Terminus of Murine CX3CR1 Prevents G-Protein and Phosphatidylinositol 3-Kinase-Dependent Stimulation of Akt and Extracellular Signal-Regulated Kinase in Chinese Hamster Ovary Cells. J. Pharmacol. Exp. Ther. 2005, 316, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Al-Aoukaty, A.; Rolstad, B.; Giaid, A.; Maghazachi, A. A. , MIP-3alpha, MIP-3beta and fractalkine induce the locomotion and the mobilization of intracellular calcium, and activate the heterotrimeric G proteins in human natural killer cells. Immunology 1998, 95, (4), 618–24. [Google Scholar] [CrossRef]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion. Cell 1997, 91, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ostuni, M.; Guellec, J.; Hermand, P.; Durand, P.; Combadiere, C.; Pincet, F.; Deterre, P. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain. Biol. Open 2014, 3, 1173–1182. [Google Scholar] [CrossRef]
- Deng, Y.; Li, C.; Huang, L.; Xiong, P.; Li, Y.; Liu, Y.; Li, S.; Chen, W.; Yin, Q.; Li, Y.; et al. Single-cell landscape of the cellular microenvironment in three different colonic polyp subtypes in children. Clin. Transl. Med. 2024, 14, e1535. [Google Scholar] [CrossRef]
- Shao, D.; Zhou, H.; Yu, H.; Zhu, X. CX3CR1 is a potential biomarker of immune microenvironment and prognosis in epithelial ovarian cancer. Medicine 2024, 103, e36891. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Turczyn, P.; Dobies-Krzesniak, B.; Frasunska, J.; Tarnacka, B. , Role of CX3CL1/CX3CR1 Signaling Axis Activity in Osteoporosis. Mediators of inflammation 2019, 2019, 7570452. [Google Scholar] [CrossRef]
- Yoneda, O.; Imai, T.; Goda, S.; Inoue, H.; Yamauchi, A.; Okazaki, T.; Imai, H.; Yoshie, O.; Bloom, E.T.; Domae, N.; et al. Fractalkine-Mediated Endothelial Cell Injury by NK Cells. J. Immunol. 2000, 164, 4055–4062. [Google Scholar] [CrossRef]
- Hess, S.; Methe, H.; Kim, J. O.; Edelman, E. R. , NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell transplantation 2009, 18, (3), 261–73. [Google Scholar] [CrossRef]
- Johnson, L.A.; Jackson, D.G. The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J. Cell Sci. 2013, 126, 5259–5270. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, L.; Hamann, I.; Romero-Suarez, S.; Millward, J.M.; Pietrek, R.; Chanvillard, C.; Stuis, H.; Pollok, K.; Ransohoff, R.M.; Cardona, A.E.; et al. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur. J. Immunol. 2016, 46, 1984–1996. [Google Scholar] [CrossRef]
- Korbecki, J.; Siminska, D.; Kojder, K.; Grochans, S.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. , Fractalkine/CX3CL1 in Neoplastic Processes. International journal of molecular sciences 2020, 21, (10). [Google Scholar] [CrossRef]
- Foussat, A.; Coulomb-L’Hermine, A.; Gosling, J.; Krzysiek, R.; Durand-Gasselin, I.; Schall, T.; Balian, A.; Richard, Y.; Galanaud, P.; Emilie, D. , Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractalkine in human. European journal of immunology 2000, 30, (1), 87–97. [Google Scholar] [CrossRef]
- Hamann, I.; Unterwalder, N.; Cardona, A.E.; Meisel, C.; Zipp, F.; Ransohoff, R.M.; Infante-Duarte, C. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology 2011, 133, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Okamoto, S.; Iwakami, Y.; Nakazawa, A.; Hisamatsu, T.; Chinen, H.; Kamada, N.; Imai, T.; Goto, H.; Hibi, T. Exclusive increase of CX3CR1+CD28−CD4+ T cells in inflammatory bowel disease and their recruitment as intraepithelial lymphocytes. Inflamm. Bowel Dis. 2007, 13, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Poniatowski. A.; Wojdasiewicz, P.; Krawczyk, M.; Szukiewicz, D.; Gasik, R.; Kubaszewski,.; Kurkowska-Jastrzębska, I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol. Neurobiol. 2016, 54, 2167–2188. [Google Scholar] [CrossRef]
- Szukiewicz, D.; Kochanowski, J.; Mittal, T.K.; Pyzlak, M.; Szewczyk, G.; Cendrowski, K. Chorioamnionitis (ChA) modifies CX3CL1 (fractalkine) production by human amniotic epithelial cells (HAEC) under normoxic and hypoxic conditions. J. Inflamm. 2014, 11, 12–12. [Google Scholar] [CrossRef]
- Zhang, J.; Patel, J.M. Role of the CX3CL1-CX3CR1 axis in chronic inflammatory lung diseases. . 2010, 3, 233–44. [Google Scholar] [PubMed]
- Tahamtan, A.; Inchley, C. S.; Marzban, M.; Tavakoli-Yaraki, M.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. , The role of microRNAs in respiratory viral infection: friend or foe? Reviews in medical virology 2016, 26, (6), 389–407. [Google Scholar] [CrossRef]
- Fonović, U.P.; Jevnikar, Z.; Kos, J. Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells. Biol. Chem. 2013, 394, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Mikosz, A.; Ni, K.; Gally, F.; Pratte, K.A.; Winfree, S.; Lin, Q.; Echelman, I.; Wetmore, B.; Cao, D.; Justice, M.J.; et al. Alpha-1 antitrypsin inhibits fractalkine-mediated monocyte-lung endothelial cell interactions. Am. J. Physiol. Cell. Mol. Physiol. 2023, 325, L711–L725. [Google Scholar] [CrossRef] [PubMed]
- Nourshargh, S.; Alon, R. Leukocyte Migration into Inflamed Tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef]
- Rius, C.; Piqueras, L.; González-Navarro, H.; Albertos, F.; Company, C.; López-Ginés, C.; Ludwig, A.; Blanes, J.-I.; Morcillo, E.J.; Sanz, M.-J. Arterial and Venous Endothelia Display Differential Functional Fractalkine (CX 3 CL1) Expression by Angiotensin-II. Arter. Thromb. Vasc. Biol. 2013, 33, 96–104. [Google Scholar] [CrossRef]
- Liu, J. F.; Tsao, Y. T.; Hou, C. H. , Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-kappaB pathway in human osteosarcoma. Oncotarget 2017, 8, (33), 54136–54148. [Google Scholar]
- Haskell, C.A.; Cleary, M.D.; Charo, I.F. Unique Role of the Chemokine Domain of Fractalkine in Cell Capture. J. Biol. Chem. 2000, 275, 34183–34189. [Google Scholar] [CrossRef]
- Fujita, M.; Zhu, K.; Fujita, C. K.; Zhao, M.; Lam, K. S.; Kurth, M. J.; Takada, Y. K.; Takada, Y. , Proinflammatory secreted phospholipase A2 type IIA (sPLA-IIA) induces integrin activation through direct binding to a newly identified binding site (site 2) in integrins alphavbeta3, alpha4beta1, and alpha5beta1. The Journal of biological chemistry 2015, 290, (1), 259–71. [Google Scholar] [CrossRef]
- Rotty, J. D.; Brighton, H. E.; Craig, S. L.; Asokan, S. B.; Cheng, N.; Ting, J. P.; Bear, J. E. , Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Developmental cell 2017, 42, (5), 498–513 e6. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, L.; Hu, A.; Sun, C.; Zhou, L.; Huang, Y.; Chen, Q.; Dong, J.; Zhou, X.; Zhang, F. , Vertebral-specific activation of the CX3CL1/ICAM-1 signaling network mediates non-small-cell lung cancer spinal metastasis by engaging tumor cell-vertebral bone marrow endothelial cell interactions. Theranostics 2021, 11, (10), 4770–4789. [Google Scholar] [CrossRef]
- Roy-Chowdhury, E.; Brauns, N.; Helmke, A.; Nordlohne, J.; Bräsen, J.H.; Schmitz, J.; Volkmann, J.; Fleig, S.V.; Kusche-Vihrog, K.; Haller, H.; et al. Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1–CX3CL1 interaction. Cardiovasc. Res. 2020, 117, 1510–1522. [Google Scholar] [CrossRef]
- Shimoyama, S.; Kawata, K.; Ohta, K.; Chida, T.; Suzuki, T.; Tsuneyama, K.; Shimoda, S.; Kurono, N.; Leung, P. S. C.; Gershwin, M. E.; et al. Ursodeoxycholic acid impairs liver-infiltrating T-cell chemotaxis through IFN-gamma and CX3CL1 production in primary biliary cholangitis. European journal of immunology 2021, 51, (6), 1519–1530. [Google Scholar] [CrossRef]
- Centers for Disease, C. , Update on acquired immune deficiency syndrome (AIDS)--United States. MMWR. Morbidity and mortality weekly report 1982, 31, (37), 507–8, 513. [Google Scholar]
- Combadiere, C.; Salzwedel, K.; Smith, E. D.; Tiffany, H. L.; Berger, E. A.; Murphy, P. M. , Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. The Journal of biological chemistry 1998, 273, (37), 23799–804. [Google Scholar]
- McDermott, D. H.; Colla, J. S.; Kleeberger, C. A.; Plankey, M.; Rosenberg, P. S.; Smith, E. D.; Zimmerman, P. A.; Combadiere, C.; Leitman, S. F.; Kaslow, R. A.; et al. Genetic polymorphism in CX3CR1 and risk of HIV disease. Science 2000, 290, (5499), 2031. [Google Scholar] [CrossRef]
- Cavarelli, M.; Foglieni, C.; Hantour, N.; Schorn, T.; Ferrazzano, A.; Dispinseri, S.; Desjardins, D.; Elmore, U.; Dereuddre-Bosquet, N.; Scarlatti, G.; et al. Identification of CX3CR1+ mononuclear phagocyte subsets involved in HIV-1 and SIV colorectal transmission. iScience 2022, 25, 104346. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Chen, Y.; Su, B.; Yang, X.; Zhang, Q.; Song, T.; Wu, H.; Liu, C.; Liu, L.; Zhang, T. , Alterations of CCR2 and CX3CR1 on Three Monocyte Subsets During HIV-1/Treponema pallidum Coinfection. Frontiers in medicine 2020, 7, 272. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Goodkin, K.; et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Cotter, R.; Williams, C.; Ryan, L.; Erichsen, D.; Lopez, A.; Peng, H.; Zheng, J. Fractalkine (CX3CL1) and Brain Inflammation: Implications for HIV-1-Associated Dementia. J. NeuroVirology 2002, 8, 585–598. [Google Scholar] [CrossRef]
- Sporer, B.; Kastenbauer, S.; Koedel, U.; Arendt, G.; Pfister, H.-W. Increased Intrathecal Release of Soluble Fractalkine in HIV-Infected Patients. AIDS Res. Hum. Retroviruses 2003, 19, 111–116. [Google Scholar] [CrossRef]
- Pereira, C.; Middel, J.; Jansen, G.; Verhoef, J.; Nottet, H. Enhanced expression of fractalkine in HIV-1 associated dementia. J. Neuroimmunol. 2001, 115, 168–175. [Google Scholar] [CrossRef]
- Duan, M.; Yao, H.; Cai, Y.; Liao, K.; Seth, P.; Buch, S. , HIV-1 Tat disrupts CX3CL1-CX3CR1 axis in microglia via the NF-kappaBYY1 pathway. Current HIV research 2014, 12, (3), 189–200. [Google Scholar] [CrossRef]
- Meucci, O.; Fatatis, A.; Simen, A. A.; Bushell, T. J.; Gray, P. W.; Miller, R. J. , Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 1998, 95, (24), 14500–5. [Google Scholar] [CrossRef]
- Bain, C.C.; Scott, C.L.; Uronen-Hansson, H.; Gudjonsson, S.; Jansson, O.; Grip, O.; Guilliams, M.; Malissen, B.; Agace, W.W.; Mowat, A.M. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013, 6, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Persson, E.K.; Scott, C.L.; Mowat, A.M.; Agace, W.W. Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function. Eur. J. Immunol. 2013, 43, 3098–3107. [Google Scholar] [CrossRef] [PubMed]
- Tamoutounour, S.; Henri, S.; Lelouard, H.; de Bovis, B.; de Haar, C.; van der Woude, C.J.; Woltman, A.M.; Reyal, Y.; Bonnet, D.; Sichien, D.; et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 2012, 42, 3150–3166. [Google Scholar] [CrossRef]
- Mohammadhosayni, M.; Mohammadi, F.S.; Ezzatifar, F.; Gorabi, A.M.; Khosrojerdi, A.; Aslani, S.; Hemmatzadeh, M.; Yazdani, S.; Arabi, M.; Marofi, F.; et al. Matrix metalloproteinases are involved in the development of neurological complications in patients with Coronavirus disease 2019. Int. Immunopharmacol. 2021, 100, 108076–108076. [Google Scholar] [CrossRef]
- Tong, M.; Jiang, Y.; Xia, D.; Xiong, Y.; Zheng, Q.; Chen, F.; Zou, L.; Xiao, W.; Zhu, Y. Elevated Expression of Serum Endothelial Cell Adhesion Molecules in COVID-19 Patients. J. Infect. Dis. 2020, 222, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, H.A.; Johnson, R.W. Environmental enrichment attenuates hippocampal neuroinflammation and improves cognitive function during influenza infection. Brain, Behav. Immun. 2012, 26, 1006–1016. [Google Scholar] [CrossRef]
- Gu, L.; Zhou, Y.; Wang, G.; Deng, H.; Song, X.; He, X.; Wang, T.; Chen, X.; Dai, J.; Li, R. Spatial learning and memory impaired after infection of non-neurotropic influenza virus in BALB/c male mice. Biochem. Biophys. Res. Commun. 2021, 540, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ranaware, P. B.; Mishra, A.; Vijayakumar, P.; Gandhale, P. N.; Kumar, H.; Kulkarni, D. D.; Raut, A. A. , Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PloS one 2016, 11, (4), e0153671. [Google Scholar] [CrossRef] [PubMed]
- Chirkova, T.; Lin, S.; Oomens, A.G.P.; Gaston, K.A.; Boyoglu-Barnum, S.; Meng, J.; Stobart, C.C.; Cotton, C.U.; Hartert, T.V.; Moore, M.L.; et al. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J. Gen. Virol. 2015, 96, 2543–2556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peeples, M.E.; Boucher, R.C.; Collins, P.L.; Pickles, R.J. Respiratory Syncytial Virus Infection of Human Airway Epithelial Cells Is Polarized, Specific to Ciliated Cells, and without Obvious Cytopathology. J. Virol. 2002, 76, 5654–5666. [Google Scholar] [CrossRef]
- Remmerswaal, E.B.M.; Havenith, S.H.C.; Idu, M.M.; van Leeuwen, E.M.M.; van Donselaar, K.A.M.I.; Brinke, A.T.; van der Bom-Baylon, N.; Bemelman, F.J.; van Lier, R.A.W.; Berge, I.J.M.T. Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood 2012, 119, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, K.; Zhang, Y.; Ma, Y.; Du, H.; Zheng, X.; Yang, K.; Chen, L.; Zhuang, R.; Jin, B.; et al. Elevated Plasma Fractalkine Level Is Associated with the Severity of Hemorrhagic Fever with Renal Syndrome in Humans. Viral Immunol. 2021, 34, 491–499. [Google Scholar] [CrossRef]
- Müller, I.; Pappritz, K.; Savvatis, K.; Puhl, K.; Dong, F.; El-Shafeey, M.; Hamdani, N.; Hamann, I.; Noutsias, M.; Infante-Duarte, C.; et al. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLOS ONE 2017, 12, e0182643–e0182643. [Google Scholar] [CrossRef]
- Combadière, B.; Faure, S.; Autran, B.; Debré, P.; Combadière, C. The chemokine receptor CX3CR1 controls homing and anti-viral potencies of CD8 effector-memory T lymphocytes in HIV-infected patients. AIDS 2003, 17, 1279–1290. [Google Scholar] [CrossRef]
- Mudd, J. C.; Panigrahi, S.; Kyi, B.; Moon, S. H.; Manion, M. M.; Younes, S. A.; Sieg, S. F.; Funderburg, N. T.; Zidar, D. A.; Lederman, M. M.; et al. Inflammatory Function of CX3CR1+ CD8+ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. The Journal of infectious diseases 2016, 214, (12), 1808–1816. [Google Scholar] [CrossRef]
- Sneller, M.C.; Blazkova, J.; Justement, J.S.; Shi, V.; Kennedy, B.D.; Gittens, K.; Tolstenko, J.; McCormack, G.; Whitehead, E.J.; Schneck, R.F.; et al. Combination anti-HIV antibodies provide sustained virological suppression. Nature 2022, 606, 375–381. [Google Scholar] [CrossRef]
- Gray, G.E.; Bekker, L.-G.; Laher, F.; Malahleha, M.; Allen, M.; Moodie, Z.; Grunenberg, N.; Huang, Y.; Grove, D.; Prigmore, B.; et al. Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C gp120–MF59 in Adults. New Engl. J. Med. 2021, 384, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R. T.; Walker, B. D. , Immunologic control of HIV-1. Annual review of medicine 2002, 53, 149–72. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Liang, W.-H.; Zhao, Y.; Liang, H.-R.; Chen, Z.-S.; Li, Y.-M.; Liu, X.-Q.; Chen, R.-C.; Tang, C.-L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rial, J.; Rivero-Calle, I.; Salas, A.; Martinón-Torres, F. Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy. Infect. Drug Resist. 2020, ume 13, 2485–2493. [Google Scholar] [CrossRef]
- Grom, A.A.; Horne, A.; De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 2016, 12, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Fuentes, S.; Valdes, V. J.; Espinosa, B.; Gorocica-Rosete, P.; Salgado-Aguayo, A. , Could SARS-CoV-2 blocking of ACE2 in endothelial cells result in upregulation of CX3CL1, promoting thrombosis in COVID-19 patients? Medical hypotheses 2021, 151, 110570. [Google Scholar] [CrossRef]
- Souza, G. R.; Talbot, J.; Lotufo, C. M.; Cunha, F. Q.; Cunha, T. M.; Ferreira, S. H. , Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, (27), 11193–8. [Google Scholar] [CrossRef]
- Skoda, M.; Stangret, A.; Szukiewicz, D. Fractalkine and placental growth factor: A duet of inflammation and angiogenesis in cardiovascular disorders. Cytokine Growth Factor Rev. 2017, 39, 116–123. [Google Scholar] [CrossRef]
- Hao, W.; Liu, M.; Bai, C.; Liu, X.; Niu, S.; Chen, X. Increased inflammatory mediators levels are associated with clinical outcomes and prolonged illness in severe COVID-19 patients. Int. Immunopharmacol. 2023, 123, 110762. [Google Scholar] [CrossRef]
- Acevedo, N.; Escamilla-Gil, J.M.; Espinoza, H.; Regino, R.; Ramírez, J.; de Arco, L.F.; Dennis, R.; Torres-Duque, C.A.; Caraballo, L. Chronic Obstructive Pulmonary Disease Patients Have Increased Levels of Plasma Inflammatory Mediators Reported Upregulated in Severe COVID-19. Front. Immunol. 2021, 12, 678661. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tsang, O.T.-Y.; et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Helmke, A.; Nordlohne, J.; Balzer, M.S.; Dong, L.; Rong, S.; Hiss, M.; Shushakova, N.; Haller, H.; von Vietinghoff, S. CX3CL1–CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int. 2019, 95, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, Q.; Hu, Y.; Wang, C. , Role of Fractalkine in promoting inflammation in sepsis-induced multiple organ dysfunction. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 2020, 85, 104569. [Google Scholar] [CrossRef] [PubMed]
- Monserrat, J.; Gómez-Lahoz, A.; Ortega, M.A.; Sanz, J.; Muñoz, B.; Arévalo-Serrano, J.; Rodríguez, J.M.; Gasalla, J.M.; Gasulla. ; Arranz, A.; et al. Role of Innate and Adaptive Cytokines in the Survival of COVID-19 Patients. Int. J. Mol. Sci. 2022, 23, 10344. [Google Scholar] [CrossRef]
- Zhu, R.; Yan, T.; Feng, Y.; Liu, Y.; Cao, H.; Peng, G.; Yang, Y.; Xu, Z.; Liu, J.; Hou, W.; et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res. 2021, 31, 1244–1262. [Google Scholar] [CrossRef]
- Kervancioglu Demirci, E.; Onen, E. A.; Sevic Yilmaz, E.; Karagoz Koroglu, A.; Akakin, D. , SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797. Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 2023, 29, (6), 2161–2173. [Google Scholar] [CrossRef]
- Feng, S.; Song, F.; Guo, W.; Tan, J.; Zhang, X.; Qiao, F.; Guo, J.; Zhang, L.; Jia, X. Potential Genes Associated with COVID-19 and Comorbidity. Int. J. Med Sci. 2022, 19, 402–415. [Google Scholar] [CrossRef]
- Hutchinson, E. C. , Influenza Virus. Trends in microbiology 2018, 26, (9), 809–810. [Google Scholar] [CrossRef]
- Wei, F.; Gao, C.; Wang, Y. The role of influenza A virus-induced hypercytokinemia. Crit. Rev. Microbiol. 2021, 48, 240–256. [Google Scholar] [CrossRef] [PubMed]
- Runyan, C.E.; Welch, L.C.; Lecuona, E.; Shigemura, M.; Amarelle, L.; Abdala-Valencia, H.; Joshi, N.; Lu, Z.; Nam, K.; Markov, N.S.; et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell 2020, 19. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Huang, Y.; Xu, K.; Liu, Y.; Li, X.; Xu, Y.; Zhong, W.; Hao, P. Differential responses of innate immunity triggered by different subtypes of influenza a viruses in human and avian hosts. BMC Med Genom. 2017, 10, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Peng, Y.; Xu, Y.; Zhang, W.; Wu, J.; Zhang, W.; Shao, L.; Gao, Y. Establishment of a Risk Score Model for Early Prediction of Severe H1N1 Influenza. Front. Cell. Infect. Microbiol. 2022, 11, 776840. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Lwigale, P. Transcriptomic analysis of differential gene expression during chick periocular neural crest differentiation into corneal cells. Dev. Dyn. 2019, 248, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.P.; Beyer, M.; Meissner, F.; Abdullah, Z.; Sander, J.; Höchst, B.; Eickhoff, S.; Rieckmann, J.C.; Russo, C.; Bauer, T.; et al. Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat. Commun. 2015, 6, 8306. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Tahiliani, V.; Stanfield, J.; Abboud, G.; Salek-Ardakani, S. , Inflammatory monocytes contribute to the persistence of CXCR3(hi) CX3CR1(lo) circulating and lung-resident memory CD8(+) T cells following respiratory virus infection. Immunology and cell biology 2018, 96, (4), 370–378. [Google Scholar] [CrossRef]
- Tran, K. A.; Pernet, E.; Sadeghi, M.; Downey, J.; Chronopoulos, J.; Lapshina, E.; Tsai, O.; Kaufmann, E.; Ding, J.; Divangahi, M. , BCG immunization induces CX3CR1(hi) effector memory T cells to provide cross-protection via IFN-gamma-mediated trained immunity. Nature immunology 2024.
- Chu, K.-L.; Batista, N.V.; Girard, M.; Law, J.C.; Watts, T.H. GITR differentially affects lung effector T cell subpopulations during influenza virus infection. J. Leukoc. Biol. 2020, 107, 953–970. [Google Scholar] [CrossRef]
- Bartley, J.M.; Pan, S.J.; Keilich, S.R.; Hopkins, J.W.; Al-Naggar, I.M.; Kuchel, G.A.; Haynes, L. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy. Aging 2016, 8, 620–635. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef]
- Uyeki, T. M. , Influenza. Annals of internal medicine 2021, 174, (11), ITC161–ITC176. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; A Madhi, S.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef]
- Nam, H.H.; Ison, M.G. Respiratory syncytial virus infection in adults. BMJ 2019, 366, l5021. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Feldman, S.A.; Hendry, R.M.; Beeler, J.A. Identification of a Linear Heparin Binding Domain for Human Respiratory Syncytial Virus Attachment Glycoprotein G. J. Virol. 1999, 73, 6610–6617. [Google Scholar] [CrossRef]
- Green, G.; Johnson, S.M.; Costello, H.; Brakel, K.; Harder, O.; Oomens, A.G.; Peeples, M.E.; Moulton, H.M.; Niewiesk, S. CX3CR1 Is a Receptor for Human Respiratory Syncytial Virus in Cotton Rats. J. Virol. 2021, 95, e0001021. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.-I.; Piepenhagen, P.A.; Kishko, M.; DiNapoli, J.M.; Groppo, R.P.; Zhang, L.; Almond, J.; Kleanthous, H.; Delagrave, S.; Parrington, M. CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with Respiratory Syncytial Virus on Cilia in a G Protein-Dependent Manner. PLOS ONE 2015, 10, e0130517. [Google Scholar] [CrossRef] [PubMed]
- Tripp, R.A.; Dakhama, A.; Jones, L.P.; Barskey, A.; Gelfand, E.W.; Anderson, L.J. The G Glycoprotein of Respiratory Syncytial Virus Depresses Respiratory Rates through the CX3C Motif and Substance P. J. Virol. 2003, 77, 6580–6584. [Google Scholar] [CrossRef] [PubMed]
- Zhivaki, D.; Lemoine, S.; Lim, A.; Morva, A.; Vidalain, P.-O.; Schandene, L.; Casartelli, N.; Rameix-Welti, M.-A.; Hervé, P.-L.; Dériaud, E.; et al. Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity 2017, 46, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Tripp, R.A.; Jones, L.P.; Haynes, L.M.; Zheng, H.; Murphy, P.M.; Anderson, L.J. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2001, 2, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S. M.; McNally, B. A.; Ioannidis, I.; Flano, E.; Teng, M. N.; Oomens, A. G.; Walsh, E. E.; Peeples, M. E. , Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures. PLoS pathogens 2015, 11, (12), e1005318. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Chirkova, T.; Qiu, X.; Walsh, E.; Anderson, L.; Mariani, T. CX3CR1 Engagement by Respiratory Syncytial Virus Leads to Induction of Nucleolin and Dysregulation Cilia-Related Genes. American Thoracic Society 2020 International Conference, -20, 2020—Philadelphia, PA. LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE; 15 May.
- Zhang, W.; Choi, Y.; Haynes, L.M.; Harcourt, J.L.; Anderson, L.J.; Jones, L.P.; Tripp, R.A. Vaccination To Induce Antibodies Blocking the CX3C-CX3CR1 Interaction of Respiratory Syncytial Virus G Protein Reduces Pulmonary Inflammation and Virus Replication in Mice. J. Virol. 2010, 84, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Raundhal, M.; Chen, J.; Oriss, T. B.; Huff, R.; Williams, J. V.; Ray, A.; Ray, P. , Respiratory syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary innate immune response. JCI insight 2017, 2, (17). [Google Scholar] [CrossRef]
- Tsutsumi, N.; Maeda, S.; Qu, Q.; Vögele, M.; Jude, K.M.; Suomivuori, C.-M.; Panova, O.; Waghray, D.; Kato, H.E.; Velasco, A.; et al. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Sci. Adv. 2022, 8, eabl5442. [Google Scholar] [CrossRef] [PubMed]
- Hjortø, G.M.; Kiilerich-Pedersen, K.; Selmeczi, D.; Kledal, T.N.; Larsen, N.B. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface. J. Gen. Virol. 2013, 94, 1111–1120. [Google Scholar] [CrossRef]
- Hertoghs, K.M.; Moerland, P.D.; van Stijn, A.; Remmerswaal, E.B.; Yong, S.L.; van de Berg, P.J.; van Ham, S.M.; Baas, F.; Berge, I.J.T.; van Lier, R.A. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Investig. 2010, 120, 4077–4090. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Aliberti, J.; Graemmel, P.; Sunshine, M.J.; Kreutzberg, G.W.; Sher, A.; Littman, D.R. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 2000, 20, 4106–4114. [Google Scholar] [CrossRef]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef]
- Winchester, N.E.; Panigrahi, S.; Haria, A.; Chakraborty, A.; Su, X.; Chen, B.; Morris, S.R.; Clagett, B.M.; Juchnowski, S.M.; Yadavalli, R.; et al. Cytomegalovirus Infection Facilitates the Costimulation of CD57+CD28− CD8 T Cells in HIV Infection and Atherosclerosis via the CD2–LFA-3 Axis. J. Immunol. 2023. [Google Scholar] [CrossRef]
- Schuster, I. S.; Sng, X. Y. X.; Lau, C. M.; Powell, D. R.; Weizman, O. E.; Fleming, P.; Neate, G. E. G.; Voigt, V.; Sheppard, S.; Maraskovsky, A. I.; et al. Degli-Esposti, M. A., Infection induces tissue-resident memory NK cells that safeguard tissue health. Immunity 2023, 56, (3), 531–546 e6. [Google Scholar]
- Wanjalla, C.N.; Gabriel, C.L.; Fuseini, H.; Bailin, S.S.; Mashayekhi, M.; Simmons, J.; Warren, C.M.; Glass, D.R.; Oakes, J.; Gangula, R.; et al. CD4+ T cells expressing CX3CR1, GPR56, with variable CD57 are associated with cardiometabolic diseases in persons with HIV. Front. Immunol. 2023, 14, 1099356. [Google Scholar] [CrossRef] [PubMed]
- Bolovan-Fritts, C.A.; Trout, R.N.; Spector, S.A. High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood 2007, 110, 1857–1863. [Google Scholar] [CrossRef] [PubMed]
- Bolovan-Fritts, C.A.; Trout, R.N.; Spector, S.A. Human Cytomegalovirus-Specific CD4 + -T-Cell Cytokine Response Induces Fractalkine in Endothelial Cells. J. Virol. 2004, 78, 13173–13181. [Google Scholar] [CrossRef] [PubMed]
- Bolovan-Fritts, C.A.; Spector, S.A. Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 2008, 111, 175–182. [Google Scholar] [CrossRef]
- Jeyalan, V.; Austin, D.; Loh, S. X.; Wangsaputra, V. K.; Spyridopoulos, I. , Fractalkine/CX(3)CR1 in Dilated Cardiomyopathy: A Potential Future Target for Immunomodulatory Therapy? Cells 2023, 12, (19). [Google Scholar] [CrossRef]
- Gerlach, C.; Moseman, E.A.; Loughhead, S.M.; Alvarez, D.; Zwijnenburg, A.J.; Waanders, L.; Garg, R.; de la Torre, J.C.; von Andrian, U.H. The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity 2016, 45, 1270–1284. [Google Scholar] [CrossRef]
- Bratke, K.; Kuepper, M.; Bade, B.; Virchow, J. C., Jr.; Luttmann, W. , Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. European journal of immunology 2005, 35, (9), 2608–16. [Google Scholar] [CrossRef]
- Morris, S.R.; Chen, B.; Mudd, J.C.; Panigrahi, S.; Shive, C.L.; Sieg, S.F.; Cameron, C.M.; Zidar, D.A.; Funderburg, N.T.; Younes, S.-A.; et al. “Inflammescent” CX3CR1+CD57+ CD8 T cells are generated and expanded by IL-15. J. Clin. Investig. 2020, 5. [Google Scholar] [CrossRef]
- Weiskopf, D.; Bangs, D. J.; Sidney, J.; Kolla, R. V.; De Silva, A. D.; de Silva, A. M.; Crotty, S.; Peters, B.; Sette, A. , Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proceedings of the National Academy of Sciences of the United States of America 2015, 112, (31), E4256–63. [Google Scholar] [CrossRef]
- Soe, H.J.; Khan, A.M.; Manikam, R.; Raju, C.S.; Vanhoutte, P.; Sekaran, S.D. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J. Gen. Virol. 2017, 98, 2993–3007. [Google Scholar] [CrossRef]
- Badolato-Corrêa, J.; Sánchez-Arcila, J.C.; de Souza, T.M.A.; Barbosa, L.S.; Nunes, P.C.G.; Lima, M.d.R.Q.; Gandini, M.; de Filippis, A.M.B.; da Cunha, R.V.; de Azeredo, E.L.; et al. Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection. Immunity, Inflamm. Dis. 2017, 6, 194–206. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Cheng, Y.; Meng, F.; Song, J.-W.; Fan, X.; Fan, H.; Li, J.; Fu, Y.-L.; Zhou, M.-J.; et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut 2022, 72, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Kimura, O.; Tanaka, Y.; Ninomiya, M.; Iwata, T.; Kogure, T.; Inoue, J.; Sugiyama, M.; Morosawa, T.; Fujisaka, Y.; et al. Differential Expression of CX3CL1 in Hepatitis B Virus-Replicating Hepatoma Cells Can Affect the Migration Activity of CX3CR1 + Immune Cells. J. Virol. 2015, 89, 7016–7027. [Google Scholar] [CrossRef]
- Chen, S.-T.; Li, F.-J.; Hsu, T.-Y.; Liang, S.-M.; Yeh, Y.-C.; Liao, W.-Y.; Chou, T.-Y.; Chen, N.-J.; Hsiao, M.; Yang, W.-B.; et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Lannes, N.; Garcia-Nicolàs, O.; Démoulins, T.; Summerfield, A.; Filgueira, L. CX3CR1-CX3CL1-dependent cell-to-cell Japanese encephalitis virus transmission by human microglial cells. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Gao, F.; Li, Y.; Shi, K.; Hou, Y.; Chen, J.; Zhang, Q.; Wang, X. Serum cytokine and chemokine profiles and disease prognosis in hepatitis B virus-related acute-on-chronic liver failure. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef]
- John, A.L.S.; Rathore, A.P.S.; Yap, H.; Ng, M.-L.; Metcalfe, D.D.; Vasudevan, S.G.; Abraham, S.N. Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc. Natl. Acad. Sci. 2011, 108, 9190–9195. [Google Scholar] [CrossRef]
- García-Álvarez, M.; Berenguer, J.; Guzmán-Fulgencio, M.; Micheloud, D.; Catalán, P.; Muñoz-Fernandez, M. .; Álvarez, E.; Resino, S. High plasma fractalkine (CX3CL1) levels are associated with severe liver disease in HIV/HCV co-infected patients with HCV genotype 1. Cytokine 2011, 54, 244–248. [Google Scholar] [CrossRef]
- Easterbrook, J.D.; Klein, S.L. Seoul virus enhances regulatory and reduces proinflammatory responses in male Norway rats. J. Med Virol. 2008, 80, 1308–1318. [Google Scholar] [CrossRef]
- Loxham, M.; E Smart, D.; Bedke, N.J.; Smithers, N.P.; Filippi, I.; Blume, C.; Swindle, E.J.; Tariq, K.; Howarth, P.H.; Holgate, S.T.; et al. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus. Mucosal Immunol. 2018, 11, 404–414. [Google Scholar] [CrossRef]
- Streit, W.J.; Davis, C.N.; Harrison, J.K. Role of Fractalkine (CX3CL1) in Regulating Neuron-Microglia Interactions: Development of Viral-Based CX3CR1 Antagonists. Curr. Alzheimer Res. 2005, 2, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Murray, J.; Castrejon, A.M.N.; DuBois, R.M.; Tripp, R.A. Respiratory Syncytial Virus (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1 Blocking Antibodies. Viruses 2021, 13, 352. [Google Scholar] [CrossRef] [PubMed]
| Virus | Cell/tissue/organization | CX3CL1 expressionstatus | CX3CR1 expressionstatus | Ref |
|---|---|---|---|---|
| HIV | Neurons,Monocyte, DCs, Mφs |
up | up | [80,81,82,85,86,87] |
| SARS-CoV-2 | serum sample | up | [88,89] | |
| Influenza strain (H1N1) |
hippocampus | Down | [90] | |
| Influenza strain H5N1 and H9N2 |
DF-1 cell line of chicken embryo fibroblasts lung tissues of chicken |
up | [91,92] | |
| RSV | human airway epithelial cells and airway ciliated cells |
up | up | [93,94] |
| CMV | CMV-specific CD8 or effector CD8 T cells |
up | [95] | |
| HTNV | nonclassical and intermediate monocyte subsets |
up | [96] | |
| CVB3 | left ventricle | up | [97] |
| Virus | Roles |
|---|---|
| HIV | sCX3CL1 inhibits the apoptosis of hippocampal neurons induced by neurotoxic viral proteins. |
| CX3CL1 is involved in neuronal damage through its interaction with microglia, which secrete proinflammatory cytokines. | |
| C. CX3CL1 promotes the accumulation of DCs in the lymph nodes. | |
| SARS-CoV-2 | A. CX3CL1 facilitates recruitment and adhesion of CX3CR1+ immune cells to target tissues. |
| B. levels of CX3CL1 is associated with the duration of illness in severe COVID-19. | |
| Influenza strain H1N1 |
Cx3cr1-/- mice showed cell-autonomous microglial neurotoxicity. |
| loss of CX3CL1 may lead to changes in both glial regulation and cognitive function. | |
| Influenza strain H5N1 and H9N2 |
CX3CL1 impedes neuron-microglia interactions, increased inflammation, and microglial activation. |
| CX3CL1 is a chemotactic factor in responses to H5N1 infection in chickens | |
| RSV | CX3CR1 leads to NF-κB activation and CX3CL1 production, and affects the cellular inflammatory response to RSV infection |
| CMV | Make CMV-specific CD8 T cells and effector CD8 T cells with the ability to migrate to inflamed vascular endothelium |
| HTNV | CX3CL1 level is associated with the severity of hemorrhagic fever with renal syndrome in humans |
| CVB3 | CX3CR1 plays a cardio-protective role in CVB3-infected mice. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
