Submitted:
15 March 2024
Posted:
15 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Synergy and Antagonism of Active Ingredients of Rhodiola and Other Plant Extracts
3. Clinical Studies in Human Subjects
3.1. HHP of Rhodiola with Green Tea (Mg-Teadiola®) in Psychological and Social Stress
3.2. HHP of Rhodiola SHR-5 with Schisandra and Eleutherococcus (ADAPT-232/Chisan®) for Relief of Mental and Physical Fatigue both in Healthy Subjects and in Patients with Pneumonia and COVID-19

3.3. HHP of Rhodiola With Caffeine for Improvement of Muscle Strength and Muscular Endurance
3.4. HHP of Rhodiola with Cordyceps for Boost Exercise Performance

3.5. HHP of Rhodiola with Ginkgo for Improvement of Cognitive Function
3.6. BHP of Rhodiola with Black Cohosh for Relief of Aging-Related Menopausal Symptoms
3.7. HHP of Rhodiola with Saffron in Mild and Moderate Depression
3.8. BHP of Rhodiola with L-carnosine in Aging Skin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cuerrier, A., Ampong-Nyarko, K., eds. Rhodiola rosea, Series: Traditional Herbal Medicines for Modern Times. Boca-Raton London New-York: CRC Press, Taylor & Francis Group; 2014: pp. 1–304. Rhodiola rosea | Alain Cuerrier, Kwesi Ampong-Nyarko | Taylor & Franci (taylorfrancis.com).
- Panossian, A., Wikman, G., Sarris, J. (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493. [CrossRef]
- Darbinyan, V.; Kteyan, A.; Panossian, A.; Gabrielian, E.; Wikman, G.; Wagner, H. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 2000, 7, 365–371. [Google Scholar] [CrossRef]
- Spasov, A.A.; Wikman, G.K.; Mandrikov, V.B.; Mironova, I.A.; Neumoin, V.V. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 2000, 7, 85–89. [Google Scholar] [CrossRef]
- Shevtsov, V.A.; Zholus, B.I.; Shervarly, V.I.; Vol'skij, V.B.; Korovin, Y.P.; Khristich, M.P.; Roslyakova, N.A.; Wikman, G. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine 2003, 10, 95–105. [Google Scholar] [CrossRef]
- Schutgens, F.W.; Neogi, P.; van Wijk, E.P.; van Wijk, R.; Wikman, G.; Wiegant, F.A. The influence of adaptogens on ultraweak biophoton emission: a pilot experiment. Phytother Res. 2009, 23, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Wing, S.L.; Askew, E.W.; Luetkemeier, M.J.; Ryujin, D.T.; Kamimori, G.H.; Grissom, C.K. Lack of effect of Rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress. Wilderness Environ Med 2003, 14, 9–16. [Google Scholar] [CrossRef] [PubMed]
- De Bock, K.; Eijnde, B.O.; Ramaekers, M.; Hespel, P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab. 2004, 14, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Abidov, M.; Grachev, S.; Seifulla, R.D.; Ziegenfuss, T.N. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull Exp Biol Med. 2004, 138, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.B.; Altobelli, S.A.; Caprihan, A.; Robergs, R.A. Failure of Rhodiola rosea to alter skeletal muscle phosphate kinetics in trained men. Metabolism 2007, 56, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- 11. Darbinyan, V.; Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Malmström, C.; Panossian, A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry 2007, 61, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Fintelmann, V.; Gruenwald, J. Efficacy and tolerability of a Rhodiola rosea extract in adults with physical and cognitive deficiencies. Adv Ther. 2007, 24, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Bystritsky, A.; Kerwin, L.; Feusner, J.D. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). J Altern Complement Med 2008, 14, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.L.; Zhang, P.P.; Zhang, C.; Zhang, X.; Li, Z.Z.; Li, W.Q.; Fu, A.S. Effects of Rhodiola rosea on oxidative stress and negative emotional states in patients with obstructive sleep apnea. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019, 33, 954–957, Chinese. [Google Scholar] [CrossRef] [PubMed]
- Skarpanska-Stejnborn, A.; Pilaczynska-Szczesniak, L.; Basta, P.; Deskur-Smielecka, E. The influence of supplementation with Rhodiola rosea L. extract on selected redox parameters in professional rowers. Int J Sport Nutr Exerc Metab. 2009, 19, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.M.; von Schéele, B.; Panossian, A.G. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta 2009, 75, 105–112. [Google Scholar] [CrossRef]
- Parisi, A.; Tranchita, E.; Duranti, G.; Ciminelli, E.; Quaranta, F.; Ceci, R.; Cerulli, C.; Borrione, P.; Sabatini, S. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results. J Sports Med Phys Fitness 2010, 50, 57–63. Available online: https://www.minervamedica.it/en/journals/sports-med-physical-fitness/article.php?cod=R40Y2010N01A0057. [PubMed]
- Goyvaerts, B.; Bruhn, S. Rhodiola rosea special extract SHR-5 in burnout and fatigue syndrome. Erfahrungsheilkunde 2012, 61, 79–83. https://api.semanticscholar.org/CorpusID:76263759. [CrossRef]
- Edwards, D.; Heufelder, A.; Zimmermann, A. Therapeutic effects and safety of Rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms--results of an open-label study. Phytother Res. 2012, 26, 1220–1225. [Google Scholar] [CrossRef]
- Noreen, E.E.; Buckley, J.G.; Lewis, S.L.; Brandauer, J.; Stuempfle, K.J. The effects of an acute dose of Rhodiola rosea on endurance exercise performance. J Strength Cond Res. 2013, 27, 839–847. [Google Scholar] [CrossRef]
- Mao, J.J.; Li, Q.S.; Soeller, I.; Xie, S.X.; Amsterdam, J.D. Rhodiola rosea therapy for major depressive disorder: a study protocol for a randomized, double-blind, placebo- controlled trial. J Clin Trials 2014, 4, 170. [Google Scholar] [CrossRef]
- Duncan, M.J.; Clarke, N.D. The Effect of Acute Rhodiola rosea Ingestion on Exercise Heart Rate, Substrate Utilisation, Mood State, and Perceptions of Exertion, Arousal, and Pleasure/Displeasure in Active Men. J Sports Med (Hindawi Publ Corp). 2014, 563043, 1–8. [Google Scholar] [CrossRef]
- Punja, S.; Shamseer, L.; Olson, K.; Vohra, S. Rhodiola rosea for mental and physical fatigue in nursing students: a randomized controlled trial. PloS one 2014, 9, e108416. [Google Scholar] [CrossRef]
- Shanely, R.A.; Nieman, D.C.; Zwetsloot, K.A.; Knab, A.M.; Imagita, H.; Luo, B.; Davis, B.; Zubeldia, J.M. Evaluation of Rhodiola rosea supplementation on skeletal muscle damage and inflammation in runners following a competitive marathon. Brain Behav Immun. 2014, 39, 204–210. [Google Scholar] [CrossRef]
- Dimpfel, W. Neurophysiological effects of Rhodiola rosea extract containing capsules (A double-blind, randomized, placebo-controlled study). Int J. Nutr Food Sci. 2014, 3, 157–165. https://www.sciencepublishinggroup.com/article/10.11648/j.ijnfs.20140303.14. [CrossRef]
- Cropley, M.; Banks, A.P.; Boyle, J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother Res. 2015, 29, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.J.; Xie, S.X.; Zee, J.; Soeller, I.; Li, Q.S.; Rockwell, K.; Amsterdam, J.D. Rhodiola rosea versus sertraline for major depressive disorder: A randomized placebo-controlled trial. Phytomedicine 2015, 22, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Henson, D.A.; Sanderson, M.C.; Nieman, D.C.; Zubeldia, J.M.; Shanely, R.A. Rhodiola rosea Exerts Antiviral Activity in Athletes Following a Competitive Marathon Race. Front Nutr. 2 2015, 2, 24. [Google Scholar] [CrossRef]
- Thu, O.K.; Spigset, O.; Nilsen, O.G.; Hellum, B. Effect of commercial Rhodiola rosea on CYP enzyme activity in humans. Eur J Clin Pharmacol. 2016, 72, 295–300. [Google Scholar] [CrossRef]
- Kasper, S.; Dienel, A. Multicenter, open-label, exploratory clinical trial with Rhodiola rosea extract in patients suffering from burnout symptoms. Neuropsychiatric disease and treatment 2017, 13, 889–898. [Google Scholar] [CrossRef]
- Lekomtseva, Y.; Zhukova, I.; Wacker, A. Rhodiola rosea in Subjects with Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial. Compl Med Res. 2017, 24, 46–52. [Google Scholar] [CrossRef]
- Concerto, C.; Infortuna, C.; Muscatello MR, A.; Bruno, A.; Zoccali, R.; Chusid, E.; Aguglia, E.; Battaglia, F. Exploring the effect of adaptogenic Rhodiola Rosea extract on neuroplasticity in humans. Complement Ther Med. 2018, 41, 141–146. [Google Scholar] [CrossRef]
- Jówko, E.; Sadowski, J.; Długołęcka, B.; Gierczuk, D.; Opaszowski, B.; Cieśliński, I. Effects of Rhodiola rosea supplementation on mental performance, physical capacity, and oxidative stress biomarkers in healthy men. J Sport Health Sci. 2018, 7, 473–480. [Google Scholar] [CrossRef]
- Timpmann, S.; Hackney, A.C.; Tamm, M.; Kreegipuu, K.; Unt, E.; Ööpik, V. Influence of Rhodiola rosea on the heat acclimation process in young healthy men. Appl Physiol Nutr Metab. 2018, 43, 63–70. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Maze, S.B.; Wells, A.C.; Marshall, M.M.; Rogers, R.R. Effects of short-term Rhodiola Rosea (Golden Root Extract) supplementation on anaerobic exercise performance. J Sports Sci. 2019, 37, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wu, C.; Liao, Y.; Wang, J. Antidepressants effects of Rhodiola capsule combined with sertraline for major depressive disorder: A randomized double-blind placebo-controlled clinical trial. J Affect Disord. 2020, 265, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Koop, T.; Dienel, A.; Heldmann, M.; Münte, T.F. Effects of a Rhodiola rosea extract on mental resource allocation and attention: An event-related potential dual task study. Phytother Res. 2020, 34, 3287–3297. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Langley, H.N.; Roberson, C.C.; Rogers, R.R.; Ballmann, C.G. Effects of Short-Term Golden Root Extract (Rhodiola rosea) Supplementation on Resistance Exercise Performance. Int J Environ Res Public Health. 2021, 18, 6953. [Google Scholar] [CrossRef] [PubMed]
- Dye, L.; Billington, J.; Lawton, C.; Boyle, N. A combination of magnesium, B vitamins, green tea and rhodiola attenuates the negative effects of acute psychosocial stress on subjective state in adults. Curr Dev Nutr. 2020, 4. [Google Scholar] [CrossRef]
- Boyle, N.B.; Billington, J.; Lawton, C.; Quadt, F.; Dye, L. A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers. Nutr Neurosci. 2022, 25, 1845–1859. [Google Scholar] [CrossRef]
- Boyle, N.B.; Dye, L.; Lawton, C.L.; Billington, J. A Combination of Green Tea, Rhodiola, Magnesium, and B Vitamins Increases Electroencephalogram Theta Activity During Attentional Task Performance Under Conditions of Induced Social Stress. Front Nutr. 2022, 9, 935001. [Google Scholar] [CrossRef]
- Noah, L., Morel. Effect of a Combination of Magnesium, B Vitamins, Rhodiola, and Green Tea (L-Theanine) on Chronically Stressed Healthy Individuals-A Randomized, Placebo-Controlled Study. Nutrients 1863, 14. [Google Scholar] [CrossRef]
- Pickering, G.; Noah, L.; Pereira, B.; Goubayon, J.; Leray, V.; Touron, A.; Macian, N.; Bernard, L.; Dualé, C.; Roux, V.; Chassain, C. Assessing brain function in stressed healthy individuals following the use of a combination of green tea, Rhodiola, magnesium, and B vitamins: an fMRI study. Front Nutr. 2023, 10, 1211321. [Google Scholar] [CrossRef]
- Narimanian, M.; Badalyan, M.; Panosyan, V.; Gabrielyan, E.; Panossian, A.; Wikman, G.; Wagner, H. Impact of Chisan (ADAPT-232) on the quality-of-life and its efficacy as an adjuvant in the treatment of acute non-specific pneumonia. Phytomedicine 2005, 12, 723–729. [Google Scholar] [CrossRef]
- Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Nylander, M.; Wikman, G.; Panossian, A. Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine 2010, 17, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Wikman, K.G.; Panossian, A. Compositions for the treatment of age related disorders - European Patent Office - EP 2995311 B1 (epo.org). 2016. Available online: https://data.epo.org/publication-server/pdf-document/EP14184632NWB1.pdf?PN=EP2995311%20EP%202995311&iDocId=6549596&iepatch=.pdf.
- Hovhannisyan, A.; Nylander, M.; Wikman, G.; Panossian, A.G. Efficacy of Adaptogenic Supplements on Adapting to Stress: A Randomized, Controlled Trial. Athl Enhancement 2015, 4, 4. [Google Scholar] [CrossRef]
- Wikman, K.G.; Panossian, A. Compositions for the treatment of overtraining syndrome - European Patent Office - EP 2995310 B1 (storage.googleapis.com). 2016. Available online: https://patentimages.storage.googleapis.com/1a/c0/47/2e2b80de961c36/EP2995310B1.pdf.
- Karosanidze, I.; Kiladze, U.; Kirtadze, N.; Giorgadze, M.; Amashukeli, N.; Parulava, N.; Iluridze, N.; Kikabidze, N.; Gudavadze, N.; Gelashvili, L.; Koberidze, V.; Gigashvili, E.; Jajanidze, N.; Latsabidze, N.; Mamageishvili, N.; Shengelia, R.; Hovhannisyan, A.; Panossian, A. Efficacy of Adaptogens in Patients with Long COVID-19: A Randomized, Quadruple-Blind, Placebo-Controlled Trial. Pharmaceuticals (Basel) 2022, 15, 345. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, H.; Yan, Y.; Yang, W.; Chen, S.; Song, G.; Li, X.; Gu, Y.; Yun, H.; Li, Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Morss, G.M.; Wyatt, F.; Jordan, A.N.; Colson, S.; Church, T.S.; Fitzgerald, Y.; Autrey, L.; Jurca, R.; Lucia, A. Effects of a commercial herbal-based formula on exercise performance in cyclists. Medicine and science in sports and exercise 2004, 36, 504–509. [Google Scholar] [CrossRef]
- Colson, S.N.; Wyatt, F.B.; Johnston, D.L.; Autrey, L.D.; FitzGerald, Y.L.; Earnest, C.P. Cordyceps sinensis- and Rhodiola rosea-based supplementation in male cyclists and its effect on muscle tissue oxygen saturation. J Strength Cond Res. 2005, 19, 358–363. [Google Scholar] [CrossRef]
- Liao, Y.H.; Chao, Y.C.; Sim, B.Y.; Lin, H.M.; Chen, M.T.; Chen, C.Y. Rhodiola/Cordyceps-Based Herbal Supplement Promotes Endurance Training-Improved Body Composition But Not Oxidative Stress and Metabolic Biomarkers: A Preliminary Randomized Controlled Study. Nutrients 2019, 2019, 2357. [Google Scholar] [CrossRef]
- Kreipke, V.C.; Moffatt, R.J.; Tanner Ma, C.J.; Ormsbee, M.J. Effects of Concurrent Training and a Multi-Ingredient Performance Supplement Containing Rhodiola rosea and Cordyceps sinensis on Body Composition, Performance, and Health in Active Men. J Diet Suppl. 2021, 18(6), 597–613. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M. Central additive effect of Ginkgo biloba and Rhodiola rosea on psychomotor vigilance task and short-term working memory accuracy. J Intercult Ethnopharmacol. 2015, 5, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pkhaladze, L.; Davidova, N.; Khomasuridze, A.; Shengelia, R.; Panossian, A.G. Actaea racemosa L. Is More Effective in Combination with Rhodiola rosea L. for Relief of Menopausal Symptoms: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals (Basel) 2020, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Bangratz, M.; Ait Abdellah, S.; Berlin, A.; Blondeau, C.; Guilbot, A.; Dubourdeaux, M.; Lemoine, P. A preliminary assessment of a combination of rhodiola and saffron in the management of mild-moderate depression. Neuropsychiatr Dis Treat. 2018, 14, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Dieamant, G.de.C.; Velazquez Pereda, M.del.C.; Eberlin, S.; Nogueira, C.; Werka, R.M.; Queiroz, M.L. Neuroimmunomodulatory compound for sensitive skin care: in vitro and clinical assessment. J Cosmet Dermatol. 2008, 7, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Dzampaeva, Z.V.; Datieva, F.S.; Esenova, Z.S.; Takoeva, E.A. Efficacy of Complex Phytoadaptogens as an Adjunct to Non-surgical Treatment of Chronic Periodontitis: A Randomized Clinical Trial. J Int Soc Prev Community Dent. 2021, 11, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.A.; Wagner, H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev. 2021, 41, 630–703. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.J.; Efferth, T. Synergy assessments of plant extracts used in the treatment of stress and aging related disorders. Synergy Res 2018, 7, 39–49. Available online: https://www.sciencedirect.com/science/article/pii/S2213713018300312?via%3Dihub; Synergy assessments of plant extracts used in the treatment of stress and aging-related disorders (sciencedirectassets.com). [CrossRef]
- Panossian, A.; Seo, E.J.; Efferth, T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018, 50, 257–284. [Google Scholar] [CrossRef]
- Panossian, A.; Hamm, R.; Kadioglu, O.; Wikman, G.; Efferth, T. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells. Front Neurosci. 2013, 7, 16. [Google Scholar] [CrossRef]
- Panossian, A.; Hamm, R.; Wikman, G.; Efferth, T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine. 2014, 21, 1325–1348. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.J.; Efferth, T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine 2019, 60, 152881. [Google Scholar] [CrossRef]
- Tan, J.; Engelhardt, U.H.; Lin, Z.; Kaiser, N.; Maiwald, B. Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. J. Food Comp. Anal. 2017, 57, 8–15. [Google Scholar] [CrossRef]
- Phuah, Y.Q.; Chang, S.K.; Ng, W.J.; Lam, M.Q.; Ee, K.Y. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int. 2023, 170, 113007. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.C.; Rao, A.; Owen, G.N. L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac J Clin Nutr. 2008, 17 Suppl 1, 167–168. [Google Scholar] [PubMed]
- Grosso, C.; Santos, M.; Barroso, M.F. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel). 2023, 12, 1603. [Google Scholar] [CrossRef] [PubMed]
- Son, T.G.; Camandola, S.; Mattson, M.P. Hormetic dietary phytochemicals. Neuromolecular Med. 2008, 10, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Deka, H.; Barman, T.; Dutta, J.; Devi, A.; Tamuly, P.; Paul, R.K.; Karak, T. Catechin and caffeine content of tea (Camellia sinensis L.) leaf significantly differ with seasonal variation: A study on popular cultivars in North East India. J. Food Comp. Anal 2021, 96, 103684. [Google Scholar] [CrossRef]
- Panossian, A.; Wagner, H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res. 2005 19, 819–838. [CrossRef] [PubMed]
- Liu, C.; Zhao, H.; Yan, Y.; Yang, W.; Chen, S.; Song, G.; Li, X.; Gu, Y.; Yun, H.; Li, Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023, 15, 582. [Google Scholar] [CrossRef]
- Sajadi-Ernazarova, K.R.; Anderson, J.; Dhakal, A.; Hamilton, R.J. Caffeine Withdrawal. 2023 Aug 8. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 8 Aug 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430790/. [PubMed]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production-A Review. Molecules. 2023, 28, 5393. [Google Scholar] [CrossRef]
- Xie, L.; Zhu, Q.; Lu, J. Can We Use Ginkgo biloba Extract to Treat Alzheimer's Disease? Lessons from Preclinical and Clinical Studies. Cells. 2022, 11, 479. [Google Scholar] [CrossRef]
- Liao, Z.; Cheng, L.; Li, X.; Zhang, M.; Wang, S.; Huo, R. Meta-analysis of Ginkgo biloba Preparation for the Treatment of Alzheimer's Disease. Clin Neuropharmacol. 2020, 43, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Direito, R.; Laurindo, L.F.; Marton, L.T.; Guiguer, E.L.; Goulart, R.A.; Tofano, R.J.; Carvalho AC, A.; Flato UA, P.; Capelluppi Tofano, V.A.; Detregiachi CR, P.; Bueno PC, S.; Girio RS, J.; Araújo, A.C. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants (Basel). 2022, 11, 525. [Google Scholar] [CrossRef]
- Cave, A.E.; Chang, D.H.; Münch, G.W.; Steiner-Lim, G.Z. A systematic review of the safety and efficacy on cognitive function of herbal and nutritional medicines in older adults with and without subjective cognitive impairment. Syst Rev. 2023, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Hort, J.; Duning, T.; Hoerr, R. Ginkgo biloba Extract EGb 761 in the Treatment of Patients with Mild Neurocognitive Impairment: A Systematic Review. Neuropsychiatr Dis Treat. 2023, 19, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Hausenblas, H.A.; Saha, D.; Dubyak, P.J.; Anton, S.D. Saffron (Crocus sativus L.) and major depressive disorder: a meta-analysis of randomized clinical trials. J Integr Med. 2013, 11, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, K.; Durairaj, M.; Srinivasan, K.; Goh, K.W.; Undela, K.; Mahalingam, V.T.; Ardianto, C.; Ming, L.C.; Ganesan, R.M. Effect of L-Carnosine in Patients with Age-Related Diseases: A Systematic Review and Meta-Analysis. Front Biosci (Landmark Ed). 2023, 28, 18. [Google Scholar] [CrossRef] [PubMed]







| Gene Symbol | Entrez Gene Name | Literature findings |
Prediction | Gene expression, fold change | ||
|---|---|---|---|---|---|---|
| RR-WS | RR | WS | ||||
| ADGRF1 | adhesion G protein-coupled receptor F1 | Affects (4) | Affected | 2.29 | 2.28 | |
| ADGRL1 | adhesion G protein-coupled receptor L1 | Increases (2) | Increased | 6.93 | ||
| APOE | apolipoprotein E | Affects (13) | Affected | -2.84 | ||
| BICDL1 | BICD family like cargo adaptor 1 | Affects (2) | Affected | -3.98 | -2.34 | |
| CACNA2D2 | calcium voltage-gated channel auxiliary subunit α2 δ2 | Affects (2) | Affected | 3.76 | 6.93 | |
| CDK5R1 | cyclin dependent kinase 5 regulatory subunit 1 | Increases (4) | Increased | 2.33 | ||
| CDKL3 | cyclin dependent kinase like 3 | Increases (3) | Increased | 4.82 | ||
| CHRNA3 | cholinergic receptor nicotinic α 3 subunit | Affects (2) | Affected | -3.09 | -2.45 | |
| CHRNA7 | cholinergic receptor nicotinic α 7 subunit | Increases (1) | Decreased | -3.74 | ||
| CHRNB2 | cholinergic receptor nicotinic β 2 subunit | Increases (8) | Increased | 2.45 | -5.20 | |
| CHRNE | cholinergic receptor nicotinic epsilon subunit | Increases (1) | Decreased | -2.65 | -2.59 | |
| COLQ | collagen like tail subunit of acetylcholinesterase | Affects (2) | Affected | -2.65 | -6.30 | -2.69 |
| CRIP1 | cysteine rich protein 1 | Increases (1) | Increased | 2.41 | 3.01 | |
| ELFN1 | extracellular leucine rich repeat and fibronectin type III domain containing 1 | Affects (1) | Affected | -5.31 | ||
| FGF5 | fibroblast growth factor 5 | Increases (1) | Increased | 3.52 | 4.23 | |
| FOXO6 | forkhead box O6 | Increases (3) | Decreased | -7.93 | -2.10 | -3.89 |
| GAS7 | growth arrest specific 7 | Increases (3) | Decreased | -2.85 | -2.26 | |
| GFI1 | growth factor independent 1 transcriptional repressor | Affects (1) | Affected | -2.65 | -2.59 | |
| GHSR | growth hormone secretagogue receptor | Affects (3) | Affected | 3.15 | ||
| GRIN3A | glutamate ionotropic receptor NMDA type subunit 3A | Decreases (4) | Increased | -3.33 | ||
| HAP1 | huntingtin associated protein 1 | Affects (1) | Affected | -2.21 | ||
| ITGB2 | integrin subunit β 2 | Increases (1) | Increased | 2.45 | 3.05 | 2.66 |
| LRRC7 | leucine rich repeat containing 7 | Affects (1) | Affected | -2.66 | -2.11 | |
| LRRK2 | leucine rich repeat kinase 2 | Affects (4) | Affected | 2.26 | ||
| MAGI2 | membrane associated guanylate kinase, | Affects (10) | Affected | 2.01 | 3.01 | 2.18 |
| MBP | myelin basic protein | Increases (1) | Increased | 3.48 | ||
| mir-10 | microRNA 100 | Increases (1) | Increased | 2.89 | 3.53 | |
| MYH7B | myosin heavy chain 7B | Affects (1) | Affected | 3.01 | 5.70 | 3.08 |
| MYO16 | myosin XVI | Affects (1) | Affected | -3.32 | ||
| NEFH | neurofilament heavy | Decreases (18) | Decreased | 3.02 | ||
| NKX2-1 | NK2 homeobox 1 | Affects (4) | Affected | -2.38 | ||
| NTF4 | neurotrophin 4 | Increases (5) | Decreased | -2.61 | ||
| PAK3 | p21 (RAC1) activated kinase 3 | Affects (4) | Affected | 2.86 | 2.36 | |
| PARD6A | par-6 family cell polarity regulator α | Decreases (2) | Increased | -2.84 | -2.39 | |
| PCDHB8 | protocadherin β 8 | Affects (1) | Affected | -3.97 | -3.89 | |
| PLXNA4 | plexin A4 | Increases (5) | Increased | 2.25 | 9.49 | 10.97 |
| POU3F2 | POU class 3 homeobox 2 | Affects (4) | Affected | -2.65 | ||
| PPP1R9A | protein phosphatase 1 regulatory subunit 9A | Affects (6) | Affected | 4.51 | 2.85 | 5.38 |
| PRKCZ | protein kinase C ζ | Decreases (2) | Increased | -2.23 | ||
| PROX1 | prospero homeobox 1 | Increases (1) | Increased | 3.76 | 2.85 | |
| PTPRD | protein tyrosine phosphatase, receptor type D | Increases (3) | Decreased | -4.32 | -3.42 | -2.11 |
| RAB33A | RAB33A, member RAS oncogene family | Increases (1) | Increased | 2.81 | -3.11 | |
| RAPGEF4 | Rap guanine nucleotide exchange factor 4 | Increases (2) | Increased | 6.31 | 11.27 | 3.92 |
| RELN | reelin | Increases (9) | Increased | 3.01 | ||
| ROR2 | receptor tyrosine kinase like orphan receptor 2 | Increases (5) | Increased | 3.01 | ||
| RYR2 | ryanodine receptor 2 | Increases (2) | Increased | 3.75 | 2.85 | 3.07 |
| SERPINF1 | serpin family F member 1 | Increases (1) | Increased | 3.04 | 2.88 | |
| SH3GL2 | SH3 domain containing GRB2 like 2, endophilin A1 | Affects (2) | Affected | 3.02 | 2.16 | |
| SYN2 | synapsin II | Affects (3) | Affected | 2.41 | 2.56 | |
| TENM4 | teneurin transmembrane protein 4 | Increases (3) | Increased | 2.25 | ||
| TLX2 | T cell leukemia homeobox 2 | Decreases (2) | Increased | -2.64 | 2.39 | -2.59 |
| TNIK | TRAF2 and NCK interacting kinase | Affects (1) | Affected | -3.53 | -3.60 | |
| UCN | urocortin | Affects (1) | Affected | 2.35 | 2.38 | |
| UGT8 | UDP glycosyltransferase 8 | Affects (2) | Affected | -2.21 | ||
| UNC13A | unc-13 homolog A | Affects (2) | Affected | 2.25 | ||
| WNT7B | Wnt family member 7B | Affects (2) | Affected | -3.54 | ||
| ZNF423 | zinc finger protein 423 | Affects (4) | Affected | -2.66 | ||
| Reference/year | BHP name, ingredients |
Condition | Population (n)/ country |
Dosage and active markers |
Daily dose and duration of treatment (days) |
Study design** and comparator |
Result and outcomes |
|---|---|---|---|---|---|---|---|
| Dye et al., 2020 |
Mg-Teadiola: Rhodiola rosea L. + Camelia chinensis [L.] Kuntze + Mg + vitamins B6, B9, B12+L-theanine |
Acute social stress | 100 (25+25+25+25) Healthy, moderately stressed (DASS score: 13–25) |
125 mg of IC dry extracts of Camellia sinensis L. leaf containing 50 mg L-theanine, and 222 mg of IC Rhodiola rosea L. root extract (corresponding to 1,887 mg plant), And Mg (150 mg elemental) + vitamins B6 (0.7 mg), B9 (0.1 mg), B12 (0.00125 mg)]. One tablet of Mg- Teadiola® contains 150 mg of Mg, 0.7 mg of vitamin B6, 0.1 mgof vitamin B9, and 1.25 g of vitamin B12, and 222 mg of Rhodiola rosea rhodiola dry extract and 125 mg of green tea extract including 50 mg of L-theanine |
Single dose One tablet |
DB-R-PC-PG, Placebo Capsules Tablets |
Subjective stress (stress and arousal), Mood (profile of mood states) TSST |
| Boyle et al., 2021 | Mg-Teadiola | Acute social stress | 25+25+25+25 Healthy, moderately stressed (DASS score: 13–25) |
DB-R-PC-PG, Placebo Capsules tablets |
TSST Spectral theta brain activity associated with cognitive task performance. Salivary cortisol, cardiovascular parameters (BP, HRV) |
||
| Boyle et al., 2022 | Mg-Teadiola | Acute social stress | 25+25+25+25 Healthy, moderately stressed (DASS score: 13–25) |
DB-R-PC-PG, Placebo Capsules tablets |
TSST Spectral theta brain activity, attentional capacity |
||
| Noah et al., 2022 | Mg-Teadiola: | Chronic negative emotional states | 49+51 Healthy, moderately stressed (DASS score: >14) |
One tablet daily for 28 days |
R-PC-PG, Placebo Tablets |
Stress, anxiety, depression, sleep, cortisol | |
| Noah et al., 2022 | Mg-Teadiola | Thermal stimulation | 20+20 Healthy, moderately stressed (DASS score: >14) |
R-PC-PG, Placebo tablets |
blood-oxygen-level-dependent (BOLD) signal, stress, anxiety, depression, and sleep, cortisol |
||
| Bangratz et al.2018 |
Rhodiola + Crocus sativus L |
Depression | 45 | 308 mg Rhodiola and 30 mg Crocus |
42 days | OL | |
| Al-Kuraishy, 2015 |
Rhodiola + Ginkgo |
cognitive function | 112 (27+25+30+30) |
R. rosea capsule 500 mg/day, G. biloba capsule 60 mg/day (standardized to contain 24% Ginkgo flavone glycosides) |
10 days | R-PC-PG, Placebo capsules |
Short-term working memory accuracy test (Computerized N-back test) psychomotor vigilance task |
| Liu et al., 2023 |
Rhodiola + caffeine |
physical performance in resistance exercise | 48 (12+12+12+12) Resistance exercise-trained and untrained healthy subjects |
RHO (2.4 g) and CAF (200 mg; 3 mg/kg)/caps 12 mg rhodioloside |
30 days | R-GB-PC-CO Placebo |
Muscle strength and muscular endurance |
| Earnst et al., 2004 | Rhodiola rosea + Cordyceps sinensis | exercise performance | 17 healthy subjects |
1000 mg Cordyceps sinensis + 300 mg RR 3.0% rosavins and 2.5% salidroside |
6 capsules/day 4 days, then a maintenance dose of 3 capsules/ day for 11 day |
R-DB-PC placebo |
No significant difference between or within groups |
| Coulson et al., 2005 | Rhodiola rosea + Cordyceps sinensis | Exercise performance | 8 | 1000 mg Cordyceps sinensis + 300 mg RR 3.0% rosavins and 2.5% salidroside |
6 capsules/day 4 days, then a maintenance dose of 3 capsules/ day for 7 day |
R-DB-PC placebo |
After the pre-post endurance test no significant difference between intervention and placebo in muscle tissue oxygen saturation; no significant (p </= 0.05) differences in ventilatory threshold (V(T)), or time to exhaustion (T(E)) between or within the treatment or control group. I |
| Kriepke et al., 2020 |
Rhodiola rosea + Cordyceps sinensis + blend of other 11 adaptogens |
Exercise performance | 10+11 | NS | 14-week | R-DB-PC placebo |
No significant difference between or within groups |
| Dieamant et al., 2008 |
Rhodiola rosea + L-carnosine |
Aging skin | 62+62 | 1% of RCAC topical | 28 days | DB-PC placebo |
protective effect of RCAC on skin barrier function and the positive response produced in human subjects with sensitive skin |
| Pkhaladze et al.,2020 |
Menopause Relief EP®: Rhodiola rosea EPR-7® (RR) + Actaea racemose EP40®, (Black Cohosh, BC) |
Menopausal complaints | 220 elderly woman (55+55+55+55) |
Menopause Relief EP® capsules, 206.5 mg, containing 200 mg R rosea rhizome extract EPR-7® and 6.5 mg of A. racemose rhizoma dry extract, EP40®, |
2 capsules /day for 84 days |
R-DB-PC-PG Placebo BC 6.5 mg BC 300 mg |
BC is more effective in combination with RR in the relief of menopausal symptoms, particularly psychological symptoms. Kupperman Menopausal Index (KMI), Menopause Relief Score (MRS), and menopause Utian Quality of Life (UQOL) index |
| Narimanian et al., 2005 |
ADAPT-232 (Chisan®): Rhodiola rosea + Schisandra+ Eleutherococcus |
Acute nonspecific pneumonia |
60 (30+30) | BHP of extracts from roots of R. rosea L. (27.6%), from berries of S. chinensis (51.0%), and from roots of E. senticosus (24.4%), standardized to contain: 0.068 mg/ml salidroside, 0.141 mg/ml rosavin, 0.177 mg/ml shisandrin, 0.105 mg/ml gamma-shisandrin, eleutherosides B and E (0.0 11 and 0.027 mg/ml). |
40 ml (20+20), 10-15 days |
R-DB-PC-PG placebo |
Adjuvant therapy with ADAPT-232 decreased the duration of patients’ recovery time and the acute phase of the illness. It also increased the mental performance of patients in the rehabilitation period and improved their quality of life (QOL). Duration of antibiotic therapy, psychometric tests, and the QOL. |
| Schutgens et.al., 2009 |
ADAPT-232: Rhodiola rosea + Schisandra+ Eleutherococcus |
Ultraweak Biophoton Emission |
30 (10+10+10) Healthy subject experienced levels of stress and of fatigue (tiredness) |
One tablet (456 mg) including 140 mg of the proprietary blend ADAPT-232) contains 0.5% schisandrin, 0.47% salidroside, 0.59% rosavin, 0.11%. One Rhodiola tablet (456 mg) including 144 mg SHR-5 extract contains 2.3% salidroside, 0.4% p-tyrosol and 2.7% rosavin |
Two tablets 7 days |
R-DB-PC-PG Placebo Rhodiola rosea |
ADAPT-232 and Rhodiola rosea (SHR-5)) were able to reduce photon emission; however, only Rhodiola rosea (SHR-5) significantly reduced photon emission compared with the placebo group. Rhodiola, but not ADAPT-232, reduced fatigue. |
| Aslanyan et al., 2010 |
ADAPT-232 (Chisan®): Rhodiola rosea + Schisandra+ Eleutherococcus |
Stressful cognitive tasks (Stroop Colour-Word test and the d2Test of attention, fatigue | 40 (20+20_ Healthy women felt stressed over a long period of time by virtue of living under psychologically stressful conditions |
One capsule of ADAPT-232S contained 0.5 mg of salidroside, 1.0 mg pf Schizandrin and 0.35 mg of Eleutherosides B and E, |
Single dose One tablet |
R-DB-PC-PG placebo |
Significant improvement in attention and increase in speed and accuracy during stressful cognitive tasks in comparison to placebo Mental performance (attention, speed, and accuracy), arterial blood pressure, and heart rate |
| Karosanidze et al., 2022 |
ADAPT-232 (Chisan®): Rhodiola rosea + Schisandra+ Eleutherococcus |
Long COVID-19 | 100 (50+50) patients with Long COVID symptoms | One daily dose (2x30 mL oral solution) contains 180 mg extract of R. rosea rhizome, 600 mg of S.chinensis berry, and 156 mg of E. senticosus radix extracts | 60 ml 30 days |
R-QB-PC-PG Placebo |
There was a significant increase in physical performance and recovery in Long-Term COVID patients; the duration of fatigue and chronic pain decreased; and the severity of all Long-Term COVID symptoms was relieved. Duration of symptoms of Long COVID. |
| Hovhannisyan et al., 2015 |
ADAPT-232S:Rhodiola rosea + Schisandra+ Eleutherococcus |
exercise performance |
215 (92+55+68) healthy athletes aged 18-35 |
One capsule of ADAPT-232S contained 0.5 mg of salidroside, 1.0 mg pf Schizandrin and 0.35 mg of Eleutherosides B and E, , |
2 capsules x 2 times a day, 30 days |
R-DB-PC-PG Placebo |
ADAPT-S and ADAPT-232S, increase physical performance and the recovery of athletes after heavy physical and emotional loads. They significantly decrease inattention, impulsivity, and the perception of stress, reduce fatigue, increase the anabolic index, and have excellent tolerability profiles. |
|
ADAPT-S: Rhodiola rosea + Schisandra+ Eleutherococcus+ Rhaponticum |
One capsule of ADAPT-S contains 1.5 mg of salidroside, 1.0 mg pf Schizandrin and 0.35 mg of Eleutherosides B and E, and 1.5 mg of 20-hydroxyecdisterone |
The effects of ADAPT-S were superior in respect of anabolic index, blood testosterone, and physical performance index. The results of this study suggest that ADAPT-232S and ADAPT-S might be useful for athletes' recovery after exercising and for preventing the symptoms of overtraining. ADAPT-S was most effective in sports disciplines where high coordination during physical fatigue (wrestling and long jump) is essentially required. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
