Submitted:
08 March 2024
Posted:
11 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
TITLE-ABS-KEY(("artificial intelligence" OR "machine learning" OR "deep learning" OR "intelligent system" OR "support vector machine" OR ("decision tree" AND (induction OR heuristic)) OR "random forest" OR "Markov decision process" OR "hidden Markov model" OR "fuzzy logic" OR "k-nearest neighbor" OR "naive Bayes" OR "Bayesian learning" OR "artificial neural network" OR "convolutional neural network" OR "recurrent neural network" OR "generative adversarial network" OR "deep belief network" OR "perceptron" OR {natural language processing} OR {natural language understanding} OR {general language model}) and ({software engineering} OR {software design} or {software development})) AND PUBYEAR > 2018 AND PUBYEAR < 2025
3. Results and Discussion
3.1. Identification of Main Research Themes
3.1.1. Literature Review of Research Categories and Themes
3.2. Timeline of the Recent Research and Hot Topics
3.2. Research Gaps and Challenges
3.4. Possible Future Research Trends
- Development of transparent, fair, ethical, responsible, and sustainable intelligent software development processes.
- Self-adapting software that adapts to evolving user requirements.
- Self-healing and self-reflecting software returns to a more functional condition after faults or performance and cybersecurity issues.
- Collaborative software development eco-systems where AI partners with human developers take team dynamics and self-organization into account.
- New software engineering curricula.
- Adaptive continuous learning platforms for software developers and engineers.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ooi, K.-B.; Tan, G.W.-H.; Al-Emran, M.; Al-Sharafi, M.A.; Capatina, A.; Chakraborty, A.; Dwivedi, Y.K.; Huang, T.-L.; Kar, A.K.; Lee, V.-H.; et al. The Potential of Generative Artificial Intelligence Across Disciplines: Perspectives and Future Directions. Journal of Computer Information Systems 2023, 0, 1–32. [Google Scholar] [CrossRef]
- Završnik, J.; Kokol, P.; Žlahtič, B.; Blažun Vošner, H. Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis. Electronics 2024, 13, 512. [Google Scholar] [CrossRef]
- Lo, D. Trustworthy and Synergistic Artificial Intelligence for Software Engineering: Vision and Roadmaps 2023.
- Belzner, L.; Gabor, T.; Wirsing, M. Large Language Model Assisted Software Engineering: Prospects, Challenges, and a Case Study. In Proceedings of the Bridging the Gap Between AI and Reality; Steffen, B., Ed.; Springer Nature Switzerland: Cham, 2024; pp. 355–374. [Google Scholar]
- Batarseh, F.A.; Mohod, R.; Kumar, A.; Bui, J. 10 - The Application of Artificial Intelligence in Software Engineering: A Review Challenging Conventional Wisdom. In Data Democracy; Batarseh, F.A., Yang, R., Eds.; Academic Press, 2020; pp. 179–232 ISBN 978-0-12-818366-3.
- Sofian, H.; Yunus, N.A.M.; Ahmad, R. Systematic Mapping: Artificial Intelligence Techniques in Software Engineering. IEEE Access 2022, 10, 51021–51040. [Google Scholar] [CrossRef]
- Amalfitano, D.; Faralli, S.; Hauck, J.C.R.; Matalonga, S.; Distante, D. Artificial Intelligence Applied to Software Testing: A Tertiary Study. ACM Computing Surveys 2023, 56. [Google Scholar] [CrossRef]
- Majumdar, S.; Paul, S.; Paul, D.; Bandyopadhyay, A.; Chattopadhyay, S.; Das, P.P.; Clough, P.D.; Majumder, P. Generative AI for Software Metadata: Overview of the Information Retrieval in Software Engineering Track at FIRE 2023 2023.
- Kulkarni, V.; Kolhe, A.; Kulkarni, J. Intelligent Software Engineering: The Significance of Artificial Intelligence Techniques in Enhancing Software Development Lifecycle Processes. In Proceedings of the Intelligent Systems Design and Applications; Abraham, A., Gandhi, N., Hanne, T., Hong, T.-P., Nogueira Rios, T., Ding, W., Eds.; Springer International Publishing: Cham, 2022; pp. 67–82. Cham, 2022; 67–82.
- Satpute, R.S.; Agrawal, A. A Critical Study of Pragmatic Ambiguity Detection in Natural Language Requirements. International Journal of Intelligent Systems and Applications in Engineering 2023, 11, 249–259. [Google Scholar]
- S, P.; C. B., C.; Raju, L.K. Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches. IEEE Access 2022, 10, 75637–75656. [Google Scholar] [CrossRef]
- Daun, M.; Brings, J. How ChatGPT Will Change Software Engineering Education. In Proceedings of the Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1; Association for Computing Machinery: New York, NY, USA, June 30 2023; pp. 110–116.
- Kokol, P. Synthetic Knowledge Synthesis in Hospital Libraries. Journal of Hospital Librarianship 2023, 0, 1–8. [Google Scholar] [CrossRef]
- Železnik, U.; Kokol, P.; Starc, J.; Železnik, D.; Završnik, J.; Vošner, H.B. Research Trends in Motivation and Weight Loss: A Bibliometric-Based Review. Healthcare 2023, 11, 3086. [Google Scholar] [CrossRef]
- Farooq, U.; Nasir, A.; Khan, K.I. An Assessment of the Quality of the Search Strategy: A Case of Bibliometric Studies Published in Business and Economics. Scientometrics 2023, 128, 4855–4874. [Google Scholar] [CrossRef]
- G20 - Background Brief.
- Kokol, P. Discrepancies among Scopus and Web of Science, Coverage of Funding Information in Medical Journal Articles: A Follow-up Study. Journal of the Medical Library Association 2023, 111, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Kokol, P.; Železnik, D.; Završnik, J.; Blažun Vošner, H. Nursing Research Literature Production in Terms of the Scope of Country and Health Determinants: A Bibliometric Study. Journal of Nursing Scholarship 2019, 51, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Vakkuri, V.; Kemell, K.-K.; Jantunen, M.; Abrahamsson, P. “This Is Just a Prototype”: How Ethics Are Ignored in Software Startup-Like Environments. Lecture Notes in Business Information Processing 2020, 383 LNBIP, 195–210. [Google Scholar] [CrossRef]
- Vakkuri, V.; Kemell, K.-K.; Kultanen, J.; Abrahamsson, P. The Current State of Industrial Practice in Artificial Intelligence Ethics. IEEE Software 2020, 37, 50–57. [Google Scholar] [CrossRef]
- Pasricha, S.; Wolf, M. Ethical Design of Computers: From Semiconductors to IoT and Artificial Intelligence. IEEE Design & Test 2024, 41, 7–16. [Google Scholar] [CrossRef]
- Barletta, V.S.; Caivano, D.; Gigante, D.; Ragone, A. A Rapid Review of Responsible AI Frameworks: How to Guide the Development of Ethical AI.; 2023; pp. 358–367.
- Nazim, M.; Wali Mohammad, C.; Sadiq, M. A Comparison between Fuzzy AHP and Fuzzy TOPSIS Methods to Software Requirements Selection. Alexandria Engineering Journal 2022, 61, 10851–10870. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, N.; Abrar, M.F.; Yang, Z.; Huang, J.; Ali, R. Fuzzy Multicriteria Decision-Making Approach for Measuring the Possibility of Cloud Adoption for Software Testing. Scientific Programming 2020, 2020. [Google Scholar] [CrossRef]
- Le, T.-A.; Huynh, Q.-T.; Nguyen, T.-T.-N.; Thi, M.-H.T. A New Method for Enhancing Software Effort Estimation by Using ANFIS-Based Approach. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST 2021, 379, 195–210. [Google Scholar] [CrossRef]
- Rathi, N.; Srivathsav, R.; Chitlangia, R.; Pachghare, V.K. Automatic Selenium Code Generation for Testing. Advances in Intelligent Systems and Computing 2020, 1039, 194–200. [Google Scholar] [CrossRef]
- Hooda, S.; Sood, V.M.; Singh, Y.; Dalal, S.; Sood, M. Agile Software Development: Trends, Challenges and Applications; Agile Software Development: Trends, Challenges and Applications; 2023; p. 365; ISBN 978-1-119-89683-8.
- Fehlmann, T.; Kranich, E. ART for Agile: Autonomous Real-Time Testing in the Product Development Cycle. Communications in Computer and Information Science 2021, 1442, 377–390. [Google Scholar] [CrossRef]
- Shankar, S.P.; Chaudhari, S.S. Framework for the Automation of SDLC Phases Using Artificial Intelligence and Machine Learning Techniques. International Journal on Recent and Innovation Trends in Computing and Communication 2023, 11, 379–390. [Google Scholar] [CrossRef]
- Jaiswal, A.; Raikwal, J.; Raikwal, P. A Hybrid Cost Estimation Method for Planning Software Projects Using Fuzzy Logic and Machine Learning. International Journal of Intelligent Systems and Applications in Engineering 2024, 12, 696–707. [Google Scholar]
- Singh, B.K.; Tiwari, S.; Mishra, K.K.; Punhani, A. Extended COCOMO: Robust and Interpretable Neuro-Fuzzy Modelling. International Journal of Computational Vision and Robotics 2021, 11, 41–65. [Google Scholar] [CrossRef]
- Abnane, I.; Idri, A.; Abran, A. Optimized Fuzzy Clustering-Based k-Nearest Neighbors Imputation for Mixed Missing Data in Software Development Effort Estimation. Journal of Software: Evolution and Process 2023. [Google Scholar] [CrossRef]
- Sokolovska, Z.; Dudnyk, O. DEVISING A TECHNOLOGY FOR MANAGING OUTSOURCING IT-PROJECTS WITH THE APPLICATION OF FUZZY LOGIC. Eastern-European Journal of Enterprise Technologies 2021, 2, 52–65. [Google Scholar] [CrossRef]
- Anes, V.; Abreu, A.; Santos, R. A New Risk Assessment Approach for Agile Projects.; 2020; pp. 67–72.
- Kataev, M.; Bulysheva, L.; Xu, L.; Ekhlakov, Y.; Permyakova, N.; Jovanovic, V. Fuzzy Model Estimation of the Risk Factors Impact on the Target of Promotion of the Software Product. Enterprise Information Systems 2020, 14, 797–811. [Google Scholar] [CrossRef]
- Balasubramanian, P. Automation in Data Science, Software, and Information Services. Springer Handbooks 2023, Part F674, 989–1014. [Google Scholar] [CrossRef]
- Abadeer, M.; Sabetzadeh, M. Machine Learning-Based Estimation of Story Points in Agile Development: Industrial Experience and Lessons Learned.; 2021; Vol. 2021-September, pp. 106–115.
- Klus, H.; Knieke, C.; Rausch, A.; Wittek, S. Software Engineering Meets Artificial Intelligence. Electronic Communications of the EASST 2023, 82. [Google Scholar] [CrossRef]
- Sawant, A.A.; Devanbu, P. Naturally!: How Breakthroughs in Natural Language Processing Can Dramatically Help Developers. IEEE Software 2021, 38, 118–123. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Bawany, N.Z.; Shamsi, J.A. Capbug-a Framework for Automatic Bug Categorization and Prioritization Using Nlp and Machine Learning Algorithms. IEEE Access 2021, 9, 50496–50512. [Google Scholar] [CrossRef]
- Althar, R.R.; Samanta, D.; Kaur, M.; Alnuaim, A.A.; Aljaffan, N.; Aman Ullah, M. Software Systems Security Vulnerabilities Management by Exploring the Capabilities of Language Models Using NLP. Computational Intelligence and Neuroscience 2021, 2021. [Google Scholar] [CrossRef]
- Charitsis, C.; Piech, C.; Mitchell, J.C. Using NLP to Quantify Program Decomposition in CS1.; 2022; pp. 113–120.
- dos Santos, G.E.; Figueiredo, E. Commit Classification Using Natural Language Processing: Experiments over Labeled Datasets.; 2020.
- Wong, M.-F.; Guo, S.; Hang, C.-N.; Ho, S.-W.; Tan, C.-W. Natural Language Generation and Understanding of Big Code for AI-Assisted Programming: A Review. Entropy 2023, 25. [Google Scholar] [CrossRef] [PubMed]
- Koreeda, Y.; Morishita, T.; Imaichi, O.; Sogawa, Y. LARCH: Large Language Model-Based Automatic Readme Creation with Heuristics.; 2023; pp. 5066–5070.
- Di Sipio, C.; Di Rocco, J.; Di Ruscio, D.; Nguyen, P.T. MORGAN: A Modeling Recommender System Based on Graph Kernel. Software and Systems Modeling 2023, 22, 1427–1449. [Google Scholar] [CrossRef]
- Jánki, Z.R.; Bilicki, V. The Impact of the Web Data Access Object (WebDAO) Design Pattern on Productivity. Computers 2023, 12. [Google Scholar] [CrossRef]
- Pauzi, Z.; Capiluppi, A. Applications of Natural Language Processing in Software Traceability: A Systematic Mapping Study. Journal of Systems and Software 2023, 198. [Google Scholar] [CrossRef]
- Zhao, L.; Alhoshan, W.; Ferrari, A.; Letsholo, K.J.; Ajagbe, M.A.; Chioasca, E.-V.; Batista-Navarro, R.T. Natural Language Processing for Requirements Engineering. ACM Computing Surveys 2021, 54. [Google Scholar] [CrossRef]
- Umar, M.A.; Lano, K. Advances in Automated Support for Requirements Engineering: A Systematic Literature Review. Requirements Engineering 2024. [Google Scholar] [CrossRef]
- Arulmohan, S.; Meurs, M.-J.; Mosser, S. Extracting Domain Models from Textual Requirements in the Era of Large Language Models.; 2023; pp. 580–587.
- Vahabi, S.; Hozhabri, A. Automatic Use Case Classification Based on Topic Grouping for Requirements Engineering. Innovations in Systems and Software Engineering 2024, 20, 85–96. [Google Scholar] [CrossRef]
- Kochbati, T.; Li, S.; Gérard, S.; Mraidha, C. From User Stories to Models: A Machine Learning Empowered Automation.; 2021; pp. 28–40.
- Gunes, T.; Aydemir, F.B. Automated Goal Model Extraction from User Stories Using NLP.; 2020; Vol. 2020-August, pp. 382–387.
- Wang, Y.; Hu, K.; Jiang, B.; Xia, X.; Tang, X.-S. A Systematic Literature Review of Software Traceability Links Automation Techniques. Jisuanji Xuebao/Chinese Journal of Computers 2023, 46, 1919–1946. [Google Scholar] [CrossRef]
- Hey, T.; Keim, J.; Koziolek, A.; Tichy, W.F. NoRBERT: Transfer Learning for Requirements Classification.; 2020; Vol. 2020-August, pp. 169–179.
- Alhoshan, W.; Ferrari, A.; Zhao, L. Zero-Shot Learning for Requirements Classification: An Exploratory Study. Information and Software Technology 2023, 159. [Google Scholar] [CrossRef]
- Ezzini, S.; Abualhaija, S.; Arora, C.; Sabetzadeh, M.; Briand, L.C. Using Domain-Specific Corpora for Improved Handling of Ambiguity in Requirements.; 2021; pp. 1485–1497.
- Sarmiento-Calisaya, E.; do Prado Leite, J.C.S. Early Analysis of Requirements Using NLP and Petri-Nets. Journal of Systems and Software 2024, 208. [Google Scholar] [CrossRef]
- Shen, Y.; Breaux, T. Stakeholder Preference Extraction from Scenarios. IEEE Transactions on Software Engineering 2024, 50, 69–84. [Google Scholar] [CrossRef]
- García, S.E.M.; Fernández-y-Fernández, C.A.; Pérez, E.G.R. Classification of Non-Functional Requirements Using Convolutional Neural Networks. Programming and Computer Software 2023, 49, 705–711. [Google Scholar] [CrossRef]
- Tikayat Ray, A.; Cole, B.F.; Pinon Fischer, O.J.; Bhat, A.P.; White, R.T.; Mavris, D.N. Agile Methodology for the Standardization of Engineering Requirements Using Large Language Models. Systems 2023, 11. [Google Scholar] [CrossRef]
- Calle Gallego, J.M.; Zapata Jaramillo, C.M. QUARE: Towards a Question-Answering Model for Requirements Elicitation. Automated Software Engineering 2023, 30. [Google Scholar] [CrossRef]
- Georges, T.; Rice, L.; Huchard, M.; König, M.; Nebut, C.; Tibermacine, C. Guiding Feature Models Synthesis from User-Stories: An Exploratory Approach.; 2023; pp. 65–70.
- Rohmann, A. Improving the Completeness of Acceptance Criteria.; 2023; Vol. 3378.
- Heng, S.; Snoeck, M.; Tsilionis, K. Building a Software Architecture out of User Stories and BDD Scenarios: Research Agenda.; 2022; Vol. 3134, pp. 40–46.
- Perkusich, M.; Chaves e Silva, L.; Costa, A.; Ramos, F.; Saraiva, R.; Freire, A.; Dilorenzo, E.; Dantas, E.; Santos, D.; Gorgônio, K.; et al. Intelligent Software Engineering in the Context of Agile Software Development: A Systematic Literature Review. Information and Software Technology 2020, 119. [Google Scholar] [CrossRef]
- Jadhav, A.; Kaur, M.; Akter, F. Evolution of Software Development Effort and Cost Estimation Techniques: Five Decades Study Using Automated Text Mining Approach. Mathematical Problems in Engineering 2022, 2022. [Google Scholar] [CrossRef]
- Priya Varshini, A.G.; Anitha Kumari, K.; Varadarajan, V. Estimating Software Development Efforts Using a Random Forest-Based Stacked Ensemble Approach. Electronics (Switzerland) 2021, 10. [Google Scholar] [CrossRef]
- Singal, P.; Kumari, A.C.; Sharma, P. Estimation of Software Development Effort: A Differential Evolution Approach.; 2020; Vol. 167, pp. 2643–2652.
- De Carvalho, H.D.P.; Fagundes, R.; Santos, W. Extreme Learning Machine Applied to Software Development Effort Estimation. IEEE Access 2021, 9, 92676–92687. [Google Scholar] [CrossRef]
- Jadhav, A.; Shandilya, S.K. Reliable Machine Learning Models for Estimating Effective Software Development Efforts: A Comparative Analysis. Journal of Engineering Research (Kuwait) 2023, 11, 362–376. [Google Scholar] [CrossRef]
- Rodríguez Sánchez, E.; Vázquez Santacruz, E.F.; Cervantes Maceda, H. Effort and Cost Estimation Using Decision Tree Techniques and Story Points in Agile Software Development. Mathematics 2023, 11. [Google Scholar] [CrossRef]
- Gupta, N.; Sinha, R.R.; Goyal, A.; Sunda, N.; Sharma, D. Analyze the Performance of Software by Machine Learning Methods for Fault Prediction Techniques. International Journal on Recent and Innovation Trends in Computing and Communication 2023, 11, 178–187. [Google Scholar] [CrossRef]
- Mcmurray, S.; Sodhro, A.H. A Study on ML-Based Software Defect Detection for Security Traceability in Smart Healthcare Applications. Sensors 2023, 23. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.B.; Ghanem, W.; Abdul-Qawy, A.S.H.; Ali, M.A.H.; Saad, A.-M.; Ghaleb, S.A.A.; Alduais, N. A Robust Tuned K-Nearest Neighbours Classifier for Software Defect Prediction. Lecture Notes in Networks and Systems 2023, 573 LNNS, 181–193. [Google Scholar] [CrossRef]
- Khan, M.A.; Elmitwally, N.S.; Abbas, S.; Aftab, S.; Ahmad, M.; Fayaz, M.; Khan, F. Software Defect Prediction Using Artificial Neural Networks: A Systematic Literature Review. Scientific Programming 2022, 2022. [Google Scholar] [CrossRef]
- Hilmi, M.A.A.; Puspaningrum, A.; Darsih; Siahaan, D. O.; Samosir, H.S.; Rahma, A.S. Research Trends, Detection Methods, Practices, and Challenges in Code Smell: SLR. IEEE Access 2023, 11, 129536–129551. [Google Scholar] [CrossRef]
- Soomlek, C.; van Rijn, J.N.; Bonsangue, M.M. Automatic Human-Like Detection of Code Smells. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2021, 12986 LNAI, 19–28. [CrossRef]
- Li, C.; Yuan, Y.; Yang, J. Causally Remove Negative Confound Effects of Size Metric for Software Defect Prediction. Applied Sciences (Switzerland) 2022, 12. [Google Scholar] [CrossRef]
- Khan, F.; Lingala, G. Machine Learning Techniques For Software Component Reusability.; 2022.
- Pontillo, V.; Palomba, F.; Ferrucci, F. Toward Static Test Flakiness Prediction: A Feasibility Study.; 2021; pp. 19–24.
- Yang, K.; Wang, J.; Song, Z. Learning a Holistic and Comprehensive Code Representation for Code Summarization. Journal of Systems and Software 2023, 203. [Google Scholar] [CrossRef]
- Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep Code Comment Generation with Hybrid Lexical and Syntactical Information. Empirical Software Engineering 2020, 25, 2179–2217. [Google Scholar] [CrossRef]
- Li, B.; Yan, M.; Xia, X.; Hu, X.; Li, G.; Lo, D. DeepCommenter: A Deep Code Comment Generation Tool with Hybrid Lexical and Syntactical Information.; 2020; pp. 1571–1575.
- Yang, G.; Zhou, Y.; Chen, X.; Yu, C. Fine-Grained Pseudo-Code Generation Method via Code Feature Extraction and Transformer.; 2021; Vol. 2021-December, pp. 213–222.
- Mi, Q.; Zhan, Y.; Weng, H.; Bao, Q.; Cui, L.; Ma, W. A Graph-Based Code Representation Method to Improve Code Readability Classification. Empirical Software Engineering 2023, 28. [Google Scholar] [CrossRef]
- Li, M.; Yu, H.; Fan, G.; Zhou, Z.; Huang, J. ClassSum: A Deep Learning Model for Class-Level Code Summarization. Neural Computing and Applications 2023, 35, 3373–3393. [Google Scholar] [CrossRef]
- Jain, R.; Gervasoni, N.; Ndhlovu, M.; Rawat, S. A Code Centric Evaluation of C/C++ Vulnerability Datasets for Deep Learning Based Vulnerability Detection Techniques.; 2023.
- Iannone, E.; Guadagni, R.; Ferrucci, F.; De Lucia, A.; Palomba, F. The Secret Life of Software Vulnerabilities: A Large-Scale Empirical Study. IEEE Transactions on Software Engineering 2023, 49, 44–63. [Google Scholar] [CrossRef]
- Zhu, K.; Yin, M.; Li, Y. Detecting and Classifying Self-Admitted of Technical Debt with CNN-BiLSTM.; 2021; Vol. 1955.
- Mock, M. Utilization of Machine Learning for the Detection of Self-Admitted Vulnerabilities. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2024, 14484 LNCS, 139–145. [CrossRef]
- Wang, X.; Liu, J.; Li, L.; Chen, X.; Liu, X.; Wu, H. Detecting and Explaining Self-Admitted Technical Debts with Attention-Based Neural Networks.; 2020; pp. 871–882.
- Tsoukalas, D.; Kehagias, D.; Siavvas, M.; Chatzigeorgiou, A. Technical Debt Forecasting: An Empirical Study on Open-Source Repositories. Journal of Systems and Software 2020, 170. [Google Scholar] [CrossRef]
- Albuquerque, D.; Guimaraes, E.; Tonin, G.; Rodriguez, P.; Perkusich, M.; Almeida, H.; Perkusich, A.; Chagas, F. Managing Technical Debt Using Intelligent Techniques - A Systematic Mapping Study. IEEE Transactions on Software Engineering 2023, 49, 2202–2220. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, C. MARS: Detecting Brain Class/Method Code Smell Based on Metric–Attention Mechanism and Residual Network. Journal of Software: Evolution and Process 2024, 36. [Google Scholar] [CrossRef]
- Malhotra, R.; Jain, B.; Kessentini, M. Examining Deep Learning’s Capability to Spot Code Smells: A Systematic Literature Review. Cluster Computing 2023, 26, 3473–3501. [Google Scholar] [CrossRef]
- Abdou, A.; Darwish, N. Severity Classification of Software Code Smells Using Machine Learning Techniques: A Comparative Study. Journal of Software: Evolution and Process 2024, 36. [Google Scholar] [CrossRef]
- Dewangan, S.; Rao, R.S.; Chowdhuri, S.R.; Gupta, M. Severity Classification of Code Smells Using Machine-Learning Methods. SN Computer Science 2023, 4. [Google Scholar] [CrossRef]
- Shcherban, S.; Liang, P.; Tahir, A.; Li, X. Automatic Identification of Code Smell Discussions on Stack Overflow: A Preliminary Investigation.; 2020.
- Awan, W.N.; Paasivaara, M.; Gloor, P.; Salman, I. Creating Happier and More Productive Software Engineering Teams through AI and Machine Learning.; 2024; Vol. 3621.
- Georgiou, K.; Charmanas, K.; Papageorgiadis, K.; Mittas, N.; Christidis, G.; Angelis, L. A Data-Driven Framework for Knowledge Exchange Analysis of Development Issues in Medical Applications: A Case Study of COVID-19.; 2023; pp. 386–393.
- Guo, S.; Zhang, X.; Yang, X.; Chen, R.; Guo, C.; Li, H.; Li, T. Developer Activity Motivated Bug Triaging: Via Convolutional Neural Network. Neural Processing Letters 2020, 51, 2589–2606. [Google Scholar] [CrossRef]
- Sabor, K.K.; Hamdaqa, M.; Hamou-Lhadj, A. Automatic Prediction of the Severity of Bugs Using Stack Traces and Categorical Features. Information and Software Technology 2020, 123. [Google Scholar] [CrossRef]
- Ardimento, P. Enhancing Bug-Fixing Time Prediction with LSTM-Based Approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2024, 14484 LNCS, 68–79. [CrossRef]
- Li, W.; Wu, F.; Fu, C.; Zhou, F. A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem.; 2023; pp. 1604–1614.
- Izadi, M.; Akbari, K.; Heydarnoori, A. Predicting the Objective and Priority of Issue Reports in Software Repositories. Empirical Software Engineering 2022, 27. [Google Scholar] [CrossRef]
- Lewowski, T.; Madeyski, L. Creating Evolving Project Data Sets in Software Engineering. Studies in Computational Intelligence 2020, 851, 1–14. [Google Scholar] [CrossRef]
- Kalliamvakou, E.; Singer, L.; Gousios, G.; German, D.M.; Blincoe, K.; Damian, D. The Promises and Perils of Mining GitHub.; 2014; pp. 92–101.
- Babur, Ö.; Constantinou, E.; Serebrenik, A. Language Usage Analysis for EMF Metamodels on GitHub. Empirical Software Engineering 2024, 29. [Google Scholar] [CrossRef]
- Robles, G.; Chaudron, M.R.V.; Jolak, R.; Hebig, R. A Reflection on the Impact of Model Mining from GitHub. Information and Software Technology 2023, 164. [Google Scholar] [CrossRef]
- Wijesinghe, N.; Hemmati, H. Log-Based Anomaly Detection of Enterprise Software: An Empirical Study.; 2023; pp. 12–23.
- He, H.; He, R.; Gu, H.; Zhou, M. A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales.; 2021; pp. 478–490.



| Cluster colour | Representative keywords | Categories | Themes |
|---|---|---|---|
| Red (42 author keywords) | Artificial intelligence (560), Software development (173), Software testing (123), Fuzzy logic (98), Software (73), Big data (65), Reinforcement learning (64) | Ethical use of AI-based software engineering, Use of fuzzy logic in software development and testing, Automation of software testing in an agile environment, Project management of software life cycle using fuzzy logic, Data science, and big data in software development | Use of artificial intelligence in management of software development life cycle |
| Yellow (25 author keywords) | Software engineering (673), Natural language processing (362), Requirement engineering (108), Agile software development (61) | Natural language processing in software development, Natural language processing in software requirements engineering, User stories understanding with natural language processing | Natural language processing (NLP) in software engineering |
| Blue cluster (31 author keywords) | Machine learning (1504), Software development effort estimation (156), Classification (142), Software defect prediction (205), and Data mining (102). Artificial neural network (184), Software metrics (84), Feature selection (82) | Software development effort estimation, Data mining in software fault/defect prediction. Machine learning and software metrics | Machine learning in fault/defect prediction and effort estimation |
| Green (39 author keywords) | Deep learning (770), Neural networks (123), Empirical software engineering (62), Attention mechanism (68), Code generation (34), Code search (33), Covid 19 (30), Technical depth (26), program comprehension (31) | Deep learning in program comprehension and vulnerability detection; Technical depth and code smell detection, and classification, Covid 19 influence on software engineering | Deep learning in empirical software engineering focusing on code management |
| Viollet (9 author keywords) | Software quality (86), Software maintenance (62), Mining software repositories (43) | Mining software repositories to improve software quality and software maintenance, Crowdsourcing, Github, and Open source software as sources for mining software development data | Mining software repositories to improve software quality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
