Submitted:
06 March 2024
Posted:
08 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Colostrum Components
2.1. Macronutrients
2.1.1. Total Solids
2.1.2. Proteins
2.1.3. Lipids
2.1.4. Carbohydrates
2.2. Micronutrients
2.2.1. Minerals
2.2.2. Vitamins
2.3. Bioactive Components
2.3.1. Bioactive Proteins
Immunoglobulins
Lactoferrin and Transferrin
Proline-Rich Polypeptide
Enzymes
Cytokines
Complement System
2.3.2. Fatty Acids
2.3.3. Oligosaccharides
2.3.4. Endocrine Factors
Hormones
Growth Factors
2.3.5. Nucleic Acids
MicroRNA
Nucleotides and Nucleosides
2.4. Cells
2.5. Microorganisms
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez AJ, Heinrichs AJ. Invited review: The importance of colostrum in the newborn dairy calf. J Dairy Sci [Internet]. 2022;105(4):2733–49. [CrossRef]
- Baumrucker CR, Gross JJ, Bruckmaier RM. The importance of colostrum in maternal care and its formation in mammalian species. Anim Front. 2023;13(3):37–43. [CrossRef]
- Quigley JD, Drewry JJ. Nutrient and Immunity Transfer from Cow to Calf Pre- and Postcalving. J Dairy Sci [Internet]. 1998;81(10):2779–90. [CrossRef]
- Godden SM, Lombard JE, Woolums AR. Colostrum Management for Dairy Calves. Vet Clin North Am - Food Anim Pract. 2019;35(3):535–56. [CrossRef]
- Chucri TM, Monteiro JM, Lima AR, Salvadori MLB, Junior JRK, Miglino MA. A review of immune transfer by the placenta. J Reprod Immunol [Internet]. 2010;87(1–2):14–20. [CrossRef]
- Bigler NA, Bruckmaier RM, Gross JJ. Implications of placentation type on species-specific colostrum properties in mammals. J Anim Sci [Internet]. 2022 Dec 1;100(12):1–9. [CrossRef]
- McGrath BA, Fox PF, McSweeney PLH, Kelly AL. Composition and properties of bovine colostrum: a review. Dairy Sci Technol [Internet]. 2016 Mar 14;96(2):133–58. [CrossRef]
- Le Jan, C. Cellular components of mammary secretions and neonatal immunity: A review. Vet Res. 1996;27(4–5):403–17.
- Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT. Immune components of bovine colostrum and milk. J Anim Sci [Internet]. 2009 Apr 1;87(suppl_13):3–9. Available online: https://academic.oup.com/jas/article/87/suppl_13/3-9/4731038. [CrossRef]
- Korhonen, HJ. Bioactive milk proteins, peptides and lipids and other functional components derived from milk and bovine colostrum. In: Functional Foods [Internet]. Elsevier; 2011. p. 471–511. [CrossRef]
- Blum JW, Hammon H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest Prod Sci. 2000;66(2):151–9. [CrossRef]
- Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol [Internet]. 2008 Apr;18(2):131–40. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1044579X08000072. [CrossRef]
- Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: MicroRNAs in bovine colostrum—Focus on their origin and potential health benefits for the calf. J Dairy Sci [Internet]. 2020;103(1):1–15. [CrossRef]
- Lima SF, Teixeira AGV, Lima FS, Ganda EK, Higgins CH, Oikonomou G, Bicalho RC. The bovine colostrum microbiome and its association with clinical mastitis. J Dairy Sci [Internet]. 2017;100(4):3031–42. [CrossRef]
- Hammon HM, Steinhoff-Wagner J, Schönhusen U, Metges CC, Blum JW. Energy metabolism in the newborn farm animal with emphasis on the calf: Endocrine changes and responses to milk-born and systemic hormones. Domest Anim Endocrinol [Internet]. 2012;43(2):171–85. [CrossRef]
- Kaushik AK, Kandavel H, Nalpathamkalam T, Pasman Y. Bovine neonate is deficient in innate immunity at birth. Mol Immunol [Internet]. 2021 May;133:101–9. [CrossRef]
- Dande ND, Nande PJ. Nutritional Composition of Bovine Colostrum: Palatability Evaluation of Food Products Prepared Using Bovine Colostrum. Int J Nutr Pharmacol Neurol Dis. 2020;10:8–13. [CrossRef]
- Arslan A, Kaplan M, Duman H, Bayraktar A, Ertürk M, Henrick BM, Frese SA, Karav S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front Nutr. 2021;8(June):1–12. [CrossRef]
- Polidori P, Rapaccetti R, Klimanova Y, Zhang JJ, Santini G, Vincenzetti S. Nutritional Parameters in Colostrum of Different Mammalian Species. Beverages. 2022;8(3):1–15. [CrossRef]
- Alsayed AR, Hasoun LZ, Khader HA, Basheti IA, Permana AD. Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules. 2022;27(24):1–15. [CrossRef]
- Costa A, Sneddon NW, Goi A, Visentin G, Mammi LME, Savarino EV, Zingone F, Formigoni A, Penasa M, De Marchi M. Invited review: Bovine colostrum, a promising ingredient for humans and animals—Properties, processing technologies, and uses. J Dairy Sci [Internet]. 2023 Aug;106(8):5197–217. [CrossRef]
- Poonia A, Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: a review. Food Prod Process Nutr [Internet]. 2022;4(1):1–21. [CrossRef]
- Larson BL, Heary HL, Devery JE. Immunoglobulin Production and Transport by the Mammary Gland. J Dairy Sci [Internet]. 1980;63(4):665–71. [CrossRef]
- Quigley JD, Martin KR, Dowlen HH, Wallis LB, Lamar K. Immunoglobulin Concentration, Specific Gravity, and Nitrogen Fractions of Colostrum from Jersey Cattle. J Dairy Sci. 1994;77(1):264–9. [CrossRef]
- Costa A, Goi A, Penasa M, Nardino G, Posenato L, De Marchi M. Variation of immunoglobulins G, A, and M and bovine serum albumin concentration in Holstein cow colostrum. Animal [Internet]. 2021;15(7):100299. [CrossRef]
- Altvater-Hughes TE, Hodgins DC, Wagter-Lesperance L, Beard SC, Cartwright SL, Mallard BA. Concentration and heritability of immunoglobulin G and natural antibody immunoglobulin M in dairy and beef colostrum along with serum total protein in their calves. J Anim Sci. 2022;100(2):1–9. [CrossRef]
- Urakawa M, Baakhtari M, Ramah A, Imatake S, Ahmadi P, Deguchi Y, Uematsu M, Nakama Y, Imabeppu K, Nomura Y, Yasuda M. Comparative Analysis of Maternal Colostrum and Colostrum Replacer Effects on Immunity, Growth, and Health of Japanese Black Calves. Animals [Internet]. 2024 Jan 22;14(2):346. Available online: https://www.mdpi.com/2076-2615/14/2/346. [CrossRef]
- Bartier AL, Windeyer MC, Doepel L. Evaluation of on-farm tools for colostrum quality measurement. J Dairy Sci [Internet]. 2015;98(3):1878–84. [CrossRef]
- Fischer-Tlustos AJ, Lopez A, Hare KS, Wood KM, Steele MA. Effects of colostrum management on transfer of passive immunity and the potential role of colostral bioactive components on neonatal calf development and metabolism. Can J Anim Sci. 2021;101(3):405–26. [CrossRef]
- Gulliksen SM, Lie KI, Sølverød L, Østerås O. Risk factors associated with colostrum quality in Norwegian dairy cows. J Dairy Sci. 2008;91(2):704–12. [CrossRef]
- Conneely M, Berry DP, Sayers R, Murphy JP, Lorenz I, Doherty ML, Kennedy E. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal. 2013;7(11):1824–32. [CrossRef]
- Gelsinger SL, Smith AM, Jones CM, Heinrichs AJ. Technical note: Comparison of radial immunodiffusion and ELISA for quantification of bovine immunoglobulin G in colostrum and plasma. J Dairy Sci [Internet]. 2015;98(6):4084–9. [CrossRef]
- Zarei S, Reza Ghorbani G, Khorvash M, Martin O, Hossein Mahdavi A, Riasi A. The Impact of Season, Parity, and Volume of Colostrum on Holstein Dairy Cows Colostrum Composition. Agric Sci. 2017;08(07):572–81. [CrossRef]
- Soufleri A, Banos G, Panousis N, Fletouris D, Arsenos G, Kougioumtzis A, Valergakis GE. Evaluation of factors affecting colostrum quality and quantity in holstein dairy cattle. Animals. 2021;11(7). [CrossRef]
- Parrish DB, Wise GH, Hughes JS, Atkeson FW. Properties of the Colostrum of the Dairy Cow. V. Yield, Specific Gravity and Concentrations of Total Solids and its Various Components of Colostrum and Early Milk. J Dairy Sci. 1950;33(6):457–65. [CrossRef]
- Abd El-Fattah AM, Abd Rabo FHR, EL-Dieb SM, El-Kashef HA. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet Res [Internet]. 2012;8(1):19. [CrossRef]
- Kehoe SI, Jayarao BM, Heinrichs AJ. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci [Internet]. 2007;90(9):4108–16. [CrossRef]
- Lokke MM, Engelbrecht R, Wiking L. Covariance structures of fat and protein influence the estimation of IgG in bovine colostrum. J Dairy Res. 2016;83(1):58–66. [CrossRef]
- Bielmann V, Gillan J, Perkins NR, Skidmore AL, Godden S, Leslie KE. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. J Dairy Sci [Internet]. 2010;93(8):3713–21. [CrossRef]
- Silva FG, Castelo-Branco AM, Conceição C, Cerqueira JOL, Silva SR, Pereira AMF. Effect of parity and age in dairy cows’ colostrum quality. In: International Scientific Meeting on Colostrum. Las Palmas, Gran Canaria: Universidad de Las Palmas de Gran Canaria; 2022. p. 58–58.
- Turini L, Conte G, Bonelli F, Sgorbini M, Madrigali A, Mele M. The relationship between colostrum quality, passive transfer of immunity and birth and weaning weight in neonatal calves. Livest Sci [Internet]. 2020;238(March):104033. [CrossRef]
- Morrill KM, Conrad E, Lago A, Campbell J, Quigley J, Tyler H. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J Dairy Sci [Internet]. 2012;95(7):3997–4005. [CrossRef]
- Nazir T, Pal MA, Manzoor A, Padder T, Sofi AH, Wani SA, Ahmad SR, Malik AH. Study on the Effect of the Breed during Post-Partum Transition Period on Various Physico-Chemical, Compositional and Microbiological Characteristics of Bovine Colostrum. Asian J Dairy Food Res [Internet]. 2020 Mar 14;39(01):1. Available online: http://arccjournals.com/journal/asian-journal-of-dairy-and-food-research/DR-1510. [CrossRef]
- Morrill KM, Robertson KE, Spring MM, Robinson AL, Tyler HD. Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze-thaw cycles on evaluating colostrum quality. J Dairy Sci [Internet]. 2015;98(1):595–601. [CrossRef]
- Nardone A, Lacetera N, Bernabucci U, Ronchi B. Composition of Colostrum from Dairy Heifers Exposed to High Air Temperatures during Late Pregnancy and the Early Postpartum Period. J Dairy Sci [Internet]. 1997;80(5):838–44. [CrossRef]
- Goi A, Costa A, Visentin G, De Marchi M. Mid-infrared spectroscopy for large-scale phenotyping of bovine colostrum gross composition and immunoglobulin concentration. J Dairy Sci [Internet]. 2023;106(9):6388–401. [CrossRef]
- Dunn A, Ashfield A, Earley B, Welsh M, Gordon A, Morrison SJ. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J Dairy Sci [Internet]. 2017;100(3):2068–79. [CrossRef]
- Kessler EC, Bruckmaier RM, Gross JJ. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J Anim Sci [Internet]. 2020 Aug 1;98(8). [CrossRef]
- Tsioulpas A, Grandison AS, Lewis MJ. Changes in physical properties of bovine milk from the colostrum period to early lactation. J Dairy Sci [Internet]. 2007;90(11):5012–7. [CrossRef]
- Atkeson FW, Warren TR, Anderson GC. Water Requirements of Dairy Calves. J Dairy Sci. 1934;17(3):249–56.
- Kertz AF, Reutzel LF, Mahoney JH. Ad Libitum Water Intake by Neonatal Calves and Its Relationship to Calf Starter Intake, Weight Gain, Feces Score, and Season. J Dairy Sci [Internet]. 1984;67(12):2964–9. [CrossRef]
- Foley JA, Otterby DE. Availability, Storage, Treatment, Composition, and Feeding Value of Surplus Colostrum: A Review. J Dairy Sci [Internet]. 1978;61(8):1033–60. [CrossRef]
- Marnila P, Korhonen H. Milk | Colostrum. In: Encyclopedia of Dairy Sciences [Internet]. Elsevier; 2011. p. 591–7. Available online: http://www.crcnetbase.com/doi/10.1081/E-EAS2-120019537.
- Hammon HM, Zanker IA, Blum JW. Delayed colostrum feeding affects IGF-I and insulin plasma concentrations in neonatal calves. J Dairy Sci [Internet]. 2000;83(1):85–92. [CrossRef]
- Lim DH, Mayakrishnan V, Lee HJ, Ki KS, Kim TI, Kim Y. A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation. J Anim Sci Technol [Internet]. 2020 Jul;62(4):565–76. [CrossRef]
- Silva E, Anaya K, Bezerra M de F, Borba L, Barbosa I, Oliveira J, Urbano S, Macêdo C, Júnior D, Gama M, Rangel A. Physicochemical Characterization and Brix in Jersey Cow Colostrum in Tropical Conditions. Int J Agric Biol [Internet]. 2021 Jul 1;26:139–44. Available online: http://www.fspublishers.org/Issue.php?no_download=published_papers/76513_18 doi 15.1818 IJAB-21-0125 (6) 139-144.pdf&issue_id=41653. [CrossRef]
- Mehra R, Kumar S, Verma N, Kumar N, Singh R, Bhardwaj A, Nayan V, Kumar H. Chemometric approaches to analyze the colostrum physicochemical and immunological (IgG) properties in the recently registered Himachali Pahari cow breed in India. Lwt [Internet]. 2021;145(November 2020):111256. [CrossRef]
- Svensson C, Lundborg K, Emanuelson U, Olsson SO. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev Vet Med. 2003;58(3–4):179–97. [CrossRef]
- Sats A, Kaart T, Jõudu I. Bovine colostrum casein: Post-partum dynamics of micelle size, content, and associated traits. Int Dairy J [Internet]. 2024 Jan;148:105791. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0958694623002108. [CrossRef]
- Sobczuk-Szul M, Wielgosz-Groth Z, Wronski M, Rzemieniewski A. Changes in the bioactive protein concentrations in the bovine colostrum of Jersey and Polish Holstein–Friesian cows. Turkish J Vet Anim Sci [Internet]. 2013 Jan 1;37(1):43–9. Available online: https://journals.tubitak.gov.tr/veterinary/vol37/iss1/9. [CrossRef]
- Sats A, Kaart T, Jõudu I. Bovine colostrum casein: Post-partum dynamics of micelle size, content, and associated traits. Int Dairy J [Internet]. 2024 Jan;148:105791. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0958694623002108. [CrossRef]
- Playford RJ, Woodman AC, Vesey D, Deprez PH, Calam J, Watanapa P, Williamson RCN, Clark P. Effect of luminal growth factor preservation on intestinal growth. Lancet. 1993;341(8849):843–8. [CrossRef]
- Playford RJ, Weiser MJ. Bovine colostrum: Its constituents and uses. Nutrients. 2021;13(1):1–24. [CrossRef]
- Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, Wu J. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr [Internet]. 2017;68(6):671–81. [CrossRef]
- Madureira AR, Pereira CI, Gomes AMP, Pintado ME, Xavier Malcata F. Bovine whey proteins - Overview on their main biological properties. Food Res Int. 2007;40(10):1197–211. [CrossRef]
- Quigley JD, Martin KR, Dowlen HH. Concentrations of Trypsin Inhibitor and Immunoglobulins in Colostrum of Jersey Cows. J Dairy Sci. 1995;78(7):1573–7. [CrossRef]
- Yvon M, Leveãœx D, Alloy M claude V, Lissier J pierre PÃ, Mirahd PP, Recherches S De, Josas J en. Nutrient Requirements and Interactions Colostrum Protein Digestion in Newborn Lambs. 1993;(July 1992):586–96. [CrossRef]
- Miyazaki T, Okada K, Miyazaki M. Short communication: Neonatal calves coagulate first-milking colostrum and produce a large curd for efficient absorption of immunoglobulins after first ingestion. J Dairy Sci [Internet]. 2017;100(9):7262–70. [CrossRef]
- Perez M, Sanchez L, Aranda P, Ena J, Oria R, Calvo M. Synthesis and evolution of concentration of beta- lactoglobulin and alpha-lactalbumin from cow and sheep colostrum and milk throughout early lactation. Cell Mol Biol. 1990;36(2):205–12.
- Perez MD, Sanchez L, Aranda P, Ena J, Oria R, Calvo M. Effect of β-lactoglobulin on the activity of pregastric lipase. A possible role for this protein in ruminant milk. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1992;1123(2):151–5.
- Kamau SM, Cheison SC, Chen W, Liu X, Lu R. Alpha-Lactalbumin: Its Production Technologies and Bioactive Peptides. Compr Rev Food Sci Food Saf [Internet]. 2010 Mar 16;9(2):197–212. Available online: https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2009.00100.x. [CrossRef]
- Chen CB, Hammo B, Barry J, Radhakrishnan K. Overview of Albumin Physiology and its Role in Pediatric Diseases. Curr Gastroenterol Rep. 2021;23(8). [CrossRef]
- Levieux D, Ollier A. Bovine immunoglobulin G, β-lactoglobulin, α-lactalbumin and serum albumin in colostrum and milk during the early post partum period. J Dairy Res [Internet]. 1999 Aug 1;66(3):421–30. Available online: https://www.cambridge.org/core/product/identifier/S0022029902005575/type/journal_article. [CrossRef]
- Samarütel J, Baumrucker CR, Gross JJ, Dechow CD, Bruckmaier RM. Quarter variation and correlations of colostrum albumin, immunoglobulin G1 and G2 in dairy cows. J Dairy Res. 2016;83(2):209–18. [CrossRef]
- Besser TE, Osborn D. Effect of bovine serum albumin on passive transfer of immunoglobulin G1 to newborn calves. Vet Immunol Immunopathol. 1993;37(3–4):321–7. [CrossRef]
- Gosch T, Apprich S, Kneifel W, Novalin S. Improved isolation of bioactive components of bovine colostrum using cross-flow microfiltration. Int J Dairy Technol. 2013;66(2):175–81. [CrossRef]
- Tacoma R, Gelsinger SL, Lam YW, Scuderi RA, Ebenstein DB, Heinrichs AJ, Greenwood SL. Exploration of the bovine colostrum proteome and effects of heat treatment time on colostrum protein profile. J Dairy Sci [Internet]. 2017;100(11):9392–401. [CrossRef]
- Lin S, Ke C, Liu L, Gao Y, Xu L, Han B, Zhao Y, Zhang S, Sun D. Genome-wide association studies for immunoglobulin concentrations in colostrum and serum in Chinese Holstein. BMC Genomics. 2022;23(1). [CrossRef]
- Korhonen, H. Antimicrobial factors in bovine colostrum. Agric Food Sci. 1977;49(5):434–47. [CrossRef]
- Sánchez L, Aranda P, Pérez Md, Calvo M. Concentration of Lactoferrin and Transferrin throughout Lactation in Cow’s Colostrum and Milk. Biol Chem Hoppe Seyler. 1988;369(2):1005–8. [CrossRef]
- Tsuji S, Hirata Y, Mukai F, Ohtagaki S. Comparison of Lactoferrin Content in Colostrum Between Different Cattle Breeds. J Dairy Sci. 1990;73(1):125–8. [CrossRef]
- Sacerdote P, Mussano F, Franchi S, Panerai AE, Bussolati G, Carossa S, Bartorelli A, Bussolati B. Biological components in a standardized derivative of bovine colostrum. J Dairy Sci [Internet]. 2013;96(3):1745–54. [CrossRef]
- Martinsson K, Möllerberg L. On the Transferrin Concentration in Blood Serum of Growing calves and in Bovine Colostrum. Zentralblatt für Veterinärmedizin R A. 1973;20(4):277–84. [CrossRef]
- Wąsowska E, Puppel K. Changes in the content of immunostimulating components of colostrum obtained from dairy cows at different levels of production. J Sci Food Agric. 2018;98(13):5062–8. [CrossRef]
- Puppel K, Golebiewski M, Grodkowski G, Solarczyk P, Kostusiak P, Klopcic M, Sakowski T. Use of somatic cell count as an indicator of colostrum quality. PLoS One. 2020;15(8 August):1–15. [CrossRef]
- Verardo V, Gómez-Caravaca AM, Arráez-Román D, Hettinga K. Recent advances in phospholipids from colostrum, milk and dairy by-products. Int J Mol Sci. 2017;18(1):1–23. [CrossRef]
- Bayly, GR. Lipids and disorders of lipoprotein metabolism. In: Marshall WJ, Lapsley M, Day AP, Ayling RM, editors. Clinical Biochemistry: Metabolic and Clinical Aspects [Internet]. Third. Elsevier; 2014. p. 702–36. [CrossRef]
- Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005;84(2–3):245–58. [CrossRef]
- Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential benefits of bovine colostrum in pediatric nutrition and health. Nutrients. 2021;13(8):1–41. [CrossRef]
- Zou X, Guo Z, Jin Q, Huang J, Cheong L, Xu X, Wang X. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem [Internet]. 2015;185:362–70. [CrossRef]
- Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr. 2018;6. [CrossRef]
- Hammon HM, Steinhoff-Wagner J, Flor J, Schönhusen U, Metges CC. LACTATION BIOLOGY SYMPOSIUM: Role of colostrum and colostrum components on glucose metabolism in neonatal calves. J Anim Sci. 2013;91(2):685–95. [CrossRef]
- Zentek J, Buchheit-Renko S, Ferrara F, Vahjen W, Van Kessel AG, Pieper R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim Heal Res Rev [Internet]. 2011 Jun 15;12(1):83–93. Available online: https://www.cambridge.org/core/product/identifier/S1466252311000089/type/journal_article. [CrossRef]
- Jensen, RG. The Composition of Bovine Milk Lipids: January 1995 to December 2000. J Dairy Sci [Internet]. 2002 Feb;85(2):295–350. [CrossRef]
- Lichtenstein, AH. Fats and Oils. In: Caballero B, editor. Encyclopedia of Human Nutrition [Internet]. Third. Elsevier; 2013. p. 201–8. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123750839000970.
- Okamoto M, Robinson JB, Christopherson RJ, Young BA. SUMMIT METABOLISM OF NEWBORN CALVES WITH AND WITHOUT COLOSTRUM FEEDING. Can J Anim Sci [Internet]. 1986 Dec 1;66(4):937–44. [CrossRef]
- Vermorel M, Dardillat C, Vernet J, Renseign N, Demigne C, Vermorel M, Dardillat C, Vernet J, Renseign N, Metabolism CDE. ENERGY METABOLISM AND THERMOREGULATION IN THE NEWBORN CALF. Ann Rech Vétérinaires. 1983;14(4):382–9.
- Alexander G, Bennett JW, Gemmell RT. Brown adipose tissue in the new-born calf (Bos taurus). J Physiol [Internet]. 1975 Jan;244(1):223–34. [CrossRef]
- Smith SB, Carstens GE. Chapter 12 - Ontogeny and metabolism of brown adipose tissue in livestock species. In: Biology of Growing Animals [Internet]. Elsevier Ltd; 2005. p. 303–22. [CrossRef]
- Hammon HM, Blum JW. Feeding different amounts of colostrum or only milk replacer modify receptors of intestinal insulin-like growth factors and insulin in neonatal calves. Domest Anim Endocrinol. 2002;22(3):155–68. [CrossRef]
- Silva FLM, Miqueo E, da Silva MD, Torrezan TM, Rocha NB, Salles MSV, Bittar CMM. Thermoregulatory responses and performance of dairy calves fed different amounts of colostrum. Animals. 2021;11(3):1–13. [CrossRef]
- Zarcula S, Cernescu H, Mircu C, Tulcan C, Morvay A, Baul S, Popovici D. Influence of Breed, Parity and Food Intake on Chemical Composition of First Colostrum in Cow. Sci Pap Anim Sci Biotechnol [Internet]. 2010;43(1):43.
- Klein, GB. Cunningham’s Textbook of Veterinary Physiology. 5th ed. Saunders/Elsevier Inc.; 2013.
- Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Intestinal glucose absorption but not endogenous glucose production differs between colostrum- and formula-fed neonatal calves. J Nutr. 2011;141(1):48–55. [CrossRef]
- Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Maturation of endogenous glucose production in preterm and term calves. J Dairy Sci [Internet]. 2011;94(10):5111–23. [CrossRef]
- Salih Y, McDowell LR, Hentges JF, Mason RM, Wilcox CJ. Mineral Content of Milk, Colostrum, and Serum as Affected by Physiological State and Mineral Supplementation. J Dairy Sci. 1987;70(3):608–12. [CrossRef]
- Kume SI, Tanabe S. Effect of Parity on Colostral Mineral Concentrations of Holstein Cows and Value of Colostrum as a Mineral Source for Newborn Calves. J Dairy Sci. 1993;76(6):1654–60. [CrossRef]
- Valldecabres A, Lopes RB, Lago A, Blanc C, Silva-del-Río N. Effects of postpartum milking strategy on plasma mineral concentrations and colostrum, transition milk, and milk yield and composition in multiparous dairy cows. J Dairy Sci [Internet]. 2022;105(1):595–608. [CrossRef]
- Valldecabres A, Silva-del-Río N. First-milking colostrum mineral concentrations and yields: Comparison to second milking and associations with serum mineral concentrations, parity, and yield in multiparous Jersey cows. J Dairy Sci. 2022;105(3):2315–25. [CrossRef]
- Miciński J, Pogorzelska J, Beisenov A, Aitzhanova I, Shaikamal G, Dzięgelewska-Kuźmińska D, Miciński B, Sobczuk-Szul M. Basic and mineral composition of colostrum from cows in different ages and calving period. J Elem. 2017;22(1):259–69. [CrossRef]
- Van Emon M, Sanford C, McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals. 2020;10(12):1–19. [CrossRef]
- Roshanzamir H, Rezaei J, Fazaeli H. Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Anim Nutr [Internet]. 2020;6(1):61–8. [CrossRef]
- Hansard SL, Comar CL, Plumlee MP. The Effects of Age upon Calcium Utilization and Maintenance Requirements in the Bovine1. J Anim Sci [Internet]. 1954 Feb 1;13(1):25–36. Available online: https://academic.oup.com/jas/article/13/1/25/4761490. [CrossRef]
- Peters JC, Mahan DC, Wiseman TG, Fastinger ND. Effect of dietary organic and inorganic micromineral source and level on sow body, liver, colostrum, mature milk, and progeny mineral compositions over six parities. J Anim Sci. 2010;88(2):626–37. [CrossRef]
- Ogilvie L, Van Winters B, Mion B, King K, Spricigo JFW, Karrow NA, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. J Dairy Sci [Internet]. 2023 May 3;106(5):3493–508. [CrossRef]
- Luecke SM, Holman DB, Schmidt KN, Gzyl KE, Hurlbert JL, Menezes ACB, Bochantin KA, Kirsch JD, Baumgaertner F, Sedivec KK, Swanson KC, Dahlen CR, Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Front Microbiol. 2023;14(June):1–18. [CrossRef]
- Kon SK, Watson MB. The vitamin C content of cow’s milk. Biochem J. 1937;31(2):223–6. [CrossRef]
- Pearson PB, Darnell AL, Weir J. The Thiamine, Riboflavin, Nicotinic Acid and Pantothenic Acid Content of Colostrum and Milk of the Cow and Ewe. J Nutr [Internet]. 1946 Jan;31(1):51–7. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022316623182241. [CrossRef]
- Collins RA, Harper AE, Schreiber M, Elvehjem CA. The folic acid and vitamin B12 content of the milk of various species. J Nutr. 1951;43(2):313–21. [CrossRef]
- Debier C, Pottier J, Goffe C, Larondelle Y. Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livest Prod Sci. 2005;98(1–2):135–47. [CrossRef]
- Indyk HE, Woollard DC. The endogenous vitamin K1 content of bovine milk: temporal influence of season and lactation. Food Chem. 1995;54(4):403–7. [CrossRef]
- Henry KM, Kon SK. A note on the vitamin D content of cow’s colostrum. Biochem J [Internet]. 1937 Feb 1;31:2199–201. Available online: https://www.cambridge.org/core/product/identifier/S0022029900007172/type/journal_article. [CrossRef]
- Spielman AA, Thomas JW, Loosli JK, Whiting F, Norton CL, Turk KL. The Relationship of the Prepartum Diet to the Carotene and Vitamin A Content of Bovine Colostrum. J Dairy Sci. 1947;30(6):343–50. [CrossRef]
- Johnson JL, Godden SM, Molitor T, Ames T, Hagman D. Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. J Dairy Sci [Internet]. 2007;90(11):5189–98. [CrossRef]
- Semba, RD. Vitamin A and Immune Function. In: Military Strategies for Sustainment of Nutrition and Immune Function in the Field [Internet]. Washington, D.C.: National Academy of Sciences; 1999. p. 230968. Available online: https://www.ncbi.nlm.nih.gov/books/NBK230968/.
- Puvogel G, Baumrucker C, Blum JW. Plasma vitamin A status in calves fed colostrum from cows that were fed vitamin A during late pregnancy. J Anim Physiol Anim Nutr (Berl). 2008;92(5):614–20. [CrossRef]
- Schweigert, FJ. Effect of gestation and lactation on lipoprotein pattern and composition in dairy cows. J Anim Physiol Anim Nutr (Berl). 1990;63(1–5):75–83. [CrossRef]
- Przybylska J, Albera E, Kankofer M. Antioxidants in bovine colostrum. Reprod Domest Anim. 2007;42(4):402–9. [CrossRef]
- Draper HH, Johnson BC. The riboflavin requirement of the Holstein calf. J Nutr. 1952;46(1):37–44. [CrossRef]
- Wiese AC, Johnson BC, Mitchell HH, Nevens WB. Riboflavin Deficiency in the Dairy Calf. J Nutr [Internet]. 1947 Mar;33(3):263–70. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022316623185488. [CrossRef]
- O’Brien MB, McLoughlin RM, Roche C, Nelson CD, Meade KG. Effect of IL-8 haplotype on temporal profile in circulating concentrations of interleukin 8 and 25(OH) vitamin D in Holstein-Friesian calves. Vet Immunol Immunopathol [Internet]. 2021 Aug;238:110287. [CrossRef]
- Cummins, KA. Ascorbate in Cattle: A Review. Prof Anim Sci [Internet]. 1992;8(1):22–9. [CrossRef]
- Lundquist NS, Phillips PH. Certain Dietary Factors Essential for the Growing Calf. J Dairy Sci. 1943;26(11):1023–30. [CrossRef]
- Matsui, T. Vitamin C nutrition in cattle. Asian-Australasian J Anim Sci. 2012;25(5):597–605. [CrossRef]
- Biesalski HK, Dragsted LO, Elmadfa I, Grossklaus R, Müller M, Schrenk D, Walter P, Weber P. Bioactive compounds: Definition and assessment of activity. Nutrition. 2009;25(11–12):1202–5. [CrossRef]
- Blum, JW. Nutritional physiology of neonatal calves. J Anim Physiol Anim Nutr (Berl). 2006;90(1–2):1–11. [CrossRef]
- Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res [Internet]. 2010 Oct 15;20(10):1128–37. Available online: https://www.nature.com/articles/cr201080. [CrossRef]
- Puppel K, Gołębiewski M, Grodkowski G, Slósarz J, Kunowska-Slósarz M, Solarczyk P, Łukasiewicz M, Balcerak M, Przysucha T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals [Internet]. 2019 Dec 2;9(12):1070. Available online: https://www.mdpi.com/2076-2615/9/12/1070. [CrossRef]
- Abdelsattar MM, Rashwan AK, Younes HA, Abdel-Hamid M, Romeih E, Mehanni AHE, Vargas-Bello-Pérez E, Chen W, Zhang N. An updated and comprehensive review on the composition and preservation strategies of bovine colostrum and its contributions to animal health. Anim Feed Sci Technol. 2022;291(April). [CrossRef]
- Bösze, Z. Bioactive components of Milk. Advances in Experimental Medicine and Biology. New York: Springer; 2008.
- Butler, JE. Bovine Immunoglobulins: A Review. J Dairy Sci [Internet]. 1969;52(12):1895–909. [CrossRef]
- Baumrucker CR, Bruckmaier RM. Colostrogenesis: IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia. 2014;19(1):103–17. [CrossRef]
- Gazi I, Reiding KR, Groeneveld A, Bastiaans J, Huppertz T, Heck AJR. Key changes in bovine milk immunoglobulin G during lactation: NeuAc sialylation is a hallmark of colostrum immunoglobulin G N -glycosylation. Glycobiology [Internet]. 2023 Mar 6;33(2):115–25. Available online: https://academic.oup.
- Sasaki M, Davis CL, Larson BL. Production and Turnover of IgG1 and IgG2 Immunoglobulins in the Bovine around Parturition. J Dairy Sci. 1976;59(12):2046–55. [CrossRef]
- Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn) [Internet]. Vol. 26, Journal of Mammary Gland Biology and Neoplasia. Springer US; 2021. 419–453. [CrossRef]
- Besser TE, McGuire TC, Gay CC. The transfer of serum IgG1 antibody into the gastrointestinal tract in newborn calves. Vet Immunol Immunopathol [Internet]. 1987 Dec;17(1–4):51–6. Available online: https://linkinghub.elsevier.com/retrieve/pii/0165242787901267. [CrossRef]
- Godden SM, Haines DM, Hagman D. Improving passive transfer of immunoglobulins in calves. I: Dose effect of feeding a commercial colostrum replacer. J Dairy Sci [Internet]. 2009;92(4):1750–7. [CrossRef]
- Marnila P, Korhonen HJ. Lactoferrin for human health. In: Dairy-Derived Ingredients [Internet]. Elsevier; 2009. p. 290–307. [CrossRef]
- Oluk CA, Karaca OB. Functional food ingredients and nutraceuticals, milk proteins as nutraceuticals nanoScience and food industry. In: Nutraceuticals [Internet]. Elsevier; 2016. p. 715–59. [CrossRef]
- Masson PL, Heremans JF. Lactoferrin in milk from different species. Comp Biochem Physiol Part B Comp Biochem [Internet]. 1971 May;39(1):119-IN13. Available online: https://linkinghub.elsevier.com/retrieve/pii/0305049171902586. [CrossRef]
- Pierce A, Escriva H, Coddeville B, Benaïssa M, Leger D, Spik G, Pamblanco M. Lactoferrin Almost Absent from Lactating Rat Mammary Gland is Replaced by Transferrin. In: Lactoferrin [Internet]. Totowa, NJ: Humana Press; 1997. p. 125–34. [CrossRef]
- Aisen P, Listowsky I. Iron Transport and Storage Proteins. Annu Rev Biochem [Internet]. 1980 Jun;49(1):357–93. [CrossRef]
- Brock, JH. Lactoferrin: Interactions and Biological Functions. Hutchens TW, Lönnerda B, editors. New Jersey: Humana Press; 1997.
- Zhao X, Xu XX, Liu Y, Xi EZ, An JJ, Tabys D, Liu N. The in vitro protective role of bovine lactoferrin on intestinal epithelial barrier. Molecules. 2019;24(1):1–14. [CrossRef]
- Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: Sensitivity of a variety of microorganisms. Infect Immun. 1980;28(3):893–8. [CrossRef]
- van Hooijdonk ACM, Kussendrager KD, Steijns JM. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br J Nutr [Internet]. 2000 Nov 9;84(S1):127–34. Available online: https://www.cambridge.org/core/product/identifier/S000711450000235X/type/journal_article. [CrossRef]
- Reiter, B. The Biological Significance of the Non-Immunoglobulin Protective Proteins in Milk: Lysozyme, Lactoferrin, Lactoperoxidase. In: Developments in Dairy Chemistry—3 [Internet]. Dordrecht: Springer Netherlands; 1985. p. 281–336. [CrossRef]
- Naidu S, Arnold R. Influence of Lactoferrin. In: Hutchens TW, Lönnerda B, editors. Lactoferrin: Interactions and Biological Functions. New Jersey: Humana Press; 1997. p. 259–76.
- Sokołowska A, Bednarz R, Pacewicz M, Georgiades JA, Wilusz T, Polanowski A. Colostrum from different mammalian species-A rich source of colostrinin. Int Dairy J. 2008;18(2):204–9. [CrossRef]
- Marchbank T, Playford RJ. Colostrum: Its Health Benefits. In: Milk and Dairy Products as Functional Foods [Internet]. Wiley; 2014. p. 55–93. [CrossRef]
- Zimecki, M. A Proline-Rich Protein from Ovine Colostrum: Colostrinin with Immunomodulatory Activity. In: Bösze Z, editor. Bioactive components of Milk. Springer; 2008. p. 241–52.
- Stewart, MG. Colostrinin TM : a naturally occurring compound derived from mammalian colostrum with efficacy in treatment of neurodegenerative diseases, including Alzheimer’s. Expert Opin Pharmacother [Internet]. 2008 Oct 8;9(14):2553–9. [CrossRef]
- Zabłocka A, Janusz M. Effect of the Proline-Rich Polypeptide Complex/ColostrininTM on the Enzymatic Antioxidant System. Arch Immunol Ther Exp (Warsz) [Internet]. 2012 Oct 28;60(5):383–90. [CrossRef]
- Abuelo A, Hernández J, Benedito J, Castillo C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants [Internet]. 2019 Jan 13;8(1):20. Available online: http://www.mdpi.com/2076-3921/8/1/20. [CrossRef]
- Stewart MG, Banks D. Enhancement of long-term memory retention by Colostrinin in one-day-old chicks trained on a weak passive avoidance learning paradigm. Neurobiol Learn Mem. 2006;86(1):66–71. [CrossRef]
- Zabłocka A, Janusz M, Macała J, Lisowski J. A proline-rich polypeptide complex (PRP) isolated from ovine colostrum. Modulation of H2O2 and cytokine induction in human leukocytes. Int Immunopharmacol [Internet]. 2007 Jul;7(7):981–8. Available online: https://linkinghub.elsevier.com/retrieve/pii/S156757690700063X. [CrossRef]
- Zabłocka A, Mitkiewicz M, Macała J, Janusz M. Neurotrophic Activity of Cultured Cell Line U87 is Up-Regulated by Proline-Rich Polypeptide Complex and Its Constituent Nonapeptide. Cell Mol Neurobiol [Internet]. 2015 Oct 5;35(7):977–86. [CrossRef]
- Ragab SS, Ibrahim MK. Role of bovine colostrum and its biofunctional fraction PRP in oral treatment of enterogenic endotoxaemia in rats. Int J Agric Biol. 2004;6(3):576–80.
- Boldogh I, Aguilera-Aguirre L, Bacsi A, Choudhury BK, Saavedra-Molina A, Kruzel M. Colostrinin Decreases Hypersensitivity and Allergic Responses to Common Allergens. Int Arch Allergy Immunol [Internet]. 2008;146(4):298–306. Available online: https://www.karger.com/Article/FullText/121464. [CrossRef]
- Gardner RW, Shupe MG, Brimhall W, Weber DJ. Causes of Adverse Responses to Soybean Milk Replacers in Young Calves. J Dairy Sci [Internet]. 1990;73(5):1312–7. [CrossRef]
- Xiong L, Li C, Boeren S, Vervoort J, Hettinga K. Effect of heat treatment on bacteriostatic activity and protein profile of bovine whey proteins. Food Res Int [Internet]. 2020 Jan;127(September 2019):108688. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0963996919305745. [CrossRef]
- Dzhavakhiya VG, Shcherbakova LA. Creation of disease-resistant plants by gene engineering. In: Comprehensive and Molecular Phytopathology [Internet]. Elsevier; 2007. p. 439–66. Available online: https://linkinghub.elsevier.
- Farkye NY, Bansal N. Enzymes Indigenous to Milk | Other Enzymes. In: Encyclopedia of Dairy Sciences [Internet]. Elsevier; 2011. p. 327–34. Available online: https://linkinghub.elsevier.
- Paulík S, Slanina L, Polácek M. Lysozyme in the colostrum and blood of calves and dairy cows. Vet Med (Praha) [Internet]. 1985;30(1):21–8. Available online: https://europepmc.
- Kaludina, T. Lactate dehydrogenase isoenzymes in the colostrum of cows. Vet Nauk. 1978;15(6):69–72.
- Parish SM, Tyler JW, Besser TE, Gay CC, Krytenberg D. Prediction of serum IgG1 concentration in Holstein calves using serum gamma glutamyltransferase activity. J Vet Intern Med. 1997;11(6):344–7. [CrossRef]
- Oubihi M, Kitajima K, Aoki N, Matsuda T. Spontaneous galactosylation of agalactoglycoproteins in colostrum. FEBS Lett [Internet]. 2000 May 12;473(2):165–8. [CrossRef]
- Peetsalu K, Niine T, Loch M, Dorbek-Kolin E, Tummeleht L, Orro T. Effect of colostrum on the acute-phase response in neonatal dairy calves. J Dairy Sci [Internet]. 2022;105(7):6207–19. [CrossRef]
- Boudry C, Buldgen A, Portetelle D, Gianello P, Théwisa A, Leterme P, Dehoux JP. Effect of bovine colostrum supplementation on cytokine mRNA expression in weaned piglets. Livest Sci [Internet]. 2007 May;108(1–3):295–8. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1871141307000923. [CrossRef]
- Hagiwara K, Kataoka S, Yamanaka H, Kirisawa R, Iwai H. Detection of cytokines in bovine colostrum. Vet Immunol Immunopathol. 2000;76(3–4):183–90. [CrossRef]
- Guo Y, Wang B, Wang T, Gao L, Yang Z jun, Wang F fei, Shang H wei, Hua R, Xu J dong. Biological characteristics of IL-6 and related intestinal diseases. Int J Biol Sci [Internet]. 2021;17(1):204–19. Available online: https://www.ijbs.com/v17p0204.htm. [CrossRef]
- Grigalevičiūtė R, Matusevičius P, Plančiūnienė R, Stankevičius R, Radzevičiūtė-Valčiukė E, Balevičiūtė A, Želvys A, Zinkevičienė A, Zigmantaitė V, Kučinskas A, Kavaliauskas P. Understanding the Immunomodulatory Effects of Bovine Colostrum: Insights into IL-6/IL-10 Axis-Mediated Inflammatory Control. Vet Sci [Internet]. 2023 Aug 11;10(8):519. Available online: https://www.mdpi.com/2306-7381/10/8/519. [CrossRef]
- Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther [Internet]. 2017 Jul 14;2(1):17023. Available online: https://www.nature.com/articles/sigtrans201723. [CrossRef]
- An MJ, Cheon JH, Kim SW, Park JJ, Moon CM, Han SY, Kim ES, Kim T Il, Kim WH. Bovine colostrum inhibits nuclear factor κB-mediated proinflammatory cytokine expression in intestinal epithelial cells. Nutr Res [Internet]. 2009;29(4):275–80. [CrossRef]
- Blais M, Fortier M, Pouliot Y, Gauthier SF, Boutin Y, Asselin C, Lessard M. Colostrum whey down-regulates the expression of early and late inflammatory response genes induced by Escherichia coli and Salmonella enterica Typhimurium components in intestinal epithelial cells. Br J Nutr [Internet]. 2015 Jan 28;113(2):200–11. Available online: https://www.cambridge.org/core/product/identifier/S0007114514003481/type/journal_article. [CrossRef]
- Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Br J Nutr. 2000;84(Suppl. 1):S75–80. [CrossRef]
- Le A, Barton LD, Sanders JT, Zhang Q. Exploration of Bovine Milk Proteome in Colostral and Mature Whey Using an Ion-Exchange Approach. J Proteome Res [Internet]. 2011 Feb 4;10(2):692–704. [CrossRef]
- Medeńska W, Dratwa-Chałupnik A, Ożgo M. Cow’s whey proteins involvement in the development of the immunological system and gastrointestinal tract in calves. A review. J Anim Feed Sci. 2021;30(2):91–9. [CrossRef]
- Triglia RP, Linscott WD. Titers of nine complement components, conglutinin and C3b-inactivator in adult and fetal bovine sera. Mol Immunol [Internet]. 1980 Jun;17(6):741–8. Available online: https://linkinghub.elsevier.com/retrieve/pii/0161589080901443. [CrossRef]
- Hernández-Castellano LE, Morales-delaNuez A, Sánchez-Macías D, Moreno-Indias I, Torres A, Capote J, Argüello A, Castro N. The effect of colostrum source (goat vs. sheep) and timing of the first colostrum feeding (2 h vs. 14 h after birth) on body weight and immune status of artificially reared newborn lambs. J Dairy Sci [Internet]. 2015 Jan;98(1):204–10. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022030214007206. [CrossRef]
- Castro N, Acosta F, Niño T, Vivas J, Quesada E, Capote J, Argüello A. The effects of diet and age on serum complement system activity in goat kids. Livest Sci [Internet]. 2008 Dec;119(1–3):102–6. [CrossRef]
- Hernández-Castellano LE, Almeida AM, Renaut J, Argüello A, Castro N. A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: A bovine milk comparison perspective. J Dairy Res. 2016;83(3):366–74. [CrossRef]
- O’Callaghan TF, O’Donovan M, Murphy JP, Sugrue K, Mannion D, McCarthy WP, Timlin M, Kilcawley KN, Hickey RM, Tobin JT. Evolution of the bovine milk fatty acid profile – From colostrum to milk five days post parturition. Int Dairy J [Internet]. 2020;104:104655. [CrossRef]
- Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER, Leal LN, Steele MA. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J Dairy Sci. 2022;105(3):2612–30. [CrossRef]
- Contarini G, Povolo M, Pelizzola V, Monti L, Bruni A, Passolungo L, Abeni F, Degano L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J Dairy Sci [Internet]. 2014;97(8):5065–72. [CrossRef]
- Precht, D. Cholesterol content in European bovine milk fats. Nahrung - Food. 2001;45(1):2–8. [CrossRef]
- Garcia M, Greco LF, Favoreto MG, Marsola RS, Martins LT, Bisinotto RS, Shin JH, Lock AL, Block E, Thatcher WW, Santos JEP, Staples CR. Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf. J Dairy Sci [Internet]. 2014;97(1):392–405. [CrossRef]
- Uken KL, Schäff CT, Vogel L, Gnott M, Dannenberger D, Görs S, Tuchscherer A, Tröscher A, Liermann W, Hammon HM. Modulation of colostrum composition and fatty acid status in neonatal calves by maternal supplementation with essential fatty acids and conjugated linoleic acid starting in late lactation. J Dairy Sci. 2021;104(4):4950–69. [CrossRef]
- Leat, WM. Fatty acid composition of the plasma lipids of newborn and maternal ruminants. Biochem J. 1966;98(2):598–603. [CrossRef]
- Burr GO, Burr MM. on the Nature and Rôle of the Fatty Acids Essential in Nutrition. J Biol Chem [Internet]. 1930;86(2):587–621. [CrossRef]
- Moallem U, Zachut M. Short communication: The effects of supplementation of various n-3 fatty acids to late-pregnant dairy cows on plasma fatty acid composition of the newborn calves. J Dairy Sci [Internet]. 2012;95(7):4055–8. [CrossRef]
- Dahl N, Albrecht E, Dannenberger D, Uken KL, Hammon HM, Maak S. Consequences of maternal essential fatty acid and conjugated linoleic acid supplementation on the development of calf muscle and adipose tissue. Animals. 2020;10(9):1–18. [CrossRef]
- Uken KL, Vogel L, Gnott M, Görs S, Schäff CT, Tuchscherer A, Hoeflich A, Weitzel JM, Kanitz E, Tröscher A, Sauerwein H, Zitnan R, Bruckmaier RM, Gross JJ, Liermann W, Hammon HM. Effect of maternal supplementation with essential fatty acids and conjugated linoleic acid on metabolic and endocrine development in neonatal calves. J Dairy Sci. 2021;104(6):7295–314. [CrossRef]
- Quigley JD, Hill TM, Hulbert LE, Dennis TS, Suarez-Mena XF, Bortoluzzi EM. Effects of fatty acids and calf starter form on intake, growth, digestion, and selected blood metabolites in male calves from 0 to 4 months of age. J Dairy Sci [Internet]. 2019;102(9):8074–91. [CrossRef]
- Garcia M, Greco LF, Favoreto MG, Marsola RS, Wang D, Shin JH, Block E, Thatcher WW, Santos JEP, Staples CR. Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their preweaned calves on calf performance, immune response, and health. J Dairy Sci [Internet]. 2014;97(8):5045–64. [CrossRef]
- Jolazadeh AR, Mohammadabadi T, Dehghan-banadaky M, Chaji M, Garcia M. Effect of supplementing calcium salts of n-3 and n-6 fatty acid to pregnant nonlactating cows on colostrum composition, milk yield, and reproductive performance of dairy cows. Anim Feed Sci Technol [Internet]. 2019;247:127–40. [CrossRef]
- Jolazadeh AR, Mohammadabadi T, Dehghan-Banadaky M, Chaji M, Garcia M. Effect of supplementation fat during the last 3 weeks of uterine life and the preweaning period on performance, ruminal fermentation, blood metabolites, passive immunity and health of the newborn calf. Br J Nutr. 2019;122(12):1346–58. [CrossRef]
- Hall EJ, German AJ, Willard MD, Lappin MR, Cave N, Washabau RJ, Bergman PJ. Small Intestine. In: Canine and Feline Gastroenterology [Internet]. Elsevier; 2013. p. 651–728. Available online: https://linkinghub.elsevier.
- Hiltz RL, Laarman AH. Effect of butyrate on passive transfer of immunity in dairy calves. J Dairy Sci [Internet]. 2019;102(5):4190–7. [CrossRef]
- Koch C, Gerbert C, Frieten D, Dusel G, Eder K, Zitnan R, Hammon HM. Effects of ad libitum milk replacer feeding and butyrate supplementation on the epithelial growth and development of the gastrointestinal tract in Holstein calves. J Dairy Sci [Internet]. 2019;102(9):8513–26. [CrossRef]
- Opgenorth J, Sordillo LM, Lock AL, Gandy JC, VandeHaar MJ. Colostrum supplementation with n-3 fatty acids alters plasma polyunsaturated fatty acids and inflammatory mediators in newborn calves. J Dairy Sci [Internet]. 2020;103(12):11676–88. [CrossRef]
- Opgenorth J, Sordillo LM, Gandy JC, VandeHaar MJ. Colostrum supplementation with n-3 fatty acids does not alter calf outcome on a healthy commercial farm. J Dairy Sci [Internet]. 2020;103(12):11689–96. [CrossRef]
- Masmeijer C, van Leenen K, De Cremer L, Deprez P, Cox E, Devriendt B, Pardon B. Effects of omega-3 fatty acids on immune, health and growth variables in veal calves. Prev Vet Med [Internet]. 2020;179(March):104979. [CrossRef]
- Flaga J, Korytkowski, Górka P, Kowalski ZM. The effect of docosahexaenoic acid-rich algae supplementation in milk replacer on performance and selected immune system functions in calves. J Dairy Sci [Internet]. 2019;102(10):8862–73. [CrossRef]
- Gopal PK, Gill HS. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br J Nutr. 2000;84(SUPPL. 1). [CrossRef]
- Barile D, Marotta M, Chu C, Mehra R, Grimm R, Lebrilla CB, German JB. Neutral and acidic oligosaccharides in Holstein-Friesian colostrum during the first 3 days of lactation measured by high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J Dairy Sci [Internet]. 2010;93(9):3940–9. [CrossRef]
- Tao N, DePeters EJ, German JB, Grimm R, Lebrilla CB. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J Dairy Sci [Internet]. 2009;92(7):2991–3001. [CrossRef]
- Sundekilde UK, Barile D, Meyrand M, Poulsen NA, Larsen LB, Lebrilla CB, German JB, Bertram HC. Natural Variability in Bovine Milk Oligosaccharides from Danish Jersey and Holstein-Friesian Breeds. J Agric Food Chem [Internet]. 2012 Jun 20;60(24):6188–96. [CrossRef]
- Gunjan, Kumar K, Deepak D. Structural characterization of novel milk oligosaccharide Aurose from cow colostrum. J Mol Struct [Internet]. 2019 Jan;1176:394–401. [CrossRef]
- Nakamura T, Kawase H, Kimura K, Watanabe Y, Ohtani M, Arai I, Urashima T. Concentrations of sialyloligosaccharides in bovine colostrum and milk during the prepartum and early lactation. J Dairy Sci [Internet]. 2003;86(4):1315–20. [CrossRef]
- Martín-Sosa S, Martín MJ, García-Pardo LA, Hueso P. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J Dairy Sci. 2003;86(1):52–9. [CrossRef]
- Fischer-Tlustos AJ, Hertogs K, van Niekerk JK, Nagorske M, Haines DM, Steele MA. Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi- and multiparous Holstein cows during the first week of lactation. J Dairy Sci [Internet]. 2020;103(4):3683–95. [CrossRef]
- Fischer AJ, Malmuthuge N, Guan LL, Steele MA. Short communication: The effect of heat treatment of bovine colostrum on the concentration of oligosaccharides in colostrum and in the intestine of neonatal male Holstein calves. J Dairy Sci [Internet]. 2018;101(1):401–7. [CrossRef]
- McJarrow P, Van Amelsfort-Schoonbeek J. Bovine sialyl oligosaccharides: Seasonal variations in their concentrations in milk, and a comparison of the colostrums of Jersey and Friesian cows. Int Dairy J. 2004;14(7):571–9. [CrossRef]
- Quinn EM, O’Callaghan TF, Tobin JT, Murphy JP, Sugrue K, Slattery H, O’Donovan M, Hickey RM. Changes to the Oligosaccharide Profile of Bovine Milk at the Onset of Lactation. Dairy. 2020;1(3):284–96. [CrossRef]
- Quinn EM, Joshi L, Hickey RM. Symposium review: Dairy-derived oligosaccharides—Their influence on host–microbe interactions in the gastrointestinal tract of infants. J Dairy Sci. 2020;103(4):3816–27. [CrossRef]
- Jing B, Xia K, Zhang C, Jiao S, Zhu L, Wei J, Wang ZA, Chen N, Tu P, Li J, Du Y. Chitosan Oligosaccharides Regulate the Occurrence and Development of Enteritis in a Human Gut-On-a-Chip. Front Cell Dev Biol. 2022;10(April):1–10. [CrossRef]
- Boudry G, Hamilton MK, Chichlowski M, Wickramasinghe S, Barile D, Kalanetra KM, Mills DA, Raybould HE. Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. J Dairy Sci [Internet]. 2017;100(4):2471–81. [CrossRef]
- Jakobsen LMA, Sundekilde UK, Andersen HJ, Nielsen DS, Bertram HC. Lactose and Bovine Milk Oligosaccharides Synergistically Stimulate B. longum subsp. longum Growth in a Simplified Model of the Infant Gut Microbiome. J Proteome Res. 2019;18(8):3086–98. [CrossRef]
- Obelitz-Ryom K, Bering SB, Overgaard SH, Eskildsen SF, Ringgaard S, Olesen JL, Skovgaard K, Pankratova S, Wang B, Brunse A, Heckmann AB, Rydal MP, Sangild PT, Thymann T. Bovine milk oligosaccharides with sialyllactose improves cognition in preterm pigs. Nutrients. 2019;11(6):1–20. [CrossRef]
- Bagwe S, Tharappel LJP, Kaur G, Buttar HS. Bovine colostrum: An emerging nutraceutical. J Complement Integr Med. 2015;12(3):175–85. [CrossRef]
- Hobbs M, Jahan M, Ghorashi SA, Wang B. Current perspective of sialylated milk oligosaccharides in mammalian milk: Implications for brain and gut health of newborns. Foods. 2021;10(2):1–19. [CrossRef]
- Tao N, Wu S, Kim J, An HJ, Hinde K, Power ML, Gagneux P, German JB, Lebrilla CB. Evolutionary glycomics: Characterization of milk oligosaccharides in primates. J Proteome Res. 2011;10(4):1548–57. [CrossRef]
- Kunz C, Rudloff S, Schad W, Braun D. Lactose-derived oligosaccharides in the milk of elephants: Comparison with human milk. Vol. 82, British Journal of Nutrition. 1999. p. 391–9. [CrossRef]
- Durham SD, Wei Z, Lemay DG, Lange MC, Barile D. Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals. Sci Rep [Internet]. 2023;13(1):1–26. [CrossRef]
- Jouan PN, Pouliot Y, Gauthier SF, Laforest JP. Hormones in bovine milk and milk products: A survey. Int Dairy J. 2006;16(11):1408–14. [CrossRef]
- Pinotti L, Rosi F. Leptin in Bovine Colostrum and Milk. Horm Metab Res [Internet]. 2006 Feb;38(2):89–93. Available online: http://eprints.ncrm.ac.uk/2879/1/NCRM_workingpaper_0412.pdf. [CrossRef]
- Pape-Zambito DA, Magliaro AL, Kensinger RS. 17Β-Estradiol and Estrone Concentrations in Plasma and Milk During Bovine Pregnancy. J Dairy Sci [Internet]. 2008;91(1):127–35. [CrossRef]
- Goyon A, Cai JZ, Kraehenbuehl K, Hartmann C, Shao B, Mottier P. Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk. Food Addit Contam Part A [Internet]. 2016 May 3;33(5):804–16. [CrossRef]
- Romanini EB, Volpato AM, Sifuentes dos Santos J, de Santana EHW, de Souza CHB, Ludovico A. Melatonin concentration in cow’s milk and sources of its variation. J Appl Anim Res [Internet]. 2019;47(1):140–5. [CrossRef]
- Koldovský O. Hormones in Milk. In: Vitamins and Hormones [Internet]. 1995. p. 77–149. Available online: https://linkinghub.elsevier.com/retrieve/pii/S008367290860655X.
- Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and Growth Factors in Milk. Endocr Rev [Internet]. 1993 Dec;14(6):710–28. [CrossRef]
- McEwen BS. Steroid Hormone Effects on Brain: Novel Insights Connecting Cellular and Molecular Features of Brain Cells to Behavior. In: Methods in Neurosciences [Internet]. ACADEMIC PRESS, INC.; 1994. p. 525–42. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780121852924500383.
- Xu L, Zhang L, Zhang Y, Sheng Q, Zhao A. Qualitative and quantitative comparison of hormone contents between bovine and human colostrums. Int Dairy J. 2011;21(1):54–7. [CrossRef]
- Farke C, Rattenberger E, Roiger SU, Meyer HHD. Bovine colostrum: Determination of naturally occcurring steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem. 2011;59(4):1423–7. [CrossRef]
- Randal D, Burggren W, French K. Eckert Animal Physiology. Mechanisms and Adaptations. 4th ed. New York: W.H. Freeman and Company; 1997.
- Hill RW, A. Wyse G, Anderson M. Animal Physiology. 4th ed. Oxford University Press; 2016.
- Hammon HM, Liermann W, Frieten D, Koch C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal [Internet]. 2020;14(S1):S133–43. [CrossRef]
- Ivell R, Anand-Ivell R. Neohormones in milk. Best Pract Res Clin Endocrinol Metab [Internet]. 2017;31(4):419–25. [CrossRef]
- Bartol FF, Wiley AA, Miller DJ, Silva AJ, Roberts KE, Davolt MLP, Chen JC, Frankshun AL, Camp ME, Rahman KM, Vallet JL, Bagnell CA. LACTATION BIOLOGY SYMPOSIUM: Lactocrine signaling and developmental programming. J Anim Sci. 2013;91(2):696–705. [CrossRef]
- Bagnell CA, Bartol FF. Relaxin and the ‘Milky Way’: The lactocrine hypothesis and maternal programming of development. Mol Cell Endocrinol [Internet]. 2019;487:18–23. [CrossRef]
- Dai Y, Ivell R, Liu X, Janowski D, Anand-Ivell R. Relaxin-family peptide receptors 1 and 2 are fully functional in the bovine. Front Physiol. 2017;8(JUN):1–11. [CrossRef]
- Rodríguez EM, Bach A, Devant M, Aris A. Is calcitonin an active hormone in the onset and prevention of hypocalcemia in dairy cattle? J Dairy Sci [Internet]. 2016;99(4):3023–30. [CrossRef]
- Ahmadi M, Boldura O, Milovanov C, Dronca D, Mircu C, Hutu I, Popescu S, Padeanu I, Tulcan C. Colostrum from Different Animal Species – A Product for Health Status Enhancement. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol [Internet]. 2016 Apr 4;73(1):1–7. Available online: http://journals.usamvcluj.ro/index.php/zootehnie/article/view/11949. [CrossRef]
- Linehan K, Ross RP, Stanton C. Bovine Colostrum for Veterinary and Human Health Applications: A Critical Review. Annu Rev Food Sci Technol. 2023;14:387–410. [CrossRef]
- Koldovsky, O. Search for role of milk-borne biologically active peptides for the suckling. J Nutr. 1989;119(11):1543–51. [CrossRef]
- Gaiani R, Chiesa F, Mattioli M, Nannetti G, Galeati G. Androstenedione and testosterone concentrations in plasma and milk of the cow throughout pregnancy. Reproduction [Internet]. 1984 Jan 1;70(1):55–9. [CrossRef]
- Wolford ST, Argoudelis CJ. Measurement of Estrogens in Cow’s Milk, Human Milk, and Dairy Products. J Dairy Sci. 1979;62(9):1458–63. [CrossRef]
- Schwalm JW, Tucker A. Glucocorticoids in Mammary Secretions and Blood Serum during Reproduction and Lactation and Distributions of Glucocorticoids, Progesterone, and Estrogens in Fractions of Milk. J Dairy Sci [Internet]. 1978;61(5):550–60. [CrossRef]
- Shutt DA, Fell LR. Comparison of Total and Free Cortisol in Bovine Serum and Milk or Colostrum. J Dairy Sci [Internet]. 1985;68(7):1832–4. [CrossRef]
- Amarant T, Fridkin M, Koch Y. Luteinizing Hormone-Releasing Hormone and Thyrotropin-Releasing Hormone in Human and Bovine Milk. Eur J Biochem. 1982;127(3):647–50. [CrossRef]
- Ronge H, Blum JW. Somatomedin C and other hormones in dairy cows around parturition, in newborn calves and in milk. J Anim Physiol Anim Nutr (Berl). 1988;60(1–5):168–76. [CrossRef]
- Shinnichi O, Hidetoshi S, Tatsurou S, Nobuyoshi M, Tetsuya K, Kazuo K, Yoshio S, Akira N, Minoru O, Yasuyuki S. Insulin-like growth factor-I, GH, insulin and glucagon concentrations in bovine colostrum and in plasma of dairy cows and neonatal calves around parturition. Comp Biochem Physiol -- Part A Physiol. 1989;94(4):805–8. [CrossRef]
- Elfstrand L, Lindmark-Månsson H, Paulsson M, Nyberg L, Åkesson B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int Dairy J. 2002;12(11):879–87. [CrossRef]
- Takeyama M, Yanaga N, Yarimizu K, Ono J, Takaki R, Fujii N, Yajima H. Enzyme immunoassay of somatostatin(SS)-like immunoreactive substance in bovine milk. Chem Pharm Bull. 1990;38(2):456–9. [CrossRef]
- Prakash BS, Paul V, Kliem H, Kulozik U, Meyer HHD. Determination of oxytocin in milk of cows administered oxytocin. Anal Chim Acta. 2009;636(1):111–5. [CrossRef]
- McMurtry JP, Malven P V., Arave CW, Erb RE, Harrington RB. Environmental and Lactational Variables Affecting Prolactin Concentrations in Bovine Milk. J Dairy Sci [Internet]. 1975;58(2):181–9. [CrossRef]
- Gala RR, Forsyth IA, Turvey A. Milk prolactin is biologically active. Life Sci. 1980;26(12):987–93. [CrossRef]
- Baumrucker CR, Macrina AL. Hormones and regulatory factors in bovine milk [Internet]. Vol. 2, Encyclopedia of Dairy Sciences: Third edition. Academic Press; 2022. 138–145. [CrossRef]
- Jahnke GD, Lazarus LH. A bombesin immunoreactive peptide in milk. Proc Natl Acad Sci U S A. 1984;81(2 I):578–82. [CrossRef]
- Rauprich ABE, Hammon HM, Blum JW. Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status and on growth performance in neonatal calves. J Anim Sci. 2000;78(4):896–908. [CrossRef]
- Grega T, Bobek S. The presence of thyroxine in bovine precolostrum and colostrum. J Dairy Res. 1977;44(1):131–2. [CrossRef]
- Akasha MA, Anderson RR, Ellersieck M, Nixon DA. Concentration of Thyroid Hormones and Prolactin in Dairy Cattle Serum and Milk at Three Stages of Lactation. J Dairy Sci. 1987;70(2):271–6. [CrossRef]
- Pezzi C, Accorsi PA, Vigo D, Govoni N, Gaiani R. 5′-Deiodinase activity and circulating thyronines in lactating cows. J Dairy Sci [Internet]. 2003;86(1):152–8. [CrossRef]
- Slebodziński AB, Nowak J, Gawecka H, Sechman A. Thyroid hormones and insulin in milk; a comparative study. Endocrinol Exp [Internet]. 1986 Aug;20(2–3):247–55. Available online: http://www.ncbi.nlm.nih.gov/pubmed/3530717.
- Goff JP, Reinhardt TA, Lee S, Hollis BW. Parathyroid Hormone-Related Peptide Content of Bovine Milk and Calf Blood Assessed by Radioimmunoassay and Bioassay. Endocrinology [Internet]. 1991 Dec;129(6):2815–9. [CrossRef]
- Law FMK, Moate PJ, Leaver DD, Diefenbach-Jagger H, Grill V, Ho PWM, Martin TJ. Parathyroid hormone-related protein in milk and its correlation with bovine milk calcium. J Endocrinol [Internet]. 1991 Jan;128(1):21-NP. Available online: https://joe.bioscientifica.com/view/journals/joe/128/1/joe_128_1_003.xml. [CrossRef]
- Eriksson L, Valtonen M, Laitinen JT, Paananen M, Raikkonen M. Diurnal Rhythm of Melatonin in Bovine Milk: Pharmacokinetics of Exogenous Melatonin in Lactating Cows and Goats. Acta Vet Scand. 1998;39(3):301–10. [CrossRef]
- Bonnet M, Delavaud C, Laud K, Gourdou I, Leroux C, Djiane J, Chilliard Y. Mammary leptin synthesis, milk leptin and their putative physiological roles. Reprod Nutr Dev. 2002;42(5):399–413. [CrossRef]
- Singh SP, Häussler S, Gross JJ, Schwarz FJ, Bruckmaier RM, Sauerwein H. Short communication: Circulating and milk adiponectin change differently during energy deficiency at different stages of lactation in dairy cows. J Dairy Sci [Internet]. 2014;97(3):1535–42. [CrossRef]
- Kesser J, Hill M, Heinz JFL, Koch C, Rehage J, Steinhoff-Wagner J, Hammon HM, Mielenz B, Sauerwein H, Sadri H. The rapid increase of circulating adiponectin in neonatal calves depends on colostrum intake. J Dairy Sci. 2015;98(10):7044–51. [CrossRef]
- Lu M, Yao F, Guo A. A study on two gut hormones in breast milk. Zhonghua Fu Chan Ke Za Zhi. 1995;30(10):554–6.
- Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factors and related substances: Mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol. 2002;23(1–2):101–10. [CrossRef]
- Pakkanen R, Aalto J. Growth factors and antimicrobial factors of bovine colostrum. Int Dairy J. 1997;7(5):285–97. [CrossRef]
- Kühne S, Hammon HM, Bruckmaier RM, Morel C, Zbinden Y, Blum JW. Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels. J Anim Sci. 2000;78(3):609–20. [CrossRef]
- Mann S, Curone G, Chandler TL, Moroni P, Cha J, Bhawal R, Zhang S. Heat treatment of bovine colostrum: I. Effects on bacterial and somatic cell counts, immunoglobulin, insulin, and IGF-I concentrations, as well as the colostrum proteome. J Dairy Sci [Internet]. 2020 Oct;103(10):9368–83. [CrossRef]
- Menchetti L, Traina G, Tomasello G, Casagrande-Proietti P, Leonardi L, Barbato O, Brecchia G. Potential benefits of colostrum in gastrointestinal diseases. Front Biosci - Sch. 2016;8(2):331–51. [CrossRef]
- Blum J, Baumrucker C. Insulin-Like Growth Factors (IGFs), IGF Binding Proteins, and Other Endocrine Factors in Milk: Role in the Newborn. In: Bösze Z, editor. Bioactive components of Milk. New York: Springer; 2008. p. 397–422.
- Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr. 2021;12(2):533–45. [CrossRef]
- Mann S, Curone G, Chandler TL, Sipka A, Cha J, Bhawal R, Zhang S. Heat treatment of bovine colostrum: II. Effects on calf serum immunoglobulin, insulin, and IGF-I concentrations, and the serum proteome. J Dairy Sci [Internet]. 2020 Oct;103(10):9384–406. [CrossRef]
- Jehle PM, Fussgaenger RD, Blum WF, Angelus NKO, Hoeflich A, Wolf E, Jungwirth RJ. Differential autocrine regulation of intestine epithelial cell proliferation and differentiation by insulin-like growth factor (IGF) system components. Horm Metab Res. 1999;31(2–3):97–102. [CrossRef]
- Pache, JC. Epidermal Growth Factors. Encycl Respir Med Four-Volume Set. 2006;2:129–33.
- Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. In: Advances in Immunology [Internet]. 2017. p. 137–233. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0065277617300019.
- Adamek A, Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases. Int J Mol Sci. 2018;19(5):1–24. [CrossRef]
- Gibson CA, Staley MD, Baumrucker CR. Identification of IGF binding proteins in bovine milk and the demonstration of IGFBP-3 synthesis and release by bovine mammary epithelial cells. J Anim Sci. 1999;77(6):1547–57. [CrossRef]
- Hadorn U, Hammon H, Bruckmaier RM, Blum JW. Delaying Colostrum Intake by One Day Has Important Effects on Metabolic Traits and on Gastrointestinal and Metabolic Hormones in Neonatal Calves,,. J Nutr [Internet]. 1997 Oct;127(10):2011–23. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022316623016127. [CrossRef]
- Fischer-Tlustos AJ, Pyo J, Song Y, Renaud DL, Guan LL, Steele MA. Short communication: Effect of delaying the first colostrum feeding on small intestinal histomorphology and serum insulin-like growth factor-1 concentrations in neonatal male Holstein calves. J Dairy Sci [Internet]. 2020;103(12):12109–16. [CrossRef]
- Pyo J, Hare K, Pletts S, Inabu Y, Haines D, Sugino T, Guan LL, Steele M. Feeding colostrum or a 1:1 colostrum:milk mixture for 3 days postnatal increases small intestinal development and minimally influences plasma glucagon-like peptide-2 and serum insulin-like growth factor-1 concentrations in Holstein bull calves. J Dairy Sci. 2020;103(5):4236–51. [CrossRef]
- Matsui T, Ichikawa H, Fujita T, Takemura S, Takagi T, Osada-Oka M, Minamiyama Y. Histidine and arginine modulate intestinal cell restitution via transforming growth factor-β1. Eur J Pharmacol [Internet]. 2019;850(February):35–42. [CrossRef]
- Li Z, Wang B, Li H, Jian L, Luo H, Wang B, Zhang C, Zhao X, Xue Y, Peng S, Zuo S. Maternal Folic Acid Supplementation Differently Affects the Small Intestinal Phenotype and Gene Expression of Newborn Lambs from Differing Litter Sizes. Animals [Internet]. 2020 Nov 22;10(11):2183. Available online: https://www.mdpi.com/2076-2615/10/11/2183. [CrossRef]
- Buranakarl C, Thammacharoen S, Semsirmboon S, Sutayatram S, Nuntapaitoon M, Katoh K. Impact of insulin-like growth factor 1, immunoglobulin G and vitamin A in colostrum on growth of newborn Black Bengal goats and its crossbred. J Anim Physiol Anim Nutr (Berl). 2022;106(6):1238–45. [CrossRef]
- Chi Y, Zhou D. MicroRNAs in colorectal carcinoma - from pathogenesis to therapy. J Exp Clin Cancer Res [Internet]. 2016 Dec 10;35(1):43. [CrossRef]
- Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M. miRNA nanotherapeutics for cancer. Drug Discov Today [Internet]. 2017 Feb;22(2):424–32. [CrossRef]
- Brown A, Santos R, Bickel U, Rosa F. Characterization of bovine extracellular vesicles and microRNA immunoregulation. In: 2023 Veterinary Scholars Symposium. San Juan, Puerto Rico; 2022. p. 56–56.
- Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics [Internet]. 2015 Dec 16;16(1):806. [CrossRef]
- Kim H, Kim DE, Han G, Lim NR, Kim EH, Jang Y, Cho H, Jang H, Kim KH, Kim SH, Yang Y. Harnessing the Natural Healing Power of Colostrum: Bovine Milk-Derived Extracellular Vesicles from Colostrum Facilitating the Transition from Inflammation to Tissue Regeneration for Accelerating Cutaneous Wound Healing. Adv Healthc Mater. 2022;11(6):1–12. [CrossRef]
- Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W, Faenza I. MiRNA-210: A Current Overview. Anticancer Res [Internet]. 2017 Dec 3;37(12):6511–21. Available online: http://ar.iiarjournals.org/content/37/12/6511.abstract. [CrossRef]
- Özdemir, S. Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds. Gene [Internet]. 2020 Jun;743(March):144609. [CrossRef]
- Hue DT, Petrovski K, Chen T, Williams JL, Bottema CDK. Analysis of immune-related microRNAs in cows and newborn calves. J Dairy Sci [Internet]. 2023 Apr;106(4):2866–78. [CrossRef]
- Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci [Internet]. 2012 Sep;95(9):4831–41. [CrossRef]
- Chandler TL, Newman A, Cha JE, Sipka AS, Mann S. Leukocytes, microRNA, and complement activity in raw, heat-treated, and frozen colostrum and their dynamics as colostrum transitions to mature milk in dairy cows. J Dairy Sci [Internet]. 2023 Jul;106(7):4918–31. [CrossRef]
- Hue T, Do. Transfer of colostrum components to newborn calves. University of Adelaide; 2021.
- Kirchner B, Buschmann D, Paul V, Pfaffl MW. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves. Busson P, editor. PLoS One [Internet]. 2020 Feb 28;15(2):e0229606. [CrossRef]
- Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell [Internet]. 2013 Mar 13;4(3):197–210. Available online: https://academic.oup.com/proteincell/article/4/3/197/6874342. [CrossRef]
- Wicik Z, Gajewska M, Majewska A, Walkiewicz D, Osińska E, Motyl T. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J Anim Breed Genet [Internet]. 2016 Feb 8;133(1):31–42. [CrossRef]
- Yun B, Kim Y, Park DJ, Oh S. Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk. J Anim Sci Technol [Internet]. 2021 May;63(3):593–602. [CrossRef]
- Ma T, Li W, Chen Y, Cobo ER, Windeyer C, Gamsjäger L, Diao Q, Tu Y, Guan LL. Assessment of microRNA profiles in small extracellular vesicles isolated from bovine colostrum with different immunoglobulin G concentrations. JDS Commun. 2022;3(5):328–33. [CrossRef]
- Radojičić O, Dobrijević Z, Robajac D, Gligorijević N, Mandić Marković V, Miković Ž, Nedić O. Gestational Diabetes is Associated with an Increased Expression of miR-27a in Peripheral Blood Mononuclear Cells. Mol Diagn Ther [Internet]. 2022 Jul 16;26(4):421–35. [CrossRef]
- Liang G, Malmuthuge N, Guan LL, Griebel P. Model systems to analyze the role of miRNAs and commensal microflora in bovine mucosal immune system development. Mol Immunol [Internet]. 2015 Jul;66(1):57–67. [CrossRef]
- Silanikove, N. Milk Lipoprotein Membranes and Their Imperative Enzymes. In: Bösze Z, editor. Bioactive components of Milk. New York: Springer; 2008. p. 143–62.
- Gill BD, Indyk HE, Manley-Harris M. Determination of total potentially available nucleosides in bovine milk. Int Dairy J [Internet]. 2011 Jan;21(1):34–41. [CrossRef]
- Schlimme E, Martin D, Meisel H. Nucleosides and nucleotides: natural bioactive substances in milk and colostrum. Br J Nutr [Internet]. 2000 Nov 9;84(S1):59–68. Available online: https://linkinghub.elsevier.com/retrieve/pii/B978008100596500963X. [CrossRef]
- Schlimme E, Raezke KP, Ott FG. Ribonucleosides as minor milk constituents. Z Ernahrungswiss. 1991;30(2):138–52. [CrossRef]
- Gil A, Sanchez-Medina F. Acid-soluble nucleotides of cow’s, goat’s and sheep’s milks, at different stages of lactation. J Dairy Res [Internet]. 1981 Feb 1;48(1):35–44. Available online: https://www.cambridge.org/core/product/identifier/S0022029900021427/type/journal_article. [CrossRef]
- Gill BD, Indyk HE. Development and application of a liquid chromatographic method for analysis of nucleotides and nucleosides in milk and infant formulas. Int Dairy J [Internet]. 2007 Jun;17(6):596–605. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0958694606002019. [CrossRef]
- Mashiko T, Nagafuchi S, Kanbe M, Obara Y, Hagawa Y, Takahashi T, Katoh K. Effects of dietary uridine 5′-monophosphate on immune responses in newborn calves1,2. J Anim Sci. 2009;87(3):1042–7. [CrossRef]
- Katoh K, Yoshioka K, Hayashi H, Mashiko T, Yoshida M, Kobayashi Y, Obara Y. Effects of 5′-uridylic acid feeding on postprandial plasma concentrations of GH, insulin and metabolites in young calves. J Endocrinol [Internet]. 2005 Jul;186(1):157–63. Available online: https://joe.bioscientifica.com/view/journals/joe/186/1/1860157.xml. [CrossRef]
- Dinardo FR, Maggiolino A, Martinello T, Liuzzi GM, Elia G, Zizzo N, Latronico T, Mastrangelo F, Dahl GE, De Palo P. Oral administration of nucleotides in calves: Effects on oxidative status, immune response, and intestinal mucosa development. J Dairy Sci [Internet]. 2022;105(5):4393–409. [CrossRef]
- Gao L min, Liu G yi, Wang H ling, Wassie T, Wu X. Maternal pyrimidine nucleoside supplementation regulates fatty acid, amino acid and glucose metabolism of neonatal piglets. Anim Nutr [Internet]. 2022;11:309–21. [CrossRef]
- Gao L, Xie C, Liang X, Li Z, Li B, Wu X, Yin Y. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. Anim Nutr [Internet]. 2021;7(1):84–93. [CrossRef]
- Plante PA, Laforest JP, Farmer C. Effect of supplementing the diet of lactating sows with NuPro® on sow lactation performance and piglet growth. Can J Anim Sci. 2011;91(2):295–300. [CrossRef]
- Hill TM, Suarez-Mena FX, Bateman HG, Aldrich JM, Schlotterbeck RL. Effect of nucleotides in milk replacers on growth and health of male dairy calves. Prof Anim Sci [Internet]. 2016 Apr;32(2):214–9. [CrossRef]
- Kehoe SI, Heinrichs AJ, Baumrucker CR, Greger DL. Effects of nucleotide supplementation in milk replacer on small intestinal absorptive capacity in dairy calves. J Dairy Sci [Internet]. 2008;91(7):2759–70. [CrossRef]
- Górka P, Budzińska K, Budziński W, Jankowiak T, Kehoe S, Kański J. Effect of probiotic and nucleotide supplementation in milk replacer on growth performance and fecal bacteria in calves. Livest Sci [Internet]. 2021 Aug;250(September 2020):104556. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1871141321001645. [CrossRef]
- Abbaslou Y, Zahmatkesh D, Mahjoubi E, Hossein Yazdi M, Beiranvand H, Gorjidooz M. Nucleotide Supplementation to Whole Milk Has Beneficial Effects on Post-Weaning Holstein Calf Performance. Animals [Internet]. 2021 Jan 18;11(1):218. Available online: https://www.mdpi.com/2076-2615/11/1/218. [CrossRef]
- Abbaslou Y, Mahjoubi E, Ahmadi F, Farokhzad MR, Zahmatkesh D, Yazdi MH, Beiranvand H. Short communication: Performance of Holstein calves fed high-solid milk with or without nucleotide. J Dairy Sci [Internet]. 2020 Dec;103(12):11490–5. [CrossRef]
- Gonzalez DD, Dus Santos MJ. Bovine colostral cells—the often forgotten component of colostrum. J Am Vet Med Assoc [Internet]. 2017 May 1;250(9):998–1005. Available online: https://avmajournals.avma.org/view/journals/javma/250/9/javma.250.9.998.xml. [CrossRef]
- Alhussien MN, Tiwari S, Panda BSK, Pandey Y, Lathwal SS, Dang AK. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J Trace Elem Med Biol [Internet]. 2021 May;65(September 2020):126718. [CrossRef]
- Ohtsuka H, Terasawa S, Watanabe C, Kohiruimaki M, Mukai M, Ando T, Petrovski KR, Morris S. Effect of parity on lymphocytes in peripheral blood and colostrum of healthy Holstein dairy cows. Can J Vet Res. 2010;74:130–5.
- Kampen C Van, Mallard BA. Effects of peripartum stress and health on circulating bovine lymphocyte subsets. Vet Immunol Immunopathol. 1997;59:79–91. [CrossRef]
- Park YH, Fox LK, Hamilton MJ, Davis WC. Bovine Mononuclear Leukocyte Subpopulations in Peripheral Blood and Mammary Gland Secretions During Lactation. J Dairy Sci [Internet]. 1992;75(4):998–1006. [CrossRef]
- Maciag S, Volpato F, Bombassaro G, Forner R, Oliveira KPV, Bovolato ALC, Lopes L, Bastos AP. Effects of freezing storage on the stability of maternal cellular and humoral immune components in porcine colostrum. Vet Immunol Immunopathol [Internet]. 2022 Dec;254(November):110520. [CrossRef]
- Duhamel GE, Bernoco D, Davis WC, Osburn BI. Distribution of T and B lymphocytes in mammary dry secretions, colostrum and blood of adult dairy cattle. Vet Immunol Immunopathol. 1987;14:101–22. [CrossRef]
- Lee CS, Wooding FBP, Kemp P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J Dairy Res [Internet]. 1980 Feb 1;47(1):39–50. Available online: https://www.cambridge.org/core/product/identifier/S0022029900020860/type/journal_article. [CrossRef]
- Marquart S, Novo F, Fraça J, Costa C, Meirelles N, Toledo B, Lorenci P, Oliveira D, John D, Gomes V. Effect of maternal cells transferred with colostrum on the health of neonate calves. Res Vet Sci. 2017;112:97–104. [CrossRef]
- Concha C, Holmberg O, Morein B. Proportion of B- and T-lymphocytes in normal bovine milk. J Dairy Res [Internet]. 1978 Jun 1;45(2):287–90. Available online: https://www.cambridge.org/core/product/identifier/S0022029900016472/type/journal_article. [CrossRef]
- Dosogne H, Vangroenweghe F, Mehrzad J, Massart-Leën AM, Burvenich C. Differential Leukocyte Count Method for Bovine Low Somatic Cell Count Milk. J Dairy Sci [Internet]. 2003 Mar;86(3):828–34. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022030203736650. [CrossRef]
- Gonçalves JL, Lyman RL, Hockett M, Rodriguez R, dos Santos MV, Anderson KL. Using milk leukocyte differentials for diagnosis of subclinical bovine mastitis. J Dairy Res [Internet]. 2017 Aug 27;84(3):309–17. Available online: https://www.cambridge.org/core/product/identifier/S0022029917000267/type/journal_article. [CrossRef]
- Langel SN, Wark WA, Garst SN, James RE, McGilliard ML, Petersson-Wolfe CS, Kanevsky-Mullarky I. Effect of feeding whole compared with cell-free colostrum on calf immune status: The neonatal period. J Dairy Sci [Internet]. 2015;98(6):3729–40. [CrossRef]
- Donovan DC, Reber AJ, Gabbard JD, Aceves-Avila M, Galland KL, Holbert KA, Ely LO, Hurley DJ. Effect of maternal cells transferred with colostrum on cellular responses to pathogen antigens in neonatal calves. Am J Vet Res. 2007;68(7):778–82. [CrossRef]
- Costa JFDR, Novo SMF, Baccili CC, Sobreira NM, Hurley DJ, Gomes V. Innate immune response in neonate Holstein heifer calves fed fresh or frozen colostrum. Res Vet Sci [Internet]. 2017 Dec;115:54–60. [CrossRef]
- Stieler A, Bernardo BS, Arthur Donovan G. Neutrophil and monocyte function in neonatal dairy calves fed fresh or frozen colostrum. Int J Appl Res Vet Med. 2012;10(4):328–34.
- Martínez JR, Gonzalo C, Carriedo JA, San Primitivo F. Effect of freezing on Fossomatic cell counting in ewe milk. J Dairy Sci. 2003;86(8):2583–7. [CrossRef]
- Liebler-Tenorio EM, Riedel-Caspari G, Pohlenz JF. Uptake of colostral leukocytes in the intestinal tract of newborn calves. Vet Immunol Immunopathol. 2002;85(1–2):33–40. [CrossRef]
- Reber AJ, Lockwood A, Hippen AR, Hurley DJ. Colostrum induced phenotypic and trafficking changes in maternal mononuclear cells in a peripheral blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet Immunol Immunopathol. 2006;109(1–2):139–50. [CrossRef]
- Jain L, Vidyasagar D, Xanthou M, Ghai V, Shimada S, Blend M. In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Arch Dis Child [Internet]. 1989 Jul 1;64(7 Spec No):930–3. Available online: https://adc.bmj.com/lookup/doi/10.1136/adc.64.7_Spec_No.930. [CrossRef]
- Schnorr KL, Pearson LD. Intestinal absorption of maternal leucocytes by newborn lambs. J Reprod Immunol. 1984;6(5):329–37. [CrossRef]
- King A, Chigerwe M, Barry J, Murphy JP, Rayburn MC, Kennedy E. Short communication: Effect of feeding pooled and nonpooled high-quality colostrum on passive transfer of immunity, morbidity, and mortality in dairy calves. J Dairy Sci [Internet]. 2020;103(2):1894–9. [CrossRef]
- Reber AJ, Donovan DC, Gabbard J, Galland K, Aceves-Avila M, Holbert KA, Marshall L, Hurley DJ. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system. I. Effects on monocyte lineage cells. Vet Immunol Immunopathol. 2008;123(3–4):186–96. [CrossRef]
- Reber AJ, Donovan DC, Gabbard J, Galland K, Aceves-Avila M, Holbert KA, Marshall L, Hurley DJ. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system. Part II. Effects on neonatal lymphocytes. Vet Immunol Immunopathol [Internet]. 2008 Jun;123(3–4):305–13. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0165242708000706. [CrossRef]
- Langel SN, Wark WA, Garst SN, James RE, McGilliard ML, Petersson-Wolfe CS, Kanevsky-Mullarky I. Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response. J Dairy Sci [Internet]. 2016;99(5):3979–94. [CrossRef]
- Aldridge BM, McGuirk SM, Lunn DP. Effect of colostral ingestion on immunoglobulin-positive cells in calves. Vet Immunol Immunopathol. 1998;62(1):51–64. [CrossRef]
- Malmuthuge N, Chen Y, Liang G, Goonewardene LA, Guan LL. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J Dairy Sci [Internet]. 2015 Nov;98(11):8044–53. [CrossRef]
- Addis MF, Tanca A, Uzzau S, Oikonomou G, Bicalho RC, Moroni P. The bovine milk microbiota: Insights and perspectives from -omics studies. Mol Biosyst [Internet]. 2016;12(8):2359–72. [CrossRef]
- Donahue M, Godden SM, Bey R, Wells S, Oakes JM, Sreevatsan S, Stabel J, Fetrow J. Heat treatment of colostrum on commercial dairy farms decreases colostrum microbial counts while maintaining colostrum immunoglobulin G concentrations. J Dairy Sci [Internet]. 2012;95(5):2697–702. [CrossRef]
- Rebelein, TW. The Effect of Heat Treatment on Microbiological Qualities of Bovine Colostrum, Passive Immune Transfer of Neonatal Calves, and Future Animal Performance. Ludwig Maximilian University of Munich; 2010.
- McGuirk SM, Collins M. Managing the production, storage, and delivery of colostrum. Vet Clin North Am - Food Anim Pract. 2004;20(3 SPEC. ISS.):593–603. [CrossRef]
- Elizondo-Salazar JA, Heinrichs AJ. Heat Treating Bovine Colostrum. Prof Anim Sci [Internet]. 2008;24(6):530–8. [CrossRef]
- Trujillo AJ, Castro N, Quevedo JM, Argüello A, Capote J, Guamis B. Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine Colostrum. J Dairy Sci. 2007;90(2):833–9. [CrossRef]
- Dbeibia A, Mahdhi A, Jdidi S, A. Altammar K, Zmanter T, Mzoughi R, Jabeur C. Probiotic potential of lactic acid bacteria isolated from colostrum of 3 different mammals. Food Biotechnol. 2023;37(2):166–90. [CrossRef]
- Abe F, Ishibashi NOR, Shimamura S. Effect of Administration of Bifidobacteria and Lactic Acid Bacteria to Newborn Calves and Piglets. J Dairy Sci. 1995;78:2838–46. [CrossRef]
- Kim M kook, Lee H gu, Park J ah, Kang S kee, Choi Y jaie. Effect of Feeding Direct-fed Microbial as an Alternative to Antibiotics for the Prophylaxis of Calf Diarrhea in Holstein Calves. Asian-Australasian J Anim Sci. 2011;24(5):643–9. [CrossRef]
- Van Hese I, Goossens K, Ampe B, Haegeman A, Opsomer G. Exploring the microbial composition of Holstein Friesian and Belgian Blue colostrum in relation to the transfer of passive immunity. J Dairy Sci [Internet]. 2022;105(9):7623–41. [CrossRef]
- Chen B, Tang G, Guo W, Lei J, Yao J, Xu X. Detection of the core bacteria in colostrum and their association with the rectal microbiota and with milk composition in two dairy cow farms. Animals. 2021;11(12). [CrossRef]
- Vasquez A, Nydam D, Foditsch C, Warnick L, Wolfe C, Doster E, Morley PS. Characterization and comparison of the microbiomes and resistomes of colostrum from selectively treated dry cows. J Dairy Sci [Internet]. 2022;105(1):637–53. [CrossRef]
- Patangia D, V. , Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics. 2023;12(8):1–16. [CrossRef]
- Hang BPT, Wredle E, Dicksved J. Analysis of the developing gut microbiota in young dairy calves—impact of colostrum microbiota and gut disturbances. Trop Anim Health Prod. 2021;53(1). [CrossRef]
- Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev [Internet]. 2017 Jan;30(1):409–47. [CrossRef]
- van der Kolk JH, Endimiani A, Graubner C, Gerber V, Perreten V. Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist [Internet]. 2019 Mar;16:59–71. [CrossRef]
- Messman RD, Lemley CO. Bovine neonatal microbiome origins: a review of proposed microbial community presence from conception to colostrum. Transl Anim Sci [Internet]. 2023 Jan 1;7(1). [CrossRef]
- Song Y, Li F, Fischer-Tlustos AJ, Neves ALA, He Z, Steele MA, Guan LL. Metagenomic analysis revealed the individualized shift in ileal microbiome of neonatal calves in response to delaying the first colostrum feeding. J Dairy Sci. 2021;104(8):8783–97. [CrossRef]
| Component | Mean | S.D. | Min | Max | CV | n | Breed | Region | Method of analysis | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| TS (%) | 23.9 | 3.41 | 14.3 | 10 | H | Kansas, US | AOAC | [35] | ||
| 24.2 | 36 | H | Cairo, Egypt | AOAC, 1999 | [36] | |||||
| 27.2 | 5.8 | 12.9 | 47.2 | 21.3 | 365 | H | Isfahan, Iran | Milkoscan | [33] | |
| 27.6 | 5.84 | 18.3 | 43.3 | 21.2 | 55 | H | Pennsylvania, US | AOAC, 1975 | [37] | |
| 25.8 | 4.68 | 18.1 | 1074 | H | Northern Greece | Brix | [34] | |||
| 24.7 | 0.51 | 2.1 | 72 | H | Central Denmark | Milkoscan | [38] | |||
| 26.3 | 13.5 | 37 | 288 | HF | Ontario, Canada and Minnesota, US | Brix | [39] | |||
| 25.3 | 4.9 | 11.0 | 42.0 | 19.4 | 709 | HF | Évora, Portugal | Brix | [40] | |
| 24.8 | 0.26 | 18 | 31 | 1.0 | 73 | F | Pisa, Italy | Brix | [41] | |
| 22.6 | 4.7 | 1.7 | 33.1 | 20.8 | 496 | H + J | US | Milkoscan | [42] | |
| 22.5 | 6.74 | 30.0 | 16 | J | Kansas, US | AOAC | [35] | |||
| 27.7 | 8.76 | 31.6 | 99 | J | Northern India | Gravimetric | [43] | |||
| 23.6 | 5.56 | 12.8 | 36.6 | 23.6 | 86 | J | US | Dried overnight | [24] | |
| 23.4 | 0.74 | 3.2 | 32 | J | Central Denmark | Milkoscan | [38] | |||
| 21.2 | 4.43 | 10.5 | 28.6 | 20.9 | 58 | J | Iowa, Canada | Brix | [44] | |
| 24.3 | 10.4 | 52.6 | 569 | Alberta, Canada | Brix | [28] | ||||
| Protein (%) | 14.0 | 2.59 | 18.5 | 8 | H | Kansas, US | Subtration | [35] | ||
| 16.6 | 6 | H | Tuscia, Italy (TN) | Milkoscan 104 | [45] | |||||
| 13.9 | 6 | H | Tuscia, Italy (HT) | Milkoscan 104 | [45] | |||||
| 13.5 | 36 | H | Cairo, Egypt | AOAC, 1999 | [36] | |||||
| 14.9 | 3.32 | 7.10 | 22.6 | 22.3 | 55 | H | US-PA | Kjeldahl | [37] | |
| 18.5 | 4.9 | 4.90 | 29.6 | 26.5 | 365 | H | Isfahan, Iran | Milkoscan | [33] | |
| 17.8 | 3.97 | 22.3 | 1074 | H | Northern Greece | Milkoscan | [34] | |||
| 14.7 | 3.51 | 4.55 | 25.22 | 23.9 | 559 | H | Northen Italy | Kjeldahl | [46] | |
| 15.4 | 0.42 | 2.7 | 72 | H | Central Denmark | Milkoscan | [38] | |||
| 14.0 | 3.67 | 26.2 | 1226 | H + F* | Northen Ireland | Milkoscan | [47] | |||
| 12.6 | 2.9 | 3.34 | 17.12 | 23.0 | 76 | HF | Swiszterland | Milkoscan | [48] | |
| 18.2 | 3.94 | 11.28 | 24.6 | 21.6 | 21 | HF | Germany | Milkoscan | [48] | |
| 16.1 | 1.64 | 10.2 | 8 | F | Reading, UK | DairyLab II (NIR) | [49] | |||
| 12.7 | 3.3 | 2.60 | 20.5 | 26.0 | 542 | H + J | US | Milkoscan | [42] | |
| 13.1 | 4.08 | 31.1 | 99 | J | Northern India | Kjeldahl | [43] | |||
| 23.6 | 5.07 | 9.16 | 31.63 | 21.5 | 88 | J | US | Kjeldahl | [24] | |
| 14.2 | 5.26 | 37.0 | 11 | J | Kansas, US | Subtration | [35] | |||
| 14.6 | 0.62 | 4.2 | 32 | J | Central Denmark | Milkoscan | [38] | |||
| Fat (%) | 6.7 | 2.65 | 39.6 | 29 | H | Kansas, US | Babcock | [35] | ||
| 6.0 | 6 | H | Tuscia, Italy (TN) | Milkoscan 104 | [45] | |||||
| 5.9 | 6 | H | Tuscia, Italy (HT) | Milkoscan 104 | [45] | |||||
| 8.0 | 36 | H | Cairo, Egypt | Gerber | [36] | |||||
| 6.7 | 4.16 | 2.0 | 26.5 | 62.1 | 54 | H | US-PA | Babcock | [37] | |
| 4.6 | 3.4 | 0.3 | 20.9 | 73.9 | 365 | H | Isfahan, Iran | Milkoscan | [33] | |
| 6.4 | 3.3 | 51.6 | 1074 | H | Northern Greece | Milkoscan | [34] | |||
| 5.2 | 0.34 | 6.5 | 72 | H | Central Denmark | Milkoscan | [38] | |||
| 4.6 | 3.04 | 0.12 | 14.95 | 66.1 | 557 | H | Northen Italy | VDLUFA, 2013 | [46] | |
| 6.4 | 3.32 | 51.9 | 1226 | H + F* | Northen Ireland | Milkoscan | [47] | |||
| 4.4 | 1.75 | 2.16 | 8.78 | 39.8 | 21 | HF | Germany | Milkoscan | [48] | |
| 5.5 | 2.8 | 1.32 | 14.21 | 50.9 | 76 | HF | Swiszterland | Milkoscan | [48] | |
| 3.55 | 1.82 | 51.3 | 8 | F | Reading, UK | DairyLab II (NIR) | [49] | |||
| 5.6 | 3.2 | 1.0 | 21.1 | 57.1 | 531 | H + J | US | Milkoscan | [42] | |
| 3.3 | 0.1 | 8.7 | J | US | Infrared | [24] | ||||
| 3.4 | 0.51 | 15.0 | 32 | J | Central Denmark | Milkoscan | [38] | |||
| 4.2 | 1.81 | 43.1 | 32 | J | Kansas, US | Babcock | [35] | |||
| 8.0 | 7.96 | 99.5 | 99 | J | Northern India | Gerber | [43] | |||
| Lactose (%) | 2.7 | 0.91 | 33.7 | 8 | H | Kansas, US | AOAC 1945 | [35] | ||
| 3.2 | 6 | H | Tuscia, Italy (TN) | Milkoscan 104 | [45] | |||||
| 2.6 | 6 | H | Tuscia, Italy (HT) | Milkoscan 104 | [45] | |||||
| 2.5 | 0.65 | 1.2 | 5.2 | 26.0 | 55 | H | US-PA | Colorimetric | [37] | |
| 2.0 | 0.9 | 0.3 | 5.2 | 45.0 | 365 | H | Isfahan, Iran | Milkoscan | [33] | |
| 3.68 | 0.04 | 1.1 | H | Central Denmark | Milkoscan | [38] | ||||
| 2.15 | 0.73 | 34.0 | 1074 | H | Northern Greece | Milkoscan | [34] | |||
| 2.36 | 0,51 | 0.74 | 4.06 | 21.6 | 577 | H | Northen Italy | HPLC | [46] | |
| 2.7 | 0.55 | 20.4 | 1226 | H + F* | Northen Ireland | Milkoscan | [47] | |||
| 3.2 | 0.53 | 1.94 | 4.6 | 16.6 | 76 | HF | Swiszterland | Milkoscan | [48] | |
| 2.9 | 0.59 | 1.82 | 3.81 | 20.3 | 21 | HF | Germany | Milkoscan | [48] | |
| 2.7 | 0.46 | 17.0 | 8 | F | Reading, UK | DairyLab II (NIR) | [49] | |||
| 2.9 | 0.5 | 1.2 | 4.6 | 17.2 | 538 | H + J | US | Milkoscan | [42] | |
| 3.73 | 0.06 | 1.6 | 32 | J | Central Denmark | Milkoscan | [38] | |||
| 2.4 | 0.77 | 32.1 | 11 | J | Kansas, US | AOAC 1945 | [35] | |||
| 3.0 | 0.20 | 6.7 | 99 | J | Northern India | Lane-Eynon | [43] | |||
| Minerals (%) | 1.11 | 0.16 | 14.4 | 10 | H | Kansas, US | Evaporation | [35] | ||
| 0.05 | 0.01 | 0.02 | 0.07 | 20.0 | 55 | H | US-PA | AOAC, 1975 | [37] | |
| 1.9 | 0.17 | 8.9 | 8 | F | Reading, UK | DairyLab II (NIR) | [49] | |||
| 1.02 | 0.40 | 39.2 | 99 | J | Northern India | Incineration | [43] | |||
| 1.22 | 0.14 | 11.5 | 16 | J | Kansas, US | Evaporation | [35] |
| Protein | Concentration | Reference |
|---|---|---|
| Caseins (αs, β, к) (mg/mL) | 48–89 | [52] [76] [77] [61] |
| α-lactalbumin (mg/mL) | 2.0–3.8 | [77] [73] |
| β-lactoglobulin (mg/mL) | 14.3–28.5 | [73] [77] |
| Bovine serum albumin (mg/mL) | 0.45–2.5 | [73] [25] [78] |
| Immunoglobulins (IgG, IgA, IgM) (mg/mL) | 47–106 | [79] [37] [25] |
| Lactoferrin (µg/mL) | 34–1960 | [80] [81] [76,82] |
| Transferrin (µg/mL) | 187–1070 | [83] [80] [81] [82] |
| Lysozyme (µg/mL) | 0.4–1262 | [79] [84] [85] |
| Lactoperoxidase (µg/mL) | 22.8–22.8 | [79] |
| Vitamin | Mean | Physiological role |
|---|---|---|
| Fat-soluble vitamins | ||
| Vitamin A (µg/100 mL) | 233–369 | Immune function, cell-growth, and vision |
| Vitamin E (µg/100 g) | 191–530 | Antioxidant function. |
| Vitamin D (IU/100 g fat) | 120–181 | Ca and P absorption, bone health, and immune function. |
| Vitamin K (µg/100 mL) | > 2 | Blood clotting and bone health. |
| Water-soluble vitamins | ||
| Thiamine (B1) (µg/100 mL) | 58–90 | Energy metabolism and nervous system. |
| Riboflavin (B2) (µg/100 mL) | 455–610 | Energy production and cell growth. |
| Niacin (B3) (µg/100 mL) | 34–96 | Redox reactions (synthesis of NAD), energy metabolism. |
| Pantothenic acid (B5) (µg/100 mL) | 224 | Acetyl-transfer reactions (synthesis of coenzyme A), energy metabolism. |
| Pyridoxal (B6) (µg/100 mL) | 15.0 | Brain development, immune function, and production of haemoglobin |
| Pyridoxamine (B6) (µg/100 mL) | 21.0 | |
| Pyridoxine (B6) (µg/100 mL) | 4.0 | |
| Biotin (B7) (µg/100 mL) | 1.0–2.7 | Carboxylation reactions, glucose, amino acids, and fatty acids metabolism. |
| Folate (B9) (µg/100 mL) | 0.75-0.8 | Single-carbon-transfer reactions (nucleic acids synthesis), DNA and methionine metabolism. |
| Cobalamin (B12) (µg/100 mL) | 0.2-60 | Red blood cell production, neurological function, and DNA synthesis |
| Ascorbic acid (C) (µg/100 mL) | 1620–3200 | Antioxidant, immune function, skin, and blood vessels integrity. |
| Fatty acid | Predominant trend |
|---|---|
| C4:0 Butyric Acid | ↓ |
| C6:0 Caproic Acid | ↓ |
| C8:0 Octanoic Acid | ? |
| C12:0 Lauric Acid | ? |
| C14:0 Myristic acid | ↑ |
| C14:1 ω-5 Myristoleic acid | ? |
| C15:0 pentadecanoic acid | ? |
| C16:0 Palmitic acid | ↑ |
| C16:1 ω-7 Palmitoleic | ? |
| C17:0 Heptadecanoic acid | ? |
| C18:0 Stearic acid | ? |
| C18:1 ω-9 Oleic acid | ? |
| C18:2 ω-6 Linoleic acid (LA) | ↑ |
| C18:3 ω-3 α-Linolenic acid (ALA) | ? |
| C21:0 Behenic acid | ? |
| C20:3 ω-6 Dihomo-γ-linolenic acid | ? |
| C23:0 Tricosanoic acid | ? |
| SFA | ? |
| Branched-chain FA | ? |
| MUFA | ? |
| Trans-MUFA | ↓ |
| Conjugated linoleic acid (CLA) | ↓ |
| PUFA | ↑ |
| ω-3 | ↑ |
| ω-6 | ↑ |
| Fatty acid | Colostrum | Milk (5d) |
|---|---|---|
| C14:0 Myristic acid | 12.8 - 13.7 | 8.3 – 11.2 |
| C16:0 Palmitic acid | 32.5 – 40.4 | 27.2 – 29.7 |
| C18:2 ω-6 Linoleic acid (LA) | 1.95 – 2.79 | 1.53 – 2.23 |
| PUFA | 3.88 - 4.28 | 2.97 – 3.62 |
| ω-3 | 0.56 – 1.18 | 0.33 – 0.70 |
| ω-6 | 2.57 – 3.72 | 2.64 – 3.00 |
| Oligosaccharide | Raw colostrum | Mature milk |
|---|---|---|
| 3′-Sialyllactose (3′SL) | 341 - 867 | 42 - 114 |
| 6′-Sialyllactose (6′SL) | 103 - 243 | 17 - 89 |
| 6′-Sialyllactosamine (6′SLN) | 117 - 239 | 11 - 170 |
| Disialyllactose (DSL) | 84 - 520 | 4 - 38 |
| Hormone | Colostrum | Milk | References |
|---|---|---|---|
| Gonadal Hormones | |||
| Androstenedione (ng/ml) | 0.18 – 8.36 | 0.1 – 3.5 | [239,244,245,257] |
| Estrone (E1) (ρg/mL) | 1 300 – 31 070 | 0.6 – 159 | [238,239,244,245,258] |
| 17α-Estradiol (ng/ml) | 8.6 | 0.03 | [239,245] |
| 17β-Estradiol (E2) (ρg/ml) | 300 – 7010 | 0.3 – 14.0 | [238,239,244,245,258] |
| Estriol (E3) (ρg /mL) | < 3000 | 9.0 – 31.0 | [245,258] |
| Testosterone (ng/mL) | 0.1 – ≈ 1.6 | 20 – 120 | [244,245,257] |
| Progesterone (ng/mL) | 2.62 – 6.46 | 2.13 – 15.49 | [239,244,245] |
| Adrenal gland hormones | |||
| Corticosterone (ng/mL) | ? | 2.92 ± 0.26 | [259] |
| Cortisol (ng/mL) | 1.71 – 4.4 | 0.35 – 1.28 | [244,259,260] |
| Cortisone (ng/mL) | 2.16 ± 1.71 | 0.11 – 0.51 | [239,244] |
| Hypothalamus-Hypophyseal Hormones | |||
| Gonadotropin-releasing hormone (GnRH)a (ng/mL) | 11.78 ± 0.72 | 0.5 – 3.0 | [261] |
| Growth hormone (GH)b (ng/mL) | 0.17 – 1.4 | < 0.03 – < 1.0 | [11,262,263,264] |
| Growth hormone-inhibiting hormone (GHIH)c (ρM) | ? | 19.0 ± 6.0 | [265] |
| Oxytocin (ρg/mL) | ? | 8.0 – 10.0 | [266] |
| Prolactin (ng/mL) | 280 – 800 | 3.7 – 57.0 | [11,267,268,269] |
| Thyrotropin-releasing hormone (TRH) (ng/mL) | 0.16 ± 0.03 | 0.05 | [261] |
| Brain-Gut Hormones | |||
| Bombesin-like (related to gastrin releasing peptide) (ng/mL) | ? | 1.17 ± 0.89 | [270] |
| Gastrin releasing peptide (nM) | ? | 1.4 ± 1.0 | [265] |
| Neurotensin | ? | ? | |
| Vasoactive intestinal peptide (ρM) | ? | 16 ± 9.0 | [265] |
| Pancreatic hormones | |||
| Insulin (ng/mL) | 35.4 – 65 | 1.0 | [11,271] |
| Glucagon (ng/mL) | 0.16 | 0.01 | [11] |
| Thyroid Gland Hormones | |||
| Calcitonin | ? | ? | |
| Triiodothyronine (T3) (ng/mL) | < 0.31 – 2.02 | 0.21 – 0.41 | [262,272,273,274] |
| Reverse Triiodothyronine (rT3) (ng/mL) | 0.57 ± 0.06 | 3.48 – 91.1 | [273,274] |
| Thyroxin T4 (ng/mL) | 0.12 – 1.9 | 0 – 0.67 | [262,272,273,274,275] |
| Other hormones | |||
| Parathyroid hormone-related protein (PTHrP) (ng/mL) | 26.0 – 56.0 | 59.0 – 168.0 | [276,277] |
| Glucagon (ng/mL) | ≤ 0.16 | 0.01 | [11,263] |
| Relaxin | - | - | |
| Melatonin (ρg/ml) | ? | 4.71 - 41.94 | [240,278] |
| Erythropoietin | ? | ? | |
| Leptin (ng/ml) | 13.9 – 30 | 4.4 – 6.1 | [237,279] |
| Adiponectin (µg/ml) | 56.1 to 75.9 | 0.61 | [280,281] |
| Motilin (ng/ml) | 0.23 ± 0.06 | 0.03 ± 0.02 | [282] |
| Leukocytes differential count | Colostruma | Milkb* |
|---|---|---|
| Lymphocytes (total) | 2 – 27 | 18 - 58 |
| Lymphocytes T | 16 | 47 |
| Lymphocytes B | 11 | 20 |
| Macrophages | 31 – 69 | 10 – 29 |
| Neutrophils | 30 - 65 | 28 - 49 |
| Genus | Phyla | Frequency |
|---|---|---|
| Acinetobacter | Proteobacteria | +++++ |
| Pseudomonas | Proteobacteria | ++++ |
| Staphylococcus | Firmicutes | ++++ |
| Bacteroides | Bacteroidetes | +++ |
| Corynebacterium | Actinobacteria | +++ |
| Streptococcus | Firmicutes | +++ |
| Bacillus | Firmicutes | ++ |
| Chryseobacterium | Bacteroidetes | ++ |
| Flavobacterium | Bacteroidetes | ++ |
| Lactococcus | Firmicutes | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
