Submitted:
01 March 2024
Posted:
04 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sequence-Based Methods
2.1. Sequence-Based Features
2.2. Sequences-Based AI Approaches
3. Knowledge-Based Methods
3.1. Legitimacy of Using Gene Ontology (GO) Features
3.2. Knowledge-Based AI Approaches
| Method | Features | Algorithm | Single-/Multi-Location | Species | Availability | Year |
|---|---|---|---|---|---|---|
| ML-FGAT | GO terms, Sequence Information, PsePSSM, PC | KNN | M | Human, Virus, Gram-negative bacteria, plant, SARS-CoV-2 | [101] | 2024 |
| PMPSL-GRAKEL | GO terms | RF | M | Human, Bacteria, animal | [102] | 2024 |
| Wang et al. | GO Terms, CDD, PseAAC, PSSM | NN | M | Human | [83] | 2023 |
| Zhang et al. | PPI, KEGG features, Functional GO | RF, SVM | M | Human | [94] | 2022 |
| ML-locMLFE | GO terms, PseAAC, PSSM | MLFE | M | Bacteria, Plant, Virus | [103] | 2021 |
| Chen et al. | GO, KEGG, PPI | RF, SVM, KNN, DT | S | Human | [88] | 2021 |
| Gpos-ECC-mPLoc | GO terms | SVM | M | Gram-positive Bacteria | [104] | 2015 |
| mGOASVM | GO terms | SVM | M | Virus, Plant | [105] | 2012 |
| iLoc-Euk | GO terms | KNN | M | Eukaryote | [106] | 2011 |
| Gneg-mPLoc | GO terms, Functional Domain, Evolutional Information | OET-KNN | M | Gram-negative bacteria | [107] | 2010 |
| PSORTb 3.0 | Swissprot Annotation | SVM | S | Prokaryotes | [108] | 2010 |
4. Bioimage-Based Methods
4.1. Bioimage-Based Features
4.2. Bioimage-Based AI Methods
5. Protein Subcellular Localization in Different Species
6. Current Challenges and Future Directions
6.1. Challenges
6.2. Future Directions
7. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Q.; Hu, D.H.; Xue, H.; Yu, W.; Yang, Q. Semi-Supervised Protein Subcellular Localization. BMC Bioinformatics 2009, 10, S47. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins. PLoS ONE 2014, 9, e89545. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M. Molecular Mechanism of the Nuclear Protein Import Cycle. Nat Rev Mol Cell Biol 2007, 8, 195–208. [Google Scholar] [CrossRef]
- Mayor, S.; Pagano, R.E. Pathways of Clathrin-Independent Endocytosis. Nat Rev Mol Cell Biol 2007, 8, 603–612. [Google Scholar] [CrossRef]
- Lee, K.; Byun, K.; Hong, W.; Chuang, H.-Y.; Pack, C.-G.; Bayarsaikhan, E.; Paek, S.H.; Kim, H.; Shin, H.Y.; Ideker, T.; et al. Proteome-Wide Discovery of Mislocated Proteins in Cancer. Genome Res. 2013, 23, 1283–1294. [Google Scholar] [CrossRef]
- Wang, X.; Li, S. Protein Mislocalization: Mechanisms, Functions and Clinical Applications in Cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014, 1846, 13–25. [Google Scholar] [CrossRef]
- Barmada, S.J.; Skibinski, G.; Korb, E.; Rao, E.J.; Wu, J.Y.; Finkbeiner, S. Cytoplasmic Mislocalization of TDP-43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis. J. Neurosci. 2010, 30, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Ziff, O.J.; Harley, J.; Wang, Y.; Neeves, J.; Tyzack, G.; Ibrahim, F.; Skehel, M.; Chakrabarti, A.M.; Kelly, G.; Patani, R. Nucleocytoplasmic mRNA Redistribution Accompanies RNA Binding Protein Mislocalization in ALS Motor Neurons and Is Restored by VCP ATPase Inhibition. Neuron 2023, 111, 3011–3027.e7. [Google Scholar] [CrossRef]
- Lundberg, E.; Borner, G.H.H. Spatial Proteomics: A Powerful Discovery Tool for Cell Biology. Nat Rev Mol Cell Biol 2019, 20, 285–302. [Google Scholar] [CrossRef]
- Xiang, L.; Yang, Q.-L.; Xie, B.-T.; Zeng, H.-Y.; Ding, L.-J.; Rao, F.-Q.; Yan, T.; Lu, F.; Chen, Q.; Huang, X.-F. Dysregulated Arginine Metabolism Is Linked to Retinal Degeneration in Cep250 Knockout Mice. Invest. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef]
- Kohnhorst, C.L.; Schmitt, D.L.; Sundaram, A.; An, S. Subcellular Functions of Proteins under Fluorescence Single-Cell Microscopy. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Sekine, S.; Pessino, V.; Li, H.; Leonetti, M.D.; Huang, B. Improved Split Fluorescent Proteins for Endogenous Protein Labeling. Nat Commun 2017, 8, 370. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, R.S.; White, M.L.; Eswara, P.J. Live-Cell Fluorescence Microscopy to Investigate Subcellular Protein Localization and Cell Morphology Changes in Bacteria. 2020. [CrossRef]
- Liang, F.-X.; Sall, J.; Petzold, C.; Van Opbergen, C.J.M.; Liang, X.; Delmar, M. Nanogold Based Protein Localization Enables Subcellular Visualization of Cell Junction Protein by SBF-SEM. In Methods in Cell Biology; Elsevier, 2023; Volume 177, pp. 55–81. ISBN 978-0-323-91607-3. [Google Scholar] [CrossRef]
- Schornack, S.; Fuchs, R.; Huitema, E.; Rothbauer, U.; Lipka, V.; Kamoun, S. Protein Mislocalization in Plant Cells Using a GFP-binding Chromobody. The Plant Journal 2009, 60, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Orbán, T.I.; Seres, L.; Özvegy-Laczka, C.; Elkind, N.B.; Sarkadi, B.; Homolya, L. Combined Localization and Real-Time Functional Studies Using a GFP-Tagged ABCG2 Multidrug Transporter. Biochemical and Biophysical Research Communications 2008, 367, 667–673. [Google Scholar] [CrossRef]
- The UniProt Consortium. Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Park, K.-J.; Kanehisa, M. Prediction of Protein Subcellular Locations by Support Vector Machines Using Compositions of Amino Acids and Amino Acid Pairs. Bioinformatics 2003, 19, 1656–1663. [Google Scholar] [CrossRef]
- Chou, K.-C. Using Pair-Coupled Amino Acid Composition to Predict Protein Secondary Structure Content. J Protein Chem 1999, 18, 473–480. [Google Scholar] [CrossRef]
- Chou, K. Prediction of Protein Cellular Attributes Using Pseudo-amino Acid Composition. Proteins 2001, 43, 246–255. [Google Scholar] [CrossRef]
- Von Heijne, G.; Steppuhn, J.; Herrmann, R.G. Domain Structure of Mitochondrial and Chloroplast Targeting Peptides. European Journal of Biochemistry 1989, 180, 535–545. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W. Machine Learning for Protein Subcellular Localization Prediction:; DE GRUYTER, 2015; ISBN 978-1-5015-1048-9. [CrossRef]
- Xue, S.; Liu, X.; Pan, Y.; Xiao, C.; Feng, Y.; Zheng, L.; Zhao, M.; Huang, M. Comprehensive Analysis of Signal Peptides in Saccharomyces Cerevisiae Reveals Features for Efficient Secretion. Advanced Science 2023, 10, 2203433. [Google Scholar] [CrossRef]
- Martoglio, B.; Dobberstein, B. Signal Sequences: More than Just Greasy Peptides. Trends in Cell Biology 1998, 8, 410–415. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Salvatore, M.; Emanuelsson, O.; Winther, O.; von Heijne, G.; Elofsson, A.; Nielsen, H. Detecting Sequence Signals in Targeting Peptides Using Deep Learning. Life Sci Alliance 2019, 2, e201900429. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat Biotechnol 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Ohno, Y.; Kubota, Y.; Fukagawa, T.; Kihara, A.; Haraguchi, T.; Hiraoka, Y. Ceramide Synthase Homolog Tlc4 Maintains Nuclear Envelope Integrity via Its Golgi Translocation. Journal of Cell Science 2023, 136, jcs260923. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tang, J.; Guo, F. Identification of Protein Subcellular Localization via Integrating Evolutionary and Physicochemical Information into Chou’s General PseAAC. Journal of Theoretical Biology 2019, 462, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Man-Wai Mak; Jian Guo; Sun-Yuan Kung PairProSVM: Protein Subcellular Localization Based on Local Pairwise Profile Alignment and SVM. IEEE/ACM Trans. Comput. Biol. and Bioinf. 2008, 5, 416–422. [CrossRef] [PubMed]
- Tahir, M.; Khan, F.; Hayat, M.; Alshehri, M.D. An Effective Machine Learning-Based Model for the Prediction of Protein–Protein Interaction Sites in Health Systems. Neural Comput & Applic 2024, 36, 65–75. [Google Scholar] [CrossRef]
- Wang, J.; Nabil, M.; Zhang, J. Deep Forest-Based Prediction of Protein Subcellular Localization. Current Gene Therapy 2018, 18. [Google Scholar] [CrossRef]
- Sui, J.; Chen, Y.; Cao, Y.; Zhao, Y. Accurate Identification of Submitochondrial Protein Location Based on Deep Representation Learning Feature Fusion. In Proceedings of the Advanced Intelligent Computing Technology and Applications; Huang, D.-S., Premaratne, P., Jin, B., Qu, B., Jo, K.-H., Hussain, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 587–596. [Google Scholar] [CrossRef]
- Javed, F.; Hayat, M. Predicting Subcellular Localization of Multi-Label Proteins by Incorporating the Sequence Features into Chou’s PseAAC. Genomics 2019, 111, 1325–1332. [Google Scholar] [CrossRef]
- Du, L.; Meng, Q.; Chen, Y.; Wu, P. Subcellular Location Prediction of Apoptosis Proteins Using Two Novel Feature Extraction Methods Based on Evolutionary Information and LDA. BMC Bioinformatics 2020, 21, 212. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; Liu, C. Prediction of Apoptosis Protein Subcellular Localization via Heterogeneous Features and Hierarchical Extreme Learning Machine. SAR and QSAR in Environmental Research 2019, 30, 209–228. [Google Scholar] [CrossRef]
- Alaa, A.; Eldeib, A.M.; Metwally, A.A. Protein Subcellular Localization Prediction Based on Internal Micro-Similarities of Markov Chains. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE: Berlin, Germany, July 2019; pp. 1355–1358. [Google Scholar] [CrossRef]
- Murphy, R.F. Communicating Subcellular Distributions. Cytometry Pt A 2010, 77A, 686–692. [Google Scholar] [CrossRef]
- Cohen, S.E.; Erb, M.L.; Selimkhanov, J.; Dong, G.; Hasty, J.; Pogliano, J.; Golden, S.S. Dynamic Localization of the Cyanobacterial Circadian Clock Proteins. Current Biology 2014, 24, 1836–1844. [Google Scholar] [CrossRef]
- Kim, W.; Jeon, T.J. Dynamic Subcellular Localization of DydA in Dictyostelium Cells. Biochemical and Biophysical Research Communications 2023, 663, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Cao, D.; Qu, C.; Zhao, P.; Wu, Z.; Yin, D.; Zhao, Q.; Gong, F. Multilocation Proteins in Organelle Communication: Based on Protein–Protein Interactions. Plant Direct 2022, 6, e386. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, D.; Wu, P.; Chen, Y.; Shang, H.; Wang, L.; Xie, H. Predicting Subcellular Localization of Multisite Proteins Using Differently Weighted Multi-Label k-Nearest Neighbors Sets. THC 2019, 27, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, J.; Guo, F. Human Protein Subcellular Localization Identification via Fuzzy Model on Kernelized Neighborhood Representation. Applied Soft Computing 2020, 96, 106596. [Google Scholar] [CrossRef]
- Hasan, Md.A.M.; Ahmad, S.; Molla, Md.K.I. Protein Subcellular Localization Prediction Using Multiple Kernel Learning Based Support Vector Machine. Mol. BioSyst. 2017, 13, 785–795. [CrossRef]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning Multi-Label Scene Classification. Pattern Recognition 2004, 37, 1757–1771. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA. IJMS 2015, 16, 30343–30361. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wu, X.; Shen, H.; Yang, J.; Tang, Z.; Qi, Y.; Yang, J. Enhancing Membrane Protein Subcellular Localization Prediction by Parallel Fusion of Multi-View Features. IEEE Trans.on Nanobioscience 2012, 11, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Li, Y.; Xue, L.; Liu, F.; Li, M.; Luo, J. autoBioSeqpy: A Deep Learning Tool for the Classification of Biological Sequences. J. Chem. Inf. Model. 2020, 60, 3755–3764. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.; Varadwaj, P.K. HumDLoc: Human Protein Subcellular Localization Prediction Using Deep Neural Network. CG 2020, 21, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Wang, J.; Zhao, L.; Wang, C.; Zhan, H. A Novel Protein Subcellular Localization Method With CNN-XGBoost Model for Alzheimer’s Disease. Front. Genet. 2019, 9, 751. [Google Scholar] [CrossRef]
- Kaleel, M.; Zheng, Y.; Chen, J.; Feng, X.; Simpson, J.C.; Pollastri, G.; Mooney, C. SCLpred-EMS: Subcellular Localization Prediction of Endomembrane System and Secretory Pathway Proteins by Deep N-to-1 Convolutional Neural Networks. Bioinformatics 2020, 36, 3343–3349. [Google Scholar] [CrossRef]
- Cong, H.; Liu, H.; Chen, Y.; Cao, Y. Self-Evoluting Framework of Deep Convolutional Neural Network for Multilocus Protein Subcellular Localization. Med Biol Eng Comput 2020, 58, 3017–3038. [Google Scholar] [CrossRef]
- Cong, H.; Liu, H.; Cao, Y.; Chen, Y.; Liang, C. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism. Interdiscip Sci Comput Life Sci 2022, 14, 421–438. [Google Scholar] [CrossRef]
- Liao, Z.; Pan, G.; Sun, C.; Tang, J. Predicting Subcellular Location of Protein with Evolution Information and Sequence-Based Deep Learning. BMC Bioinformatics 2021, 22, 515. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Yao, Y.; Eubel, H.; Künzler, P.; Møller, I.M.; Xu, D. MULocDeep: A Deep-Learning Framework for Protein Subcellular and Suborganellar Localization Prediction with Residue-Level Interpretation. Computational and Structural Biotechnology Journal 2021, 19, 4825–4839. [Google Scholar] [CrossRef]
- Wu, L.; Gao, S.; Yao, S.; Wu, F.; Li, J.; Dong, Y.; Zhang, Y. Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM. Front. Genet. 2022, 13, 912614. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7112–7127. [Google Scholar] [CrossRef]
- Wang, X.; Han, L.; Wang, R.; Chen, H. DaDL-SChlo: Protein Subchloroplast Localization Prediction Based on Generative Adversarial Networks and Pre-Trained Protein Language Model. Briefings in Bioinformatics 2023, 24, bbad083. [Google Scholar] [CrossRef] [PubMed]
- Hosna, A.; Merry, E.; Gyalmo, J.; Alom, Z.; Aung, Z.; Azim, M.A. Transfer Learning: A Friendly Introduction. J Big Data 2022, 9, 102. [Google Scholar] [CrossRef]
- Heinzinger, M.; Elnaggar, A.; Wang, Y.; Dallago, C.; Nechaev, D.; Matthes, F.; Rost, B. Modeling Aspects of the Language of Life through Transfer-Learning Protein Sequences. BMC Bioinformatics 2019, 20, 723. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, L.; Wang, R.; Chen, H. DaDL-SChlo: Protein Subchloroplast Localization Prediction Based on Generative Adversarial Networks and Pre-Trained Protein Language Model. Briefings in Bioinformatics 2023, 24, bbad083. [Google Scholar] [CrossRef]
- Thumuluri, V.; Almagro Armenteros, J.J.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-Label Subcellular Localization Prediction Using Protein Language Models. Nucleic Acids Research 2022, 50, W228–W234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jiang, L.; Akhil, C.S.; Wang, D.; Zhang, Z.; Zhang, W.; Xu, D. MULocDeep Web Service for Protein Localization Prediction and Visualization at Subcellular and Suborganellar Levels. Nucleic Acids Res 2023, 51, W343–W349. [Google Scholar] [CrossRef]
- Kaleel, M.; Zheng, Y.; Chen, J.; Feng, X.; Simpson, J.C.; Pollastri, G.; Mooney, C. SCLpred-EMS: Subcellular Localization Prediction of Endomembrane System and Secretory Pathway Proteins by Deep N-to-1 Convolutional Neural Networks. Bioinformatics 2020, 36, 3343–3349. [Google Scholar] [CrossRef]
- Zhang, N.; Rao, R.S.P.; Salvato, F.; Havelund, J.F.; Møller, I.M.; Thelen, J.J.; Xu, D. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. Front. Plant Sci. 2018, 9, 634. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Zhang, Q.; Li, G.-Z. MultiP-SChlo: Multi-Label Protein Subchloroplast Localization Prediction with Chou’s Pseudo Amino Acid Composition and a Novel Multi-Label Classifier. Bioinformatics 2015, 31, 2639–2645. [Google Scholar] [CrossRef]
- Ryngajllo, M.; Childs, L.; Lohse, M.; Giorgi, F.M.; Lude, A.; Selbig, J.; Usadel, B. SLocX: Predicting Subcellular Localization of Arabidopsis Proteins Leveraging Gene Expression Data. Front Plant Sci 2011, 2, 43. [Google Scholar] [CrossRef]
- Lu, Z.; Szafron, D.; Greiner, R.; Lu, P.; Wishart, D.S.; Poulin, B.; Anvik, J.; Macdonell, C.; Eisner, R. Predicting Subcellular Localization of Proteins Using Machine-Learned Classifiers. Bioinformatics 2004, 20, 547–556. [Google Scholar] [CrossRef]
- Nair, R.; Rost, B. Sequence Conserved for Subcellular Localization. Protein Science 2002, 11, 2836–2847. [Google Scholar] [CrossRef]
- Fyshe, A.; Liu, Y.; Szafron, D.; Greiner, R.; Lu, P. Improving Subcellular Localization Prediction Using Text Classification and the Gene Ontology. Bioinformatics 2008, 24, 2512–2517. [Google Scholar] [CrossRef]
- Brady, S.; Shatkay, H. EPILOC: A (WORKING) TEXT-BASED SYSTEM FOR PREDICTING PROTEIN SUBCELLULAR LOCATION. In Proceedings of the Biocomputing 2008; WORLD SCIENTIFIC: Kohala Coast, Hawaii, USA, December 2007; pp. 604–615. [Google Scholar] [CrossRef]
- Huang, W.-L.; Tung, C.-W.; Ho, S.-W.; Hwang, S.-F.; Ho, S.-Y. ProLoc-GO: Utilizing Informative Gene Ontology Terms for Sequence-Based Prediction of Protein Subcellular Localization. BMC Bioinformatics 2008, 9, 80. [Google Scholar] [CrossRef]
- He, L.; Liu, X. The Development and Progress in Machine Learning for Protein Subcellular Localization Prediction. TOBIOIJ 2022, 15, e187503622208110. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. GOASVM: A Subcellular Location Predictor by Incorporating Term-Frequency Gene Ontology into the General Form of Chou’s Pseudo-Amino Acid Composition. Journal of Theoretical Biology 2013, 323, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-B.; Chou, K.-C. Gneg-mPLoc: A Top-down Strategy to Enhance the Quality of Predicting Subcellular Localization of Gram-Negative Bacterial Proteins. Journal of Theoretical Biology 2010, 264, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-B.; Yang, J.; Chou, K.-C. Euk-PLoc: An Ensemble Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction. Amino Acids 2007, 33, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.-C.; Shen, H.-B. Hum-PLoc: A Novel Ensemble Classifier for Predicting Human Protein Subcellular Localization. Biochemical and Biophysical Research Communications 2006, 347, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Fei, W.; Zhou, S. Gene Ontology Based Transfer Learning for Protein Subcellular Localization. BMC Bioinformatics 2011, 12, 44. [Google Scholar] [CrossRef]
- Chen, L.; Qu, R.; Liu, X. Improved Multi-Label Classifiers for Predicting Protein Subcellular Localization. MBE 2023, 21, 214–236. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.; Yu, B.; Zhang, Q.; Han, Y.; Zhang, Y.; Ma, Q. DMLDA-LocLIFT: Identification of Multi-Label Protein Subcellular Localization Using DMLDA Dimensionality Reduction and LIFT Classifier. Chemometrics and Intelligent Laboratory Systems 2020, 206, 104148. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.-X.; Zou, X.-Y.; Cai, P.-X. Predicting Protein Structural Class Based on Multi-Features Fusion. Journal of Theoretical Biology 2008, 253, 388–392. [Google Scholar] [CrossRef]
- Wang, S.; Zou, K.; Wang, Z.; Zhu, S.; Yang, F. A Novel Multi-Label Human Protein Subcellular Localization Model Based on Gene Ontology and Functional Domain. In Proceedings of the Proceedings of the 2023 3rd International Conference on Bioinformatics and Intelligent Computing; Association for Computing Machinery: New York, NY, USA, 2023; pp. 376–380. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. mGOASVM: Multi-Label Protein Subcellular Localization Based on Gene Ontology and Support Vector Machines. BMC Bioinformatics 2012, 13, 290. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W. Predicting Subcellular Localization of Multi-Location Proteins by Improving Support Vector Machines with an Adaptive-Decision Scheme. Int. J. Mach. Learn. & Cyber. 2018, 9, 399–411. [Google Scholar] [CrossRef]
- Chou, K.-C.; Shen, H.-B. A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0. PLoS ONE 2010, 5, e9931. [Google Scholar] [CrossRef]
- Mei, S. Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization. PLoS ONE 2012, 7, e37716. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Zeng, T.; Zhang, Y.-H.; Zhang, S.; Huang, T.; Cai, Y.-D. Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features. Front. Genet. 2021, 12, 783128. [Google Scholar] [CrossRef]
- Garapati, H.S.; Male, G.; Mishra, K. Predicting Subcellular Localization of Proteins Using Protein-Protein Interaction Data. Genomics 2020, 112, 2361–2368. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Wu, M. Predicting Multiplex Subcellular Localization of Proteins Using Protein-Protein Interaction Network: A Comparative Study. BMC Bioinformatics 2012, 13, S20. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Wu, F.-X.; Pan, Y.; Wang, J. Identifying Essential Proteins Based on Sub-Network Partition and Prioritization by Integrating Subcellular Localization Information. Journal of Theoretical Biology 2018, 447, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-H.; Luo, T.; Zhang, H.-L.; Du, P.-F. PLA-GNN: Computational Inference of Protein Subcellular Location Alterations under Drug Treatments with Deep Graph Neural Networks. Computers in Biology and Medicine 2023, 157, 106775. [Google Scholar] [CrossRef]
- Li, B.; Cai, L.; Liao, B.; Fu, X.; Bing, P.; Yang, J. Prediction of Protein Subcellular Localization Based on Fusion of Multi-View Features. Molecules 2019, 24, 919. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Ding, S.; Chen, L.; Huang, T.; Cai, Y.-D. Subcellular Localization Prediction of Human Proteins Using Multifeature Selection Methods. BioMed Research International 2022, 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, S.; Gao, H.; Wang, X.; Wang, C.; Zhou, W.; Yu, B. Predicting the Multi-Label Protein Subcellular Localization through Multi-Information Fusion and MLSI Dimensionality Reduction Based on MLFE Classifier. Bioinformatics 2022, 38, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhai, Y.-J.; Xue, Z.-Z.; Xu, Y.-Y. Improving Protein Subcellular Location Classification by Incorporating Three-Dimensional Structure Information. Biomolecules 2021, 11, 1607. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Li, S.; Han, Y.; Jin, S.; Gu, H.; Yu, B. Accurate Prediction of Multi-Label Protein Subcellular Localization through Multi-View Feature Learning with RBRL Classifier. Briefings in Bioinformatics 2021, bbab012. [Google Scholar] [CrossRef]
- Picard, M.; Scott-Boyer, M.-P.; Bodein, A.; Périn, O.; Droit, A. Integration Strategies of Multi-Omics Data for Machine Learning Analysis. Computational and Structural Biotechnology Journal 2021, 19, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, F.; Ju, Y.; Wang, Z.; Wang, C. Human Protein Subcellular Localization with Integrated Source and Multi-Label Ensemble Classifier. Sci Rep 2016, 6, 28087. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Ding, P.; Li, S.; Yu, X.; Yu, B. ML-FGAT: Identification of Multi-Label Protein Subcellular Localization by Interpretable Graph Attention Networks and Feature-Generative Adversarial Networks. Computers in Biology and Medicine 2024, 170, 107944. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Ding, P.; Li, S.; Yu, X.; Yu, B. ML-FGAT: Identification of Multi-Label Protein Subcellular Localization by Interpretable Graph Attention Networks and Feature-Generative Adversarial Networks. Computers in Biology and Medicine 2024, 170, 107944. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qu, R.; Liu, X. Improved Multi-Label Classifiers for Predicting Protein Subcellular Localization. MBE 2023, 21, 214–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, S.; Gao, H.; Wang, X.; Wang, C.; Zhou, W.; Yu, B. Predicting the Multi-Label Protein Subcellular Localization through Multi-Information Fusion and MLSI Dimensionality Reduction Based on MLFE Classifier. Bioinformatics 2022, 38, 1223–1230. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Li, G.-Z. Multi-Location Gram-Positive and Gram-Negative Bacterial Protein Subcellular Localization Using Gene Ontology and Multi-Label Classifier Ensemble. BMC Bioinformatics 2015, 16 Suppl 12, S1. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. mGOASVM: Multi-Label Protein Subcellular Localization Based on Gene Ontology and Support Vector Machines. BMC Bioinformatics 2012, 13, 290. [Google Scholar] [CrossRef]
- Chou, K.-C.; Wu, Z.-C.; Xiao, X. iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS ONE 2011, 6, e18258. [Google Scholar] [CrossRef]
- Shen, H.-B.; Chou, K.-C. Gneg-mPLoc: A Top-down Strategy to Enhance the Quality of Predicting Subcellular Localization of Gram-Negative Bacterial Proteins. Journal of Theoretical Biology 2010, 264, 326–333. [Google Scholar] [CrossRef]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved Protein Subcellular Localization Prediction with Refined Localization Subcategories and Predictive Capabilities for All Prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; et al. Analysis of the Human Protein Atlas Image Classification Competition. Nat Methods 2019, 16, 1254–1261. [Google Scholar] [CrossRef]
- Thul, P.J.; Lindskog, C. The Human Protein Atlas: A Spatial Map of the Human Proteome. Protein Science 2018, 27, 233–244. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Yao, L.-X.; Shen, H.-B. Bioimage-Based Protein Subcellular Location Prediction: A Comprehensive Review. Front. Comput. Sci. 2018, 12, 26–39. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A.; Brahnam, S. Survey on LBP Based Texture Descriptors for Image Classification. Expert Systems with Applications 2012, 39, 3634–3641. [Google Scholar] [CrossRef]
- Tahir, M.; Khan, A.; Majid, A. Protein Subcellular Localization of Fluorescence Imagery Using Spatial and Transform Domain Features. Bioinformatics 2012, 28, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Godil, A.; Lian, Z.; Wagan, A. Exploring Local Features and the Bag-of-Visual-Words Approach for Bioimage Classification. In Proceedings of the Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics; ACM: Wshington DC USA September 22. , 2013; pp. 694–695. [Google Scholar] [CrossRef]
- Liu, G.-H.; Zhang, B.-W.; Qian, G.; Wang, B.; Mao, B.; Bichindaritz, I. Bioimage-Based Prediction of Protein Subcellular Location in Human Tissue with Ensemble Features and Deep Networks. IEEE/ACM Trans. Comput. Biol. and Bioinf. 2020, 17, 1966–1980. [Google Scholar] [CrossRef]
- Newberg, J.; Murphy, R.F. A Framework for the Automated Analysis of Subcellular Patterns in Human Protein Atlas Images. J. Proteome Res. 2008, 7, 2300–2308. [Google Scholar] [CrossRef]
- Zou, K.; Wang, S.; Wang, Z.; Zou, H.; Yang, F. Dual-Signal Feature Spaces Map Protein Subcellular Locations Based on Immunohistochemistry Image and Protein Sequence. Sensors 2023, 23, 9014. [Google Scholar] [CrossRef]
- Li, J.; Xiong, L.; Schneider, J.; Murphy, R.F. Protein Subcellular Location Pattern Classification in Cellular Images Using Latent Discriminative Models. Bioinformatics 2012, 28, i32–i39. [Google Scholar] [CrossRef]
- Ullah, M.; Han, K.; Hadi, F.; Xu, J.; Song, J.; Yu, D.-J. PScL-HDeep: Image-Based Prediction of Protein Subcellular Location in Human Tissue Using Ensemble Learning of Handcrafted and Deep Learned Features with Two-Layer Feature Selection. Briefings in Bioinformatics 2021, 22, bbab278. [Google Scholar] [CrossRef]
- Pärnamaa, T.; Parts, L. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning. [CrossRef]
- Wang, F.; Wei, L. Multi-Scale Deep Learning for the Imbalanced Multi-Label Protein Subcellular Localization Prediction Based on Immunohistochemistry Images. Bioinformatics 2022, 38, 2602–2611. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; He, L.; Liu, T.; Liu, X.; Wei, L. Protein Subcellular Localization Based on Deep Image Features and Criterion Learning Strategy. Briefings in Bioinformatics 2021, 22, bbaa313. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ding, Y.; Su, R.; Tang, J.; Zou, Q. Prediction of Human Protein Subcellular Localization Using Deep Learning. Journal of Parallel and Distributed Computing 2018, 117, 212–217. [Google Scholar] [CrossRef]
- Xue, Z.-Z.; Wu, Y.; Gao, Q.-Z.; Zhao, L.; Xu, Y.-Y. Automated Classification of Protein Subcellular Localization in Immunohistochemistry Images to Reveal Biomarkers in Colon Cancer. BMC Bioinformatics 2020, 21, 398. [Google Scholar] [CrossRef]
- Ding, J.; Xu, J.; Wei, J.; Tang, J.; Guo, F. A Multi-Scale Multi-Model Deep Neural Network via Ensemble Strategy on High-Throughput Microscopy Image for Protein Subcellular Localization. Expert Systems with Applications 2023, 212, 118744. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, W.; Yu, W.; Liu, X.; Yan, R.; Liu, Q.; Guo, Q. Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells. IJMS 2022, 23, 10827. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, M.; Liu, H.; Yang, Y. Prediction of Protein Subcellular Localization Based on Microscopic Images via Multi-Task Multi-Instance Learning. Chinese J of Electronics 2022, 31, 888–896. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Xu, Y.; Shen, H. Incorporating Label Correlations into Deep Neural Networks to Classify Protein Subcellular Location Patterns in Immunohistochemistry Images. Proteins 2022, 90, 493–503. [Google Scholar] [CrossRef]
- Tu, Y.; Lei, H.; Shen, H.-B.; Yang, Y. SIFLoc: A Self-Supervised Pre-Training Method for Enhancing the Recognition of Protein Subcellular Localization in Immunofluorescence Microscopic Images. Briefings in Bioinformatics 2022, 23, bbab605. [Google Scholar] [CrossRef]
- Long, W.; Yang, Y.; Shen, H.-B. ImPLoc: A Multi-Instance Deep Learning Model for the Prediction of Protein Subcellular Localization Based on Immunohistochemistry Images. Bioinformatics 2020, 36, 2244–2250. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Yang, F.; Zhang, Y.; Shen, H.-B. Bioimaging-Based Detection of Mislocalized Proteins in Human Cancers by Semi-Supervised Learning. Bioinformatics 2015, 31, 1111–1119. [Google Scholar] [CrossRef]
- Liu, S.; Huang, M.; Liu, X.; Han, K.; Wang, Z.; Sun, G.; Guo, Q. Swin Transformer Based Neural Network for Organelles Prediction from Quantitative Label-Free Imaging with Phase and Polarization (Qlipp) in Unlabeled Live Cells and Tissue Slices; SSRN, 2023.
- Husain, S.S.; Ong, E.-J.; Minskiy, D.; Bober-Irizar, M.; Irizar, A.; Bober, M. Single-Cell Subcellular Protein Localisation Using Novel Ensembles of Diverse Deep Architectures. Commun Biol 2023, 6, 489. [Google Scholar] [CrossRef]
- Ullah, M.; Hadi, F.; Song, J.; Yu, D.-J. PScL-DDCFPred: An Ensemble Deep Learning-Based Approach for Characterizing Multiclass Subcellular Localization of Human Proteins from Bioimage Data. Bioinformatics 2022, 38, 4019–4026. [Google Scholar] [CrossRef]
- Tahir, M.; Anwar, S.; Mian, A.; Muzaffar, A.W. Deep Localization of Subcellular Protein Structures from Fluorescence Microscopy Images. Neural Comput & Applic 2022, 34, 5701–5714. [Google Scholar] [CrossRef]
- Binder, J.X.; Pletscher-Frankild, S.; Tsafou, K.; Stolte, C.; O’Donoghue, S.I.; Schneider, R.; Jensen, L.J. COMPARTMENTS: Unification and Visualization of Protein Subcellular Localization Evidence. Database 2014, 2014, bau012–bau012. [Google Scholar] [CrossRef] [PubMed]
- Meinken, J.; Asch, D.K.; Neizer-Ashun, K.A.; Chang, G.-H.; Cooper, C.R., Jr.; Min, X.J. FunSecKB2: A Fungal Protein Subcellular Location Knowledgebase. cmb 2014. [Google Scholar] [CrossRef]
- Lum, G.; Meinken, J.; Orr, J.; Frazier, S.; Min, X. PlantSecKB: The Plant Secretome and Subcellular Proteome KnowledgeBase. cmb 2014. [Google Scholar] [CrossRef]
- Meinken, J.; Walker, G.; Cooper, C.R.; Min, X.J. MetazSecKB: The Human and Animal Secretome and Subcellular Proteome Knowledgebase. Database 2015, 2015, bav077. [Google Scholar] [CrossRef] [PubMed]
- Kerfeld, C.A.; Aussignargues, C.; Zarzycki, J.; Cai, F.; Sutter, M. Bacterial Microcompartments. Nat Rev Microbiol 2018, 16, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Yeates, T.O.; Crowley, C.S.; Tanaka, S. Bacterial Microcompartment Organelles: Protein Shell Structure and Evolution. Annu. Rev. Biophys. 2010, 39, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Forster, B.M.; Marquis, H. Protein Transport across the Cell Wall of Monoderm Gram-positive Bacteria. Molecular Microbiology 2012, 84, 405–413. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singla, D. VacPred: Sequence-Based Prediction of Plant Vacuole Proteins Using Machine-Learning Techniques. J Biosci 2020, 45, 106. [Google Scholar] [CrossRef]
- Rodriguez-Peña, R.; Mounadi, K.E.; Garcia-Ruiz, H. Changes in Subcellular Localization of Host Proteins Induced by Plant Viruses. Viruses 2021, 13, 677. [Google Scholar] [CrossRef]
- Chou, K.-C.; Wu, Z.-C.; Xiao, X. iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS ONE 2011, 6, e18258. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wu, Z.-C.; Chou, K.-C. iLoc-Virus: A Multi-Label Learning Classifier for Identifying the Subcellular Localization of Virus Proteins with Both Single and Multiple Sites. Journal of Theoretical Biology 2011, 284, 42–51. [Google Scholar] [CrossRef]
- iLoc-Plant: A Multi-Label Classifier for Predicting the Subcellular Localization of Plant Proteins with Both Single and Multiple Sites. Molecular BioSystems 2011, 7, 3287–3297. [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. mPLR-Loc: An Adaptive Decision Multi-Label Classifier Based on Penalized Logistic Regression for Protein Subcellular Localization Prediction. Analytical Biochemistry 2015, 473, 14–27. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. Gram-LocEN: Interpretable Prediction of Subcellular Multi-Localization of Gram-Positive and Gram-Negative Bacterial Proteins. Chemometrics and Intelligent Laboratory Systems 2017, 162, 1–9. [Google Scholar] [CrossRef]
- Camon, E. The Gene Ontology Annotation (GOA) Database: Sharing Knowledge in Uniprot with Gene Ontology. Nucleic Acids Research 2004, 32, 262D–266. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. [CrossRef]
- Ancona, M.; Ceolini, E.; Öztireli, C.; Gross, M. Towards Better Understanding of Gradient-Based Attribution Methods for Deep Neural Networks 2018. [CrossRef]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features Through Propagating Activation Differences 2019. [CrossRef]
- Luo, Z.; Wang, R.; Sun, Y.; Liu, J.; Chen, Z.; Zhang, Y.-J. Interpretable Feature Extraction and Dimensionality Reduction in ESM2 for Protein Localization Prediction. Briefings in Bioinformatics 2024, 25, bbad534. [Google Scholar] [CrossRef]
- Zecha, J.; Gabriel, W.; Spallek, R.; Chang, Y.-C.; Mergner, J.; Wilhelm, M.; Bassermann, F.; Kuster, B. Linking Post-Translational Modifications and Protein Turnover by Site-Resolved Protein Turnover Profiling. Nat Commun 2022, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Zahiri, J. Post-Translational Modifications in Proteins: Resources, Tools and Prediction Methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef]
- Nickchi, P.; Jafari, M.; Kalantari, S. PEIMAN 1.0: Post-Translational Modification Enrichment, Integration and Matching ANalysis. Database 2015, 2015. [Google Scholar] [CrossRef]
- Pacharawongsakda, E.; Theeramunkong, T. Predict Subcellular Locations of Singleplex and Multiplex Proteins by Semi-Supervised Learning and Dimension-Reducing General Mode of Chou’s PseAAC. IEEE Trans.on Nanobioscience 2013, 12, 311–320. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. Transductive Learning for Multi-Label Protein Subchloroplast Localization Prediction. IEEE/ACM Trans. Comput. Biol. and Bioinf. 2017, 14, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Mak, M.-W.; Kung, S.-Y. Ensemble Linear Neighborhood Propagation for Predicting Subchloroplast Localization of Multi-Location Proteins. J. Proteome Res. 2016, 15, 4755–4762. [Google Scholar] [CrossRef]
- Digre, A.; Lindskog, C. The Human Protein Atlas—Spatial Localization of the Human Proteome in Health and Disease. Protein Science 2021, 30, 218–233. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Bao, L.-X.; Xue, M.-Q.; Xu, Y.-Y. Automatic Recognition of Protein Subcellular Location Patterns in Single Cells from Immunofluorescence Images Based on Deep Learning. Briefings in Bioinformatics 2023, 24, bbac609. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Xu, C.; Han, X.; Wang, Y.; Situ, C.; Li, Y.; Guo, X. DeepSP: A Deep Learning Framework for Spatial Proteomics. J. Proteome Res. 2023, 22, 2186–2198. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Li, F.; Guo, X.; Wang, Z.; Pan, T.; Guo, Y.; Webb, G.I.; Yao, J.; Jia, C.; Song, J. Clarion Is a Multi-Label Problem Transformation Method for Identifying mRNA Subcellular Localizations. Briefings in Bioinformatics 2022, 23, bbac467. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, Q.; Yuan, L. A Review from Biological Mapping to Computation-Based Subcellular Localization. Molecular Therapy - Nucleic Acids 2023, 32, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, E.; Smith, T.; Pizzinga, M.; Elzek, M.; Queiroz, R.M.L.; Harvey, R.F.; Breckels, L.M.; Crook, O.M.; Monti, M.; Dezi, V.; et al. System-Wide Analysis of RNA and Protein Subcellular Localization Dynamics. Nat Methods 2024, 21, 60–71. [Google Scholar] [CrossRef]
- Cai, J.; Wang, T.; Deng, X.; Tang, L.; Liu, L. GM-lncLoc: LncRNAs Subcellular Localization Prediction Based on Graph Neural Network with Meta-Learning. BMC Genomics 2023, 24, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, L.; Wang, Q.; Wang, Z.; Bao, W.; Cheng, H. Mit Protein Transformer: Identification Mitochondrial Proteins with Transformer Model. In Proceedings of the Advanced Intelligent Computing Technology and Applications; Huang, D.-S., Premaratne, P., Jin, B., Qu, B., Jo, K.-H., Hussain, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 607–616. [Google Scholar] [CrossRef]
- Liu, M.-L.; Su, W.; Guan, Z.-X.; Zhang, D.; Chen, W.; Liu, L.; Ding, H. An Overview on Predicting Protein Subchloroplast Localization by Using Machine Learning Methods. Current Protein & Peptide Science 2020, 21, 1229–1241. [Google Scholar] [CrossRef]
- Wan, S.; Kim, J.; Won, K.J. SHARP: Hyperfast and Accurate Processing of Single-Cell RNA-Seq Data via Ensemble Random Projection. Genome Res. 2020, 30, 205–213. [Google Scholar] [CrossRef]



| Method | Features | Algorithm | Single-/Multi-Location | Species | Availability | Year |
|---|---|---|---|---|---|---|
| DaDL-SChlo | Handcrafted Features, Deep Features | ProtBERT, GAN, CNN | M | Plants | [62] | 2023 |
| DeepLoc – 2.0 | Masked-LM Objective | Multilayer Perceptron, Protein LM | M | Eukaryote | [63] | 2022 |
| SignalP – 6.0 | SP | Transformer Protein LM | M | Archaea, Gram-positive Bacteria, Gram-negative Bacteria and Eukarya | [26] | 2022 |
| MULocDeep | Physico-chemical Properties, PSSM | LSTM | M | Viridiplantae, Metazoa, Fungi | [64] | 2021 |
| SCLpred-EMS | AA Frequency | Deep N-to-1 CNN | S | Eukaryote | [65] | 2020 |
| CTM-AECA-PSSM-LDA | PSSM, LDA | SVM | S | Apoptosis Proteins on CL317 & ZW225 datasets | [34] | 2020 |
| TargetP – 2.0 | SP | LSTM | S | Plants and Non-plants | [25] | 2019 |
| Javed and Hayat | PseAA | KNN | M | Bacteria, Virus | [33] | 2019 |
| MU-LOC | AAC, PPWM, Functional Features | DNN, SVM | S | Plants (Mitochondrian) | [66] | 2018 |
| MultiP-SChlo | PseAAC | SVM | M | Plants (Subchloroplast) | [67] | 2015 |
| SLocX | AA Order, Gene Expression Profile | SVM | S | Plants | [68] | 2011 |
| Method | Features | Algorithm | Single-/Multi-Location | Species | Availability | Year |
|---|---|---|---|---|---|---|
| Zou et al. | Haralick, LBP, PSSM, PseAAC, PC | LASSO | S | Human | [119] | 2023 |
| ST-Net | Image Features | CNN, Transformer-networks | S | Human | [134] | 2023 |
| HCPL | Deep, Handcrafted Features of images | DNN | M | Human | [135] | 2023 |
| Ding et al. | Abstract Features with Different Depth | DNN | M | Yeast | [127] | 2023 |
| Muti-task Learning Strategy | Features Generated from ResNet or DenseNet | ResNet, DenseNet, CNN | M | Human | [129] | 2022 |
| MPFnetwork | SRS images | MPFNet | S | Human | [128] | 2022 |
| PScL-DDCFPred | Global & Local Features, Integrative Features | DNN, DCF | M | Human | [136] | 2022 |
| PLCNN | Raw Fluorescence Microscopy | CNN | M | Human, Yeast | [137] | 2022 |
| SIFLoc | IF images | ResNet18 | M | Human | [131] | 2022 |
| Deep-Yeast | Haralick, Gabor, Zernike Features | DNN | M | Yeast | [122] | 2017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
