Submitted:
28 February 2024
Posted:
29 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Isolates
2.3. Testing
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgement
Conflicts of Interest
References
- Mookherjee, M., Anderson, M.A., Haagsman, H.P., Davidson, D.J. Antimicrobial host defense peptides: function and clinical potential. Nat Rev Drug Discov. 2020, 19:311-332. [CrossRef]
- Lewies, A. Lewies, A., Wentzel J.F., Jacobs, G., Du Plessis, L.H. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules 2015, 20:15392-15433. [CrossRef]
- Baxter, A. A., Poon, I.K.H., Hulett, M.D. The lure of the lipids: how defensins exploit membrane phospholipids to induce cytolysis in target cells. Cell Death Dis. 2017, 8:e2712. 2712. [CrossRef]
- Ballard, E., Yucel, R., Melchers, W.J.G., Brown, A.J.P., Verweij, P.E., Warris, A. Antifungal activity of antimicrobial peptides and proteins against Aspergillus fumigatus. J. Fungi (Basel) 2020, 6:65. [CrossRef]
- de la Fuentes-Nunez, C., Silva, O.N., Lu, T. K., Franco, O.L. Antimicrobial peptides: role in human disease and potential as immunotherapies. Pharmacol. Ther. 2017, 178:132-140. [CrossRef]
- Mensa, B., Howell, G.L., Scott, R., DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother. 2014, 58:5136-5145. [CrossRef]
- Lima, P.G., Oliveira, J.T.A., Amaral, J. L., Freitas, C.D.T., Souza, P.F.N. Synthetic antimicrobial peptides: characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sciences 2021, 78:119647. [CrossRef]
- Li, J., Fernandez-Millan, P., Boix, E. Synergism between host defense peptides and antibiotics against bacterial infections. Current Topics Medicinal Chemistry 2020, 20:1238-1263. [CrossRef]
- Payne, J.E., Dubois, A.V. Ingram, R.J., Weldon, S., Taggart, C.C., Elborn, J.S., Tunney, M.M. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Internat. J. Antimicrob. Agents 2017, 50: 417-435. [CrossRef]
- Scott, R.W., Tew, G.N. Mimics of host defense proteins; strategies for translation to therapeutic applications. Current Topics Medicinal Chemistry 2017, 17:576-589. [CrossRef]
- Tew, G.N., Scott, R.W., Klein, M.L., DeGrado, W.F. De novo design of antimicrobial polymers, foldamers and small molecules: from discovery to practical applications. Acc. Chem. Res. 2010, 43:30-39. [CrossRef]
- Lyu Y, Yang Y, Lyu X, Dong N, Shan A. 2016. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci. Rep. 2016, 6:27258. [CrossRef]
- Woodburn, K.W., Clemens, L.E., Jaynes, J., Joubert, L-M., Botha, A., Nazik, H., Stevens, D.A. Designed antimicrobial peptides for recurrent vulvovaginal candidiasis treatment. Antimicrob. Agents Chemother. 2019, 63: e02690-18. [CrossRef]
- Scott, R.W., DeGrado, W.F., Tew, G.N. De novo designed synthetic mimics of antimicrobial peptides. Curr. Opin. Biotechnol. 2008, 19:620-627. [CrossRef]
- World Health Organization Report. WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization, pub., Geneva Switzerland, 2022.
- CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 3rd Ed., CLSI standard M38; Clinical and Laboratory Standards Institute, Wayne, PA, pub., 2017.
- CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th Ed., CLSI standard M27; Clinical and Laboratory Standards Institute, Wayne, PA, pub., 2017.
- Denning DW, Hanson LH, Perlman AM, Stevens, D.A. In vitro susceptibility and synergy studies of Aspergillus species to conventional and new agents. Diag. Micro. Infect. Dis. 1992, 15: 21–34. [CrossRef]
- Stevens, D.A., Hope, W. Polyene antifungals. In, Principles and Practice of Infectious Disease, 10th ed.; M.J. Blaser, J.I. Cohen, S.M. Holland, eds.; Elsevier, pub., Philadelphia, in press.
- Giovati, L., Ciociola, T., Magliani, W., Conti, S. Antimicrobial peptides with antiprotozoal activity: current state and future perspectives. Future Med. Chem. 2018, 10:2569-2572. [CrossRef]
- Mishra, B., Reiling, S., Zarena, D., Wang, G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 2017, 38:87–96. [CrossRef]
- Kuroda, K., Caputo, G.A. Antimicrobial polymers as synthetic mimics of host defense peptides. WIREs Nanomed. Nanobiotechnol. 2013, 5:49-66. [CrossRef]
- Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther. 2017, 17:663–676. [CrossRef]
- Grigoreva, A., Bardasheva, A., Tupitsyna, A., Amirkhanov, N., Tikunova, N., Pyshniyi, D., Kleshev, M., Ryabchikova, E. Changes in the ultrastructure of Candida albicans treated with cationic peptides. Microorganisms 2020, 8:582. [CrossRef]
- Lima, P.G. Lima, P.G., Souza, P.F.N., Freitas, C.D.T., Oliveira, J.T.A., Dias, L.P., Neto, J.X.S., Vasconcelos, I.M., Lopes, J.L.S., Sousa, D.O.B. Anticandidal activity of synthetic peptides: mechanisms of action revealed by scanning electron and fluorescence microscopies and synergism effect with nystatin. J. Pep. Sci. 2020, 26:e3249. [CrossRef]
- Delattin, N., De Brucker, K., De Cremer, K., Cammue, B.P.A., Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. Current Topics Medicinal Chemistry 2017, 17:604-612. [CrossRef]
- Sheehan, G., Bergsson, G., McElvaney, L. G., Reeves, E.P., Kavanagh, K. The human cathelicidin antimicrobial peptide LL-37 promotes the growth of the pulmonary pathogen Aspergillus fumigatus. Infect. Immun. 2018, 86:e00097-18. [CrossRef]
- Hacioglu, M., Guzel, C.B., Savage, P.B., Tan, A.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med. Mycol. 2019, 57:291-299. [CrossRef]
- Mercer, D.K., Torres, M.D.T., Duay, S.S., Lovie, E., Simpson, L., von Kockritz-Blickwede, M., de la Fuentes-Nunez, C., O’Neil, D.A., Angeles-Boza, A. M. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front. Cell. Infect. Microbiol. 2020, 10: 326. [CrossRef]
- dos Reis, T.F. , de Castro, P.A., Bastos, R.W., Pinzan, C.F., Souza, P.F.N., Ackloo, S., Hossein, M.A., Drewry, D.H., Alkhazraji, S., Ibrahim, A.S., Jo, H., Lightfoot, J.D., Adams. E.M., Fuller, K.K., DeGrado, W.F., Goldman, G.H. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat Commun. 2023, 14(1):2052. [CrossRef]
- Corbett, D., Wise, A., Langley, T., Skinner, K., Trimby, E., Birchall, S., Dorall, A., Sandiford, S., Williams, J., Warn, P., Vaara, M., Lister, T. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 2017, 61:e00200-17. [CrossRef]
- Mensa, B., Kim, Y.H., Choi, S., Scott, R., Caputo, G.A., DeGrado, W.F. Antibacterial mechanism of action of arylamide foldamers. Antimicrob. Agents Chemother. 2011, 55:5043-5053. [CrossRef]
- Stevens, D.A., Moss, R.B., Hernandez, C., Clemons, K.V., Martinez, M. Effect of media modified to mimic cystic fibrosis sputum on the susceptibility of Aspergillus fumigatus, and the frequency of resistance at one center. Antimicrob. Agents Chemother. 2016, 60:2180-2184. [CrossRef]
- Ferreira, J.A.G., Penner, J., Moss, R.B., Haagensen, J.A.J., Clemons, K.V., Spormann, A.M., Nazik, H., Cohen, K., Banaei, N., Carolino, E., Stevens, D.A. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS ONE 2015, 10:e0134692. 2015. [CrossRef]
- Overhage, J., Campisano, A., Bains, M., Torfs, E.C., Rehm, B.H., Hancock, R.E. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008, 76:4176–82. [CrossRef]
- Ageitos, J.M., Sánchez-Pérez, A., Calo-Mata, P., Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133:117–138. [CrossRef]
- Sahl, H-G., Pag, U., Bonness, S., Wagner, S., Antcheva, N., Tossi, A. Mammalian defensins: structures and mechanism of antibiotic activity. J. Leukocyte Biol. 2005, 77:466-475. [CrossRef]
- Wu, J., Liu, S., Wang, H. Invasive fungi-derived defensins kill drug-resistant bacterial pathogens. Peptides 2018, 99:82-91. [CrossRef]
- Kratochvil, H.T., Newberry, R.W., Mensa, B., Mravic, M., DeGrado, W.F. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss. 2021, 24:9-48. [CrossRef]
- Tew, G.N., Liu, D., Chen, B., Doerksen, R.J., Kaplan, J., Carroll, P.J., Klein, M.L., DeGrado, W.F. De novo design of biomimetic antimicrobial polymers. Proc. Nat. Acad. Sci. 2002, 99:5110-5114. [CrossRef]
| BRILACIDIN MICs | |||
| Pathogen | Strain | 50% inhibition | 100% inhibition |
| Coccidioides posadasii | Silv. | 4 | >64 |
| Coccidioides sp. | 22-50 | 2 | >64 |
| “ | 22-40 | 2 | >64 |
| “ | 22-35 | 2 | >64 |
| “ | 22-33 | 2 | >64 |
| Aspergillus fumigatus | 18-31 | >64 | >64 |
| “ | 13-130 | >64 | >64 |
| “ | 19-12 | >64 | >64 |
| “ | 21-23 | 64 | >64 |
| “ | 09-03 | >64 | >64 |
| “ | 18-32 | 64 | >64 |
| “ | 18-117 | >64 | >64 |
| “ | 13-30 | >64 | >64 |
| “ | 11-13 | >64 | >64 |
| “ | 09-117 | >64 | >64 |
| “ | 10AF | 64 | >64 |
|
Aspergillus lentulus (voriconazole resistant) |
14-39 | 32 | >64 |
| Aspergillus terreus | 12-70 | >64 | >64 |
| Aspergillus niger | 22-4 | 8 | 16 |
| Lomentospora prolificans | 15-101 | 4 | 8 |
| “ | 15-99 | 4 | 8 |
| “ | 15-97 | 4 | 8 |
| “ | 15-98 | 4 | 8 |
| ‘’ | 94-58 | 8 | 16 |
| “ | 10-03 | 4 | 8 |
| “ | 15-100 | 8 | 16 |
| Scedosporium apiospermum complex | 12-13 | 4 | 8 |
| “ | 98-38 | 2 | 8 |
| “ | 01-48 | 4 | 16 |
| “ | 10-23 | 2 | 4 |
| “ | 18-46 | 8 | 16 |
| Fusarium species | 07-144 | 4 | 16 |
| “ | 22-51 | 8 | 16 |
| “ | 07-136 | 2 | 16 |
| “ | 00-137 | 2 | 32 |
| “ | 19-171 | 2 | 32 |
| “ | 12-22 | 1 | 64 |
| “ | 22-1 | 2 | 32 |
| Mucorales | |||
| Rhizopus species | 16-88 | 4 | 16 |
| “ | 20-235 | 16 | 32 |
| “ | 21-01 | 8 | 16 |
| “ | 13-91 | 2 | 8 |
| “ | 94-2 | 2 | 32 |
| “ | 21-85 | 4 | 64 |
| Mucor species | 20-177 | 16 | 32 |
| ‘’ | 15-64 | 4 | 64 |
| “ | 13-39 | 4 | 32 |
| “ | 13-127 | 4 | >64 |
| Unspeciated zygomycete | 07-140 | 2 | 16 |
| Sporothrix brasiliensis | 20-18 | 8 | 64 |
| “ | 20-19 | 16 | 64 |
| “ | 20-20 | 16 | 64 |
| Sporothrix schenckii | 20-45 | 4 | 16 |
| “ | 20-46 | 8 | 32 |
| Cryptococcus neoformans | 00-288 | 1 | 2 |
| “ | 01-126 | 1 | 1 |
| “ | 06-71 | 1 | 1 |
| “ | 00-289 | 1 | 2 |
| “ | 97-370 | 2 | 2 |
| “ | CN9759 | 1 | 8 |
| “ | 17-66 | 2 | 2 |
| BRILACIDIN MICs | |||
| Pathogen | Strain | 50% inhibition | 100% inhibition |
| Candida albicans | 20-132 | 1 | 4 |
| “ | 5 | 4 | >64 |
| “ (fluconazole-resistant) | 21-76 | 32 | >64 |
| Candida auris | 20-253 | >64 | >64 |
|
Candida krusei (fluconazole-resistant) |
03-287 | 8 | 16 |
|
Candida lusitaniae (amphotericin-intermediate) |
22-16 | 8 | 8 |
|
Torulopsis glabrata (Nakaseomyces glabratus) |
22-21 | 64 | >64 |
|
Acremonium species (resistant to azoles, polyenes, echinocandins) |
18-51 | 4 | >64 |
| Exserohilum species | 19-48 | 1 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).