Submitted:
18 February 2024
Posted:
23 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Epidemiology
3. Aims and Methods
4. Nutritional Support for Depression treatment
| Factor | Impact | Sources |
| Zinc | Depression associated with zinc deficiency (78) | Meat, shellfish, dairy, legumes, nuts |
| Magnesium | Consumption associated with lower risk of depression RR=0.81 [0.70,0.92] (25) | Leafy greens, nuts and seeds, legumes |
| Calcium | Consumption associated with lower risk of depression RR=0.66 [0.42,1.02] (25) | Leafy greens, fish with bones, almonds, dairy |
| Caffeine | Associated with reduced depression risk RR=0.72 [0.52,1.00] highest vs lowest consumption (79) | Coffee, tea |
| Coffee | Associated with reduced depression risk RR=0.76 [0.62,0.92] highest vs lowest consumption (79) | Coffee |
| Tea | Lowers depression risk RR=0.69 [0.63,0.75] highest vs lowest consumption (80) | Tea |
| Cocoa | Decrease in depressive symptoms g=-0.42 [-0.67,-0.17] | Cocoa |
| Fish | Lowers depression risk RR=0.89 [0.80,0.99] highest vs lowest consumption (81) RR=0.83 [0.74,0.93] highest vs lowest consumption (82) |
Fish |
| Omega 3 polyunsaturated fatty acids | EPA+DHA consumption associated with lower depression risk (83) Lowered depression risk RR=0.87 [0.74,1.04] highest vs lowest consumption (81) |
Fatty Fish |
| Selenium | Intake associated with lower risk of postpartum depression OR=0.97 [0.95,0.99] and reduction in depressive symptoms WMD=-0.37 [-0.56,-0.18] (84) | Wheat products, meat (85) |
| B-vitamins | Lower risk of remission (86) | Liver, fish, leafy greens, eggs, seeds |
| Biotin | Associated with lower odds of depression (OR=0.71 [0.55,0.91]) (87) | Organ meat, egg yolk, some vegetables, milk (88) |
| Folic acid | Associated with lower odds of depression OR=0.78 [0.61,0.99] (87) | Legumes, leafy greens, citrus, vegetables, liver, dairy products(89) |
| Vitamin D | In cases of deficiency, vitamin D supplementation may help depressive symptoms (90) Inverse correlation between serum vitamin D levels and depression (91) |
Sunlight(92), oily fish, fortified foods (93) |
| Probiotics | Small but significant effects for trials lasting at least one month (SMD=-0.28, [-0.44,-0.13] ) (94) Significant difference in depression score (SMD=-0.47 [-0.67,-0.27]) (95) Other meta-analyses reveal no significant difference, though very close to statistical threshold of p=0.05 (SMD=-0.128, [-0.261,0.005]) (96) |
Yogurts, kefir (97), kombucha (98), fermented meat and fish products, sauerkraut, kimchi, natto, miso, sourdough bread (99, 100) |
| Acetyl-L-Carnitine | Significant reduction in depressive symptoms (SMD=-1.10) [-1.65,-0.56] (101) | Meat (102) |
| Creatine | Reduction in depression associated with level of dietary creatine consumption. AOR=0.68 [0.52,0.88] (103) |
Meat (104) |
| Amino acids | Positive (105) | Protein rich foods, supplements |
| Niacin | Lower risk with increased consumption up to a point, after which risk increase(106) | Meat products, fish, peanuts, whole grains (107) |
| Methylfolate | Impro vement SMD=-0.38 [-0.59,-0.17] (108) SMD=-0.61 [-0.97, -0.24](109) |
Leafy greens, Legumes, Fortified cereals, Liver |
| 5-HTP | Significant improvements (g=1.11 [0.53,1.69] (110) | Turkey, Chicken, Fish, Dairy products, supplements |
| St. John’s Wort | Similar response to SSRI treatment (111) | Hypericum perforatum |
| Saffron | Significantly better than placebo g = 0.891 [0.369,–1.412] (112) | Saffron spice derived from the Crocus sativus flower |
| Curcumin | Significant clinical efficacy in depression (113) Effective as adjunctive therapy (114) |
Turmeric spice, commonly used in curry dishes and various recipes |
| Methylene Blue | Reduction in manic depressive attacks (115) Marked improvement in depressive symptoms (116) |
Supplements |
| Chinese Herbal Medicine | Positive effect (117, 118) | Depends on formulation |
| Nigella Sativa | Decreased depression score (-5.5±2.5, DASS-21 survey) (119) | Black cumin seed |
| S-adenosyl methionine | Low quality evidence for efficacy(120) | Supplements |
| Cannabionoids | Limited evidence (121) Long term users more likely to develop depression (122) |
Cannabis |
| psilocybin(microdose) | Lower depression scores in retrospective survey (123) | certain species of psychedelic mushrooms. |
| Ayahuasca | Significant Improvement (124) | Banisteriopsis caapi and a DMT containing platn, typically Psychotria viridis |
| LSD | Improvement (125) | Synthesized |
| Psilocybin | Improvement (124) | certain species of psychedelic mushrooms. |
| Bacopa Monnieri | Improved Depressive symptoms (126) | Bacopa Monnieri |
| SHR-5 | Improves depressive symptoms (127) | Rhodiola rosea L. |
| Kava kava | Improvement in symptoms in human subjects(128) | Piper methysticum |
| Inositol | Equivocal evidence(58) | Fruits, beans, grains, and nuts (129) |
| Chromium | RCT shows effectiveness compared to placebo (130) | Meats, grain products, fruits, vegetables, nuts, spices, brewer’s yeast, beer, and wine (131) |
| Alpha Lipoic Acid | Equivocal evidence (58) | Muscle meats, heart, kidney, and liver(132) |
| N-acetyl Cysteine (NAC) | Positive evidence from trials (133, 134) | Supplements |
| Ginseng | Improvements in QOL in patients complaining of stressor fatigue (135) | Ginseng |
| Co-enzyme Q10 | (59) SMD=0.97 [0.01,1.93] p<0.00001 |
Meat, fish, nuts, and some oils (136) |
| Crocin | (59) MD=6.04 [3.43, 8.65] p=0.01 |
Saffron |
| Antioxidant supplements | Significant improvement (SMD = 0.40, 95 % CI = 0.28–0.51, p < 0.00001) (59) | Supplements |
| Tryptophan | Not significant (32) | Meat and dairy |
| Ethyl-EPA | Positive impact (32) | Fish oils |
| DL-Tryptophan | Positive impact (32) | Supplements |
| Vitamin C | Mixed impact (32) | Citrus fruits, colorful vegetables |
| Catechins | Positive impact (55) | Tea |
| Hydroxytyrosol | Positive impact (56) | Extra virgin olive oil |
| Valerian | Positive impact (137) | Valeriana officinalis |
| Rhodiola | Positive impact (138) | Rhodiola rosea |
| Lavender | Positive impact (138) | Lavandula angustifolia |
| Borage | Mixed (138) | Borago officinalis or Echium |
| Chamomile | Not significant (139) | Matricaria chamomilla or Chamaemelum nobile |
| Dan zhi xiao yao | Positive impact (77) | Mixture of Bupleurum chinense, Scutellaria baicalensis, Paeonia lactiflora, Glycyrrhiza uralensis, Mentha haplocalyx, Zingiber officinale, and Ziziphus jujuba |
4.1. The Gut Microbiome and Depression: Exploring the Gut-Brain Axis
4.1.1. The Gut-Brain Axis
4.1.2. The Role of the Gut Microbiome in Depression
4.1.3. Mechanisms
4.1.4. Clinical Implications and Treatment Approaches
4.2. The Link Between Depression and Inflammation
4.3. The Complex Relationship Between Thyroid Dysfunction and Depression
5. Psychedelic assisted treatment of depression
| Substance | Evidence |
| Ketamine | Significant but temporary (1 week) effect (279) |
| MDMA | Hedge’s g = -0.71; 95% CI, -1.39 to -0.03 (280) |
| Psilocybin | Hedges' g was 1.289 (95%CI=[1.020, 1.558], heterogeneity I2=50.995%, p<0.001) (272) |
| Ayahuasca | Improvements in depressive symptoms in large cross sectional study (281) |
| LSD | Non significant decrease in depressive symptoms (282) |
5.1. Ketamine
5.2. Psilocybin
5.3. Ayahuasca
5.4. LSD and MDMA
6. Lifestyle changes for treatment of depression
| Intervention | Effect |
|---|---|
| Hobbies | Dance: effect similar to antidepressants (318) Lower risk (47, 48). |
| Mindfulness | Decreases in depressive symptoms (319) |
| Sleep | Improved sleep quality decreased depressive symptoms (320) |
| Natural environments | increases in positive mood, and lowered feelings of depression(321, 322). |
| Time with animals | reducing depression(323). |
| Socialization | significant improvement in their present state examination (PSE) scores after making a new friend (45) |
| Journaling | Positive impact (324) |
| Gratitude | associated with positive mental health, including alleviating depression (325-329) |
| Deep brain stimulation | small but significant effect(326, 327). |
| Sauna/ whole body hyperthermia | Positive effect (330) |
| Goal setting | Some limited evidence for efficacy (331) |
6.1. Exercise
6.2. Time in nature
6.2.1. Animal-Assisted Therapy
6.3. Mindfulness
6.4. Connection with others
6.4.1. Purpose and goals
6.5. Gratitude
6.6. Deep Brain Stimulation
6.7. Whole-Body Hyperthermia
6.8. Photobiomodulation
7. Conclusion
Supplementary Materials
Acknowledgements
References
- Johns, G.; Samuel, V.; Freemantle, L.; Lewis, J.; Waddington, L. The global prevalence of depression and anxiety among doctors during the covid-19 pandemic: Systematic review and meta-analysis. Journal of Affective Disorders. 2022, 298, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.; Robinson, J.; McGorry, P. Depression and suicide among medical practitioners in Australia. Intern Med J. 2018, 48, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Outhoff, K. Depression in doctors: A bitter pill to swallow. South African Family Practice. 2019, 61 (Suppl. S1), S11–S14. [Google Scholar] [CrossRef]
- Eisenberg, D.; Golberstein, E.; Whitlock, J.L.; Downs, M.F. SOCIAL CONTAGION OF MENTAL HEALTH:EVIDENCE FROM COLLEGE ROOMMATES. Health Economics. 2013, 22, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Neumann, R.; Strack, F. "Mood contagion": The automatic transfer of mood between persons. Journal of Personality and Social Psychology. 2000, 79, 211–223. [Google Scholar] [CrossRef]
- Huijbregts, K.M.; Hoogendoorn, A.; Slottje, P.; van Balkom, A.J.L.M.; Batelaan, N.M. Long-Term and Short-Term Antidepressant Use in General Practice: Data from a Large Cohort in the Netherlands. Psychotherapy and Psychosomatics. 2017, 86, 362–369. [Google Scholar] [CrossRef]
- Moore, M.; Yuen, H.M.; Dunn, N.; Mullee, M.A.; Maskell, J.; Kendrick, T. Explaining the rise in antidepressant prescribing: a descriptive study using the general practice research database. Bmj. 2009, 339, b3999. [Google Scholar] [CrossRef]
- Olfson, M.; Marcus, S.C. National patterns in antidepressant medication treatment. Arch Gen Psychiatry. 2009, 66, 848–856. [Google Scholar] [CrossRef]
- Mojtabai, R.; Olfson, M. National trends in long-term use of antidepressant medications: results from the U.S. National Health and Nutrition Examination Survey. J Clin Psychiatry. 2014, 75, 169–177. [Google Scholar]
- Portnoff, L.; McClintock, C.; Lau, E.; Choi, S.; Miller, L. Spirituality cuts in half the relative risk for depression: Findings from the United States, China, and India. Spirituality in Clinical Practice. 2017, 4, 22–31. [Google Scholar] [CrossRef]
- Weissman, M.M.; Wickramaratne, P.; Nomura, Y.; Warner, V.; Verdeli, H.; Pilowsky, D.J.; et al. Families at High and Low Risk for Depression: A 3-Generation Study. Archives of General Psychiatry. 2005, 62, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sneed, J.R.; Kasen, S.; Cohen, P. Early-life risk factors for late-onset depression. International Journal of Geriatric Psychiatry. 2007, 22, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Comijs, H.C.; van Exel, E.; van der Mast, R.C.; Paauw, A.; Oude Voshaar, R.; Stek, M.L. Childhood abuse in late-life depression. Journal of Affective Disorders. 2013, 147, 241–246. [Google Scholar] [CrossRef]
- Parker, G. Parental 'Affectionless Control' as an Antecedent to Adult Depression: A Risk Factor Delineated. Archives of General Psychiatry. 1983, 40, 956–960. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, Y.; Zhang, D. Sedentary behaviour and the risk of depression: a meta-analysis. 2015. [CrossRef]
- Mekary, R.A.; Lucas, M.; Pan, A.; Okereke, O.I.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal Substitution Analysis for Physical Activity, Television Watching, and Risk of Depression. American Journal of Epidemiology. 2013, 178, 474–483. [Google Scholar] [CrossRef]
- Schaakxs, R.; Comijs, H.C.; van der Mast, R.C.; Schoevers, R.A.; Beekman, A.T.F.; Penninx, B.W.J.H. Risk Factors for Depression: Differential Across Age? The American Journal of Geriatric Psychiatry. 2017, 25, 966–977. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jang, H.M.; Lee, Y.; Lee, D.; Kim, D.-J. Effects of Internet and Smartphone Addictions on Depression and Anxiety Based on Propensity Score Matching Analysis. International Journal of Environmental Research and Public Health. 2018, 15, 859. [Google Scholar] [CrossRef]
- Ladwig, K.H.; Ladwig, K.H.; Roll, G.; Breithard, G.; Budde, T.; Borggrefe, M. Post-infarction depression and incomplete recovery 6 months after acute myocardial infarction. The Lancet. 1994, 343, 20–23. [Google Scholar] [CrossRef]
- Miller, L.J. Postpartum Depression. JAMA. 2002, 287, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Bonde, J.P.E. Psychosocial factors at work and risk of depression: a systematic review of the epidemiological evidence. 2008. [CrossRef]
- Netterstrøm, B.; Conrad, N.; Bech, P.; Fink, P.; Olsen, O.; Rugulies, R.; Stansfeld, S. The Relation between Work-related Psychosocial Factors and the Development of Depression. Epidemiologic Reviews. 2008, 30, 118–132. [Google Scholar] [CrossRef]
- Lucas, M.; Mirzaei, F.; Pan, A.; Okereke, O.I.; Willett, W.C.; O’Reilly, É.J.; et al. Coffee, Caffeine, and Risk of Depression Among Women. Archives of Internal Medicine. 2023, 171, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, Y.; Li, F.; Zhang, D. Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition. 2016, 32, 296–302. [Google Scholar] [CrossRef]
- Li, B.; Lv, J.; Wang, W.; Zhang, D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. 2016. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, L.; Zou, K.; Shan, S.; Wang, X.; Xiong, J.; et al. Role of dietary factors in the prevention and treatment for depression: an umbrella review of meta-analyses of prospective studies. Translational Psychiatry. 2021, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.J.; Davy, B.M. The Healthy Beverage Index Is Associated with Reduced Cardiometabolic Risk in US Adults: A Preliminary Analysis. J Acad Nutr Diet. 2015, 115, 1682–1689.e2. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Ghaffarian-Ensaf, R.; Shiraseb, F.; Abaj, F.; Gholami, F.; Clark, C.C.T.; Mirzaei, K. The association between Healthy Beverage Index and psychological disorders among overweight and obese women: a cross-sectional study. BMC Women's Health. 2022, 22, 295. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, L.; Gabbiadini, A.; Ciancio, A.; Vozza, L.; Signorelli, M.S.; Aguglia, E. The effect of cocoa-rich products on depression, anxiety, and mood: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. 2022, 62, 7905–7916. [Google Scholar] [CrossRef]
- Nucci, D.; Fatigoni, C.; Amerio, A.; Odone, A.; Gianfredi, V. Red and Processed Meat Consumption and Risk of Depression: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2020, 17, 6686. [Google Scholar] [CrossRef]
- Lázaro Tomé, A.; Reig Cebriá, M.J.; González-Teruel, A.; Carbonell-Asíns, J.A.; Cañete Nicolás, C.; Hernández-Viadel, M. Efficacy of vitamin D in the treatment of depression: a systematic review and meta-analysis. Actas Esp Psiquiatr. 2021, 49, 12–23. [Google Scholar]
- Jerome Sarris, Ph.D., M.H.Sc. ,, Jenifer Murphy, Ph.D. ,, David Mischoulon, M.D., Ph.D. ,, George I. Papakostas, M.D. ,, Maurizio Fava, M.D. ,, Michael Berk, M.D., Ph.D. ,, Chee H. Ng, M.D. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. American Journal of Psychiatry. 2016, 173, 575–587. [CrossRef]
- Young, L.M.; Pipingas, A.; White, D.J.; Gauci, S.; Scholey, A. A Systematic Review and Meta-Analysis of B Vitamin Supplementation on Depressive Symptoms, Anxiety, and Stress: Effects on Healthy and ‘At-Risk’ Individuals. Nutrients. 2019, 11, 2232. [Google Scholar] [CrossRef]
- Levey, D.F.; Stein, M.B.; Wendt, F.R.; Pathak, G.A.; Zhou, H.; Aslan, M.; et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nature Neuroscience. 2021, 24, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Niamh Mullins, Ph.D. ,, Tim B. Bigdeli, Ph.D. ,, Anders D. Børglum, Ph.D. ,, Jonathan R.I. Coleman, Ph.D. ,, Ditte Demontis, Ph.D. ,, Divya Mehta, Ph.D. ,, et al. GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry. 2019, 176, 651–660. [CrossRef] [PubMed]
- Ni, H.; Xu, M.; Zhan, G.L.; Fan, Y.; Zhou, H.; Jiang, H.Y.; et al. The GWAS Risk Genes for Depression May Be Actively Involved in Alzheimer's Disease. J Alzheimers Dis. 2018, 64, 1149–1161. [Google Scholar] [CrossRef]
- Xie, T.; Stathopoulou, M.G.; de Andrés, F.; Siest, G.; Murray, H.; Martin, M.; et al. VEGF-related polymorphisms identified by GWAS and risk for major depression. Translational Psychiatry. 2017, 7, e1055-e. [Google Scholar] [CrossRef] [PubMed]
- Patrick F. Sullivan, M.D., F.R.A.N.Z.C.P. ,, Michael C. Neale, Ph.D. , and, Kenneth S. Kendler, M.D. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry. 2000, 157, 1552–1562. [CrossRef]
- Beute, F.; de Kort, Y.A.W. The natural context of wellbeing: Ecological momentary assessment of the influence of nature and daylight on affect and stress for individuals with depression levels varying from none to clinical. Health & Place. 2018, 49, 7–18. [Google Scholar]
- Jakstis, K.; Fischer, L.K. Urban Nature and Public Health: How Nature Exposure and Sociocultural Background Relate to Depression Risk. International Journal of Environmental Research and Public Health. 2021, 18, 9689. [Google Scholar] [CrossRef] [PubMed]
- Bezold CP, Banay RF, Coull BA, Hart JE, James P, Kubzansky LD, et al. The Association Between Natural Environments and Depressive Symptoms in Adolescents Living in the United States. Journal of Adolescent Health. 2018, 62, 488–495. [CrossRef]
- Dempsey, S.; Devine, M.T.; Gillespie, T.; Lyons, S.; Nolan, A. Coastal blue space and depression in older adults. Health & Place. 2018, 54, 110–117. [Google Scholar]
- Galea, S.; Ahern, J.; Rudenstine, S.; Wallace, Z.; Vlahov, D. Urban built environment and depression: a multilevel analysis. Journal of Epidemiology and Community Health. 2005, 59, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cui, X.; Dijst, M.; Tian, S.; Chen, J.; Huang, J. Association Between Natural/Built Campus Environment and Depression Among Chinese Undergraduates: Multiscale Evidence for the Moderating Role of Socioeconomic Factors After Controlling for Residential Self-Selection. Frontiers in Public Health. 2022, 10. [Google Scholar] [CrossRef]
- Harris, T.; Brown, G.W.; Robinson, R. Befriending as an intervention for chronic depression among women in an inner city: 1: Randomised controlled trial. The British Journal of Psychiatry. 1999, 174, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Wing, J.K.; Birley, J.; Graham, P.; Isaacs, A. Present state examination. The British Journal of Psychiatry. 1974.
- Fancourt, D.; Opher, S.; de Oliveira, C. Fixed-Effects Analyses of Time-Varying Associations between Hobbies and Depression in a Longitudinal Cohort Study: Support for Social Prescribing? Psychotherapy and Psychosomatics. 2019, 89, 111–113. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Wu, N.; Jia, Y.; Gao, J.; Fu, H. Effect of Long Working Hours on Depression and Mental Well-Being among Employees in Shanghai: The Role of Having Leisure Hobbies. International Journal of Environmental Research and Public Health. 2019, 16, 4980. [Google Scholar] [CrossRef]
- Hammen, C. Stress and Depression. Annual Review of Clinical Psychology. 2005, 1, 293–319. [Google Scholar] [CrossRef]
- Santa Maria, A.; Wörfel, F.; Wolter, C.; Gusy, B.; Rotter, M.; Stark, S.; et al. The Role of Job Demands and Job Resources in the Development of Emotional Exhaustion, Depression, and Anxiety Among Police Officers. Police Quarterly. 2018, 21, 109–134. [Google Scholar] [CrossRef]
- Hall, G.B.; Dollard, M.F.; Winefield, A.H.; Dormann, C.; Bakker, A.B. Psychosocial safety climate buffers effects of job demands on depression and positive organizational behaviors. Anxiety, Stress, & Coping. 2013, 26, 355–377. [Google Scholar]
- Ocklenburg, S.; Borawski, J. Vegetarian diet and depression scores: A meta-analysis. Journal of Affective Disorders. 2021, 294, 813–815. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Annals of Neurology. 2013, 74, 580–591. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Covas, M.I.; et al. Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Medicine. 2013, 11, 208. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Daglia, M.; Braidy, N.; Nabavi, S.F. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutritional Neuroscience. 2017, 20, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Mon, M.A.; Ortega, M.A.; García-Montero, C.; Fraile-Martinez, O.; Monserrat, J.; Lahera, G.; et al. Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals. 2021, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- Bonokwane, M.B.; Lekhooa, M.; Struwig, M.; Aremu, A.O. Antidepressant Effects of South African Plants: An Appraisal of Ethnobotanical Surveys, Ethnopharmacological and Phytochemical Studies. Frontiers in Pharmacology. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Mischoulon D, Iovieno N. Supplements and Natural Remedies for Depression. In: Shapero BG, Mischoulon D, Cusin C, editors. The Massachusetts General Hospital Guide to Depression: New Treatment Insights and Options. Cham: Springer International Publishing; 2019. p. 195-209.
- Wang, H.; Jin, M.; Xie, M.; Yang, Y.; Xue, F.; Li, W.; et al. Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. Journal of Affective Disorders. 2023, 323, 264–279. [Google Scholar] [CrossRef]
- Hoffmann, K.; Emons, B.; Brunnhuber, S.; Karaca, S.; Juckel, G. The Role of Dietary Supplements in Depression and Anxiety – A Narrative Review. Pharmacopsychiatry. 2019, 52, 261–279. [Google Scholar] [CrossRef]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; et al. The effects of dietary improvement on symptoms of depression and anxiety: a meta-analysis of randomized controlled trials. Psychosomatic medicine. 2019, 81, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Subermaniam, K.; Teoh, S.L.; Yow, Y.-Y.; Tang, Y.-Q.; Lim, L.W.; Wong, K.-H. Marine algae as emerging therapeutic alternatives for depression: A review. Iranian Journal of Basic Medical Sciences. 2021, 24, 997–1013. [Google Scholar]
- Taya C. Varteresian, D.O., M.S. ,, David A. Merrill, M.D., Ph.D. , and, Helen Lavretsky, M.D., M.S. The Use of Natural Products and Supplements in Late-Life Mood and Cognitive Disorders. FOCUS. 2013, 11, 15–21. [CrossRef]
- Petridou, E.T.; Kousoulis, A.A.; Michelakos, T.; Papathoma, P.; Dessypris, N.; Papadopoulos, F.C.; Stefanadis, C. Folate and B12 serum levels in association with depression in the aged: a systematic review and meta-analysis. Aging & mental health. 2016, 20, 965–973. [Google Scholar]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive nutraceuticals for depression: a systematic review and meta-analyses. American Journal of Psychiatry. 2016, 173, 575–587. [Google Scholar] [CrossRef]
- Alvarez-Mon, M.A.; Ortega, M.A.; García-Montero, C.; Fraile-Martinez, O.; Monserrat, J.; Lahera, G.; et al. Exploring the role of nutraceuticals in major depressive disorder (MDD): Rationale, state of the art and future prospects. Pharmaceuticals. 2021, 14, 821. [Google Scholar] [CrossRef]
- Mischoulon, D. Popular herbal and natural remedies used in psychiatry. Focus Am Psychiatr Publ. 2018, 16, 2–11. [Google Scholar] [CrossRef]
- Mischoulon, D.; Iovieno, N. Supplements and natural remedies for depression. The Massachusetts General Hospital Guide to Depression: New Treatment Insights and Options. 2019, 195–209. [Google Scholar]
- Wang, H.; Jin, M.; Xie, M.; Yang, Y.; Xue, F.; Li, W.; et al. Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. Journal of affective disorders. 2023, 323, 264–279. [Google Scholar] [CrossRef]
- Hoffmann, K.; Emons, B.; Brunnhuber, S.; Karaca, S.; Juckel, G. The role of dietary supplements in depression and anxiety–a narrative review. Pharmacopsychiatry. 2019, 52, 261–279. [Google Scholar] [CrossRef]
- Varteresian, T.; Lavretsky, H. Natural products and supplements for geriatric depression and cognitive disorders: an evaluation of the research. Current psychiatry reports. 2014, 16, 456. [Google Scholar] [CrossRef]
- Schefft, C.; Kilarski, L.L.; Bschor, T.; Koehler, S. Efficacy of adding nutritional supplements in unipolar depression: a systematic review and meta-analysis. European Neuropsychopharmacology. 2017, 27, 1090–1109. [Google Scholar] [CrossRef]
- Dwyer, A.V.; Whitten, D.L.; Hawrelak, J.A. Herbal medicines, other than St. John's Wort, in the treatment of depression: a systematic review. Alternative medicine review. 2011, 16, 40–49. [Google Scholar] [PubMed]
- Szafrański, T. Herbal remedies in depression–state of the art. Psychiatr Pol. 2014, 48, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E. Herbal remedies for depression and anxiety. Advances in Psychiatric Treatment. 2007, 13, 312–316. [Google Scholar] [CrossRef]
- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. European Neuropsychopharmacology. 2011, 21, 841–860. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytotherapy Research. 2007, 21, 703–716. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biological Psychiatry. 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Wang, L.; Shen, X.; Wu, Y.; Zhang, D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Australian & New Zealand Journal of Psychiatry. 2016, 50, 228–242. [Google Scholar]
- Dong, X.; Yang, C.; Cao, S.; Gan, Y.; Sun, H.; Gong, Y.; et al. Tea consumption and the risk of depression: A meta-analysis of observational studies. Australian & New Zealand Journal of Psychiatry. 2015, 49, 334–345. [Google Scholar]
- Yang, Y.; Kim, Y.; Je, Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia-Pacific Psychiatry. 2018, 10, e12335. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Zhang, D. Fish consumption and risk of depression: a meta-analysis. Journal of Epidemiology and Community Health. 2016, 70, 299–304. [Google Scholar] [CrossRef]
- Hoffmire, C.A.; Block, R.C.; Thevenet-Morrison, K.; van Wijngaarden, E. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: An analysis of the 2005–2008 National Health and Nutrition Examination Survey. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2012, 86, 155–160. [Google Scholar] [CrossRef]
- Sajjadi, S.S.; Foshati, S.; Haddadian-Khouzani, S.; Rouhani, M.H. The role of selenium in depression: a systematic review and meta-analysis of human observational and interventional studies. Scientific Reports. 2022, 12, 1045. [Google Scholar] [CrossRef]
- Finley, J.W. Bioavailability of Selenium from Foods. Nutrition Reviews. 2006, 64, 146–151. [Google Scholar] [CrossRef]
- Ford, A.; Almeida, O.P.; Flicker, L.; Hirani, V.; McCaul, K.; Singh, U.; Van Bockxmeer, F. B-vitamins and Depression. European Psychiatry. 2015, 30, 1-. [Google Scholar] [CrossRef]
- Mahdavifar, B.; Hosseinzadeh, M.; Salehi-Abargouei, A.; Mirzaei, M.; Vafa, M. Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. Journal of Affective Disorders. 2021, 288, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Said HM. Biotin: Biochemical, Physiological and Clinical Aspects. In: Stanger O, editor. Water Soluble Vitamins: Clinical Research and Future Application. Dordrecht: Springer Netherlands; 2012. p. 1-19.
- Iyer, R.; Tomar, S.K. Folate: A Functional Food Constituent. Journal of Food Science. 2009, 74, R114–R22. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.B.; Brotchie, H.; Graham, R.K. Vitamin D and depression. Journal of Affective Disorders. 2017, 208, 56–61. [Google Scholar] [CrossRef]
- Menon, V.; Kar, S.K.; Suthar, N.; Nebhinani, N. Vitamin D and depression: a critical appraisal of the evidence and future directions. Indian journal of psychological medicine. 2020, 42, 11–21. [Google Scholar] [CrossRef]
- Baggerly, C.A.; Cuomo, R.E.; French, C.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; et al. Sunlight and Vitamin D: Necessary for Public Health. Journal of the American College of Nutrition. 2015, 34, 359–365. [Google Scholar] [CrossRef]
- Moore, C.; Murphy, M.M.; Keast, D.R.; Holick, M.F. Vitamin D intake in the United States. Journal of the American Dietetic Association. 2004, 104, 980–983. [Google Scholar] [CrossRef]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience & Biobehavioral Reviews. 2019, 102, 13–23. [Google Scholar]
- Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; et al. Effects of Probiotics on Depressive or Anxiety Variables in Healthy Participants Under Stress Conditions or With a Depressive or Anxiety Diagnosis: A Meta-Analysis of Randomized Controlled Trials. Frontiers in Neurology. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim Donovan, Y.; Yeo, W.-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. Journal of Affective Disorders. 2018, 228, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A.F. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety. 2010, 9, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.M.; Sumner, W. Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Cuamatzin-García, L.; Rodríguez-Rugarcía, P.; El-Kassis, E.G.; Galicia, G.; Meza-Jiménez, M.L.; Baños-Lara, M.D.R.; et al. Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms. 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Solmi, M.; Ajnakina, O.; Carvalho, A.F.; Maggi, S. Acetyl-l-Carnitine Supplementation and the Treatment of Depressive Symptoms: A Systematic Review and Meta-Analysis. Psychosomatic Medicine. 2018, 80, 154–159. [Google Scholar] [CrossRef]
- Roseiro LC, Santos C. Chapter 2.5 - Carnitines (Including l-Carnitine, Acetyl-Carnitine, and Proprionyl- Carnitine). In: Nabavi SM, Silva AS, editors. Nonvitamin and Nonmineral Nutritional Supplements: Academic Press; 2019. p. 45-52.
- Bakian, A.V.; Huber, R.S.; Scholl, L.; Renshaw, P.F.; Kondo, D. Dietary creatine intake and depression risk among U. S. adults. Translational Psychiatry. 2020, 10, 52. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids. 2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- Ille, R.; Spona, J.; Zickl, M.; Hofmann, P.; Lahousen, T.; Dittrich, N.; et al. "Add-On"-therapy with an individualized preparation consisting of free amino acids for patients with a major depression. Eur Arch Psychiatry Clin Neurosci. 2007, 257, 222–229. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, S.; Yang, J.; Wang, Q.; Lu, X. Association between niacin intake and depression: A nationwide cross-sectional study. Journal of Affective Disorders. 2023, 340, 347–354. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products N, Allergies. Scientific opinion on dietary reference values for niacin. EFSA Journal. 2014, 12, 3759. [Google Scholar] [CrossRef]
- Maruf, A.A.; Poweleit, E.A.; Brown, L.C.; Strawn, J.R.; Bousman, C.A. Systematic Review and Meta-Analysis of L-Methylfolate Augmentation in Depressive Disorders. Pharmacopsychiatry. 2021, 55, 139–147. [Google Scholar] [CrossRef]
- Altaf, R.; Gonzalez, I.; Rubino, K.; Nemec, E.C. Folate as adjunct therapy to SSRI/SNRI for major depressive disorder: Systematic review & meta-analysis. Complementary Therapies in Medicine. 2021, 61, 102770. [Google Scholar]
- Javelle, F.; Lampit, A.; Bloch, W.; Häussermann, P.; Johnson, S.L.; Zimmer, P. Effects of 5-hydroxytryptophan on distinct types of depression: a systematic review and meta-analysis. Nutrition Reviews. 2019, 78, 77–88. [Google Scholar] [CrossRef]
- Asher, G.N.; Gartlehner, G.; Gaynes, B.N.; Amick, H.R.; Forneris, C.; Morgan, L.C.; et al. Comparative Benefits and Harms of Complementary and Alternative Medicine Therapies for Initial Treatment of Major Depressive Disorder: Systematic Review and Meta-Analysis. The Journal of Alternative and Complementary Medicine. 2017, 23, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Shemshian, M.; Mousavi, S.H.; Norouzy, A.; Kermani, T.; Moghiman, T. , et al. A double-blind, randomized and placebo-controlled trial of Saffron (Crocus sativus L.) in the treatment of anxiety and depression. J Complement Integr Med. 2016, 13, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Koh, S.S.H.; Chan, H.W.; Ho, C.Y.X. Clinical Use of Curcumin in Depression: A Meta-Analysis. J Am Med Dir Assoc. 2017, 18, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020, 60, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Naylor, G.J.; Martin, B.; Hopwood, S.E.; Watson, Y. A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol Psychiatry. 1986, 21, 915–920. [Google Scholar] [CrossRef]
- Naylor, G.J.; Smith, A.H.; Connelly, P. A controlled trial of Methylene Blue in severe depressive illness. Biological Psychiatry. 1987, 22, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi Y-h Xu, Z.; Fu, H.; Zeng, H.; Zheng, G.-q. Efficacy and safety of Chinese herbal medicine for depression: A systematic review and meta-analysis of randomized controlled trials. Journal of Psychiatric Research. 2019, 117, 74–91. [Google Scholar] [CrossRef]
- Yeung, W.-F.; Chung, K.-F.; Ng, K.-Y.; Yu, Y.-M.; Ziea, E.T.-C.; Ng, B.F.-L. A systematic review on the efficacy, safety and types of Chinese herbal medicine for depression. Journal of Psychiatric Research. 2014, 57, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, A.R.; Eghbal, A.F.; Mirghazanfari, S.M.; Ghasemzadeh, M.R.; Nassireslami, E.; Donyavi, V. Nigella sativa extract in the treatment of depression and serum Brain-Derived Neurotrophic Factor (BDNF) levels. J Res Med Sci. 2022, 27, 28. [Google Scholar]
- Galizia, I.; Oldani, L.; Macritchie, K.; Amari, E.; Dougall, D.; Jones, T.N.; et al. S-adenosyl methionine (SAMe) for depression in adults. Cochrane Database of Systematic Reviews. 2016. [CrossRef]
- Black, N.; Stockings, E.; Campbell, G.; Tran, L.T.; Zagic, D.; Hall, W.D. , et al. Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: a systematic review and meta-analysis. The Lancet Psychiatry. 2019, 6, 995–1010. [Google Scholar] [CrossRef]
- Lev-Ran, S.; Roerecke, M.; Le Foll, B.; George, T.; McKenzie, K.; Rehm, J. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychological medicine. 2014, 44, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Rootman, J.M.; Kryskow, P.; Harvey, K.; Stamets, P.; Santos-Brault, E.; Kuypers, K.P.C.; et al. Adults who microdose psychedelics report health related motivations and lower levels of anxiety and depression compared to non-microdosers. Scientific Reports. 2021, 11, 22479. [Google Scholar] [CrossRef]
- Romeo, B.; Karila, L.; Martelli, C.; Benyamina, A. Efficacy of psychedelic treatments on depressive symptoms: A meta-analysis. Journal of Psychopharmacology. 2020, 34, 1079–1085. [Google Scholar] [CrossRef]
- Gasser, P.; Holstein, D.; Michel, Y.; Doblin, R.; Yazar-Klosinski, B.; Passie, T.; Brenneisen, R. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nerv Ment Dis. 2014, 202, 513–520. [Google Scholar] [CrossRef]
- Calabrese, C.; Gregory, W.L.; Leo, M.; Kraemer, D.; Bone, K.; Oken, B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med. 2008, 14, 707–713. [Google Scholar] [CrossRef]
- Darbinyan, V.; Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Malmström, C.; Panossian, A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry. 2007, 61, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Kavanagh, D.J.; Byrne, G.; Bone, K.M.; Adams, J.; Deed, G. The Kava Anxiety Depression Spectrum Study (KADSS): a randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum. Psychopharmacology (Berl). 2009, 205, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Clements RS, Jr., Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr. 1980, 33, 1954–1967. [CrossRef]
- Davidson, J.R.; Abraham, K.; Connor, K.M.; McLeod, M.N. Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol Psychiatry. 2003, 53, 261–264. [Google Scholar] [CrossRef]
- Swaroop, A.; Bagchi, M.; Preuss, H.; Zafra-Stone, S.; Ahmad, T.; Bagchi, D. Benefits of chromium(III) complexes in animal and human health.; 2019; pp. 251–278. [Google Scholar]
- Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica et Biophysica Acta (BBA)-General Subjects. 2009, 1790, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Copolov, D.L.; Dean, O.; Lu, K.; Jeavons, S.; Schapkaitz, I.; et al. N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008, 64, 468–475. [Google Scholar] [CrossRef]
- Berk, M.; Dean, O.; Cotton, S.M.; Gama, C.S.; Kapczinski, F.; Fernandes, B.S.; et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord. 2011, 135, 389–394. [Google Scholar] [CrossRef]
- Caso Marasco, A.; Vargas Ruiz, R.; Salas Villagomez, A.; Begoña Infante, C. Double-blind study of a multivitamin complex supplemented with ginseng extract. Drugs Exp Clin Res. 1996, 22, 323–329. [Google Scholar]
- Pravst, I.; Žmitek, K.; Žmitek, J. Coenzyme Q10 Contents in Foods and Fortification Strategies. Critical Reviews in Food Science and Nutrition. 2010, 50, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Mischoulon, D. Popular Herbal and Natural Remedies Used in Psychiatry. Focus (Am Psychiatr Publ). 2018, 16, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.V.; Whitten, D.L.; Hawrelak, J.A. Herbal medicines, other than St. John's Wort, in the treatment of depression: a systematic review. Altern Med Rev. 2011, 16, 40–49. [Google Scholar]
- Szafrański, T. [Herbal remedies in depression--state of the art]. Psychiatr Pol. 2014, 48, 59–73. [Google Scholar] [CrossRef]
- Ahmadpoor, J.; Chahardahcheric, S.V.; Setorki, M. The Protective effect of hydroalcoholic extract of the southern maidenhair fern (adiantum capillus-veneris) on the depression and anxiety caused by chronic stress in adult male mice: an experimental randomized study. Iranian Red Crescent Medical Journal. 2019, 21. [Google Scholar] [CrossRef]
- Rabiei, Z.; Setorki, M. Effect of ethanol Adiantum capillus-veneris extract in experimental models of anxiety and depression. Brazilian Journal of Pharmaceutical Sciences. 2019, 55. [Google Scholar] [CrossRef]
- Pedersen, M.E.; Szewczyk, B.; Stachowicz, K.; Wieronska, J.; Andersen, J.; Stafford, G.I.; et al. Effects of South African traditional medicine in animal models for depression. Journal of Ethnopharmacology. 2008, 119, 542–548. [Google Scholar] [CrossRef]
- Aderibigbe, A. Antidepressant activity of ethanol extract of Albizia adianthifolia (Schumach) WF Wight leaf in mice. African Journal of Medicine and Medical Sciences. 2018, 47, 133–140. [Google Scholar]
- Beppe, G.J.; Dongmo, A.B.; Foyet, H.S.; Dimo, T.; Mihasan, M.; Hritcu, L. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complementary and Alternative Medicine. 2015, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jahani, R.; Khaledyan, D.; Jahani, A.; Jamshidi, E.; Kamalinejad, M.; Khoramjouy, M.; Faizi, M. Evaluation and comparison of the antidepressant-like activity of Artemisia dracunculus and Stachys lavandulifolia ethanolic extracts: an in vivo study. Research in Pharmaceutical Sciences. 2019, 14, 544. [Google Scholar] [PubMed]
- Ilkhanizadeh, A.; Asghari, A.; Hassanpour, S.; Safi, S. Anti-depressant effect of Artemisia dracunculus extract is mediated via GABAergic and serotoninergic systems in ovariectomized mice. Journal of Basic and Clinical Pathophysiology. 2021, 9, 32–41. [Google Scholar]
- Zanelati, T.; Biojone, C.; Moreira, F.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. British journal of pharmacology. 2010, 159, 122–128. [Google Scholar] [CrossRef]
- Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018, 86, 255–261. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; et al. Antidepressant-like effect of Δ9-tetrahydrocannabinol other cannabinoids isolated from Cannabis sativa, L. Pharmacology Biochemistry and Behavior. 2010, 95, 434–442. [Google Scholar] [CrossRef]
- Selvi, P.T.; Kumar, M.S.; Rajesh, R.; Kathiravan, T. Antidepressant activity of ethanolic extract of leaves of Centella asiatica. Linn by In vivo methods. Asian Journal of Research in Pharmaceutical Science. 2012, 2, 76–79. [Google Scholar]
- Rabadia, J.; Satish, S.; Ramanjaneyulu, J.; Narayanaswamy, V. An investigation of anti-depressant activity of Cinnamomum camphora oil in experimental mice. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013, 3, 44. [Google Scholar]
- Citó, M.; Silva, M.I.G.; Santos, L.K.X.; Fernandes, M.; Melo, F.H.C.; Aguiar, J.A.C.; et al. Antidepressant-like effect of Hoodia gordonii in a forced swimming test in mice: evidence for involvement of the monoaminergic system. Brazilian Journal of Medical and Biological Research. 2014, 48, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, F.; Cheng, J.; Guo, S.; Liu, P.; Wang, H. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. Scientific Reports. 2014, 4, 5632. [Google Scholar] [CrossRef] [PubMed]
- Fiebich, B.L.; Knörle, R.; Appel, K.; Kammler, T.; Weiss, G. Pharmacological studies in an herbal drug combination of St. John's Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): in vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia. 2011, 82, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Ejigu, A.; Engidawork, E. Screening of the antidepressant-like activity of two hypericum species found in Ethiopia. Eth Pharm J. 2014, 30, 21–32. [Google Scholar] [CrossRef]
- Benneh, C.K.; Biney, R.P.; Adongo, D.W.; Mante, P.K.; Ampadu, F.A.; Tandoh, A.; et al. Anxiolytic and antidepressant effects of Maerua angolensis DC. Stem bark extract in mice. Depression Research and Treatment. 2018, 2018. [Google Scholar]
- Ishaq, H. Anxiolytic and antidepressant activity of different methanolic extracts of Melia azedarach Linn. Pakistan journal of pharmaceutical sciences. 2016, 29. [Google Scholar]
- Jedi-Behnia, B.; Abbasi Maleki, S.; Mousavi, E. The antidepressant-like effect of Mentha spicata essential oil in animal models of depression in male mice. Journal of Advanced Biomedical Sciences. 2017, 7, 141–149. [Google Scholar]
- Badr, A.M.; Attia, H.A.; Al-Rasheed, N. Oleuropein reverses repeated corticosterone-induced depressive-like behavior in mice: evidence of modulating effect on biogenic amines. Scientific reports. 2020, 10, 3336. [Google Scholar] [CrossRef]
- Perveen, T.; Hashmi, B.M.; Haider, S.; Tabassum, S.; Saleem, S.; Siddiqui, M.A. Role of monoaminergic system in the etiology of olive oil induced antidepressant and anxiolytic effects in rats. International Scholarly Research Notices. 2013, 2013. [Google Scholar] [CrossRef]
- Tariq, U.; Butt, M.S.; Pasha, I.; Faisal, M.N. Neuroprotective effects of Olea europaea L. fruit extract against cigarette smoke-induced depressive-like behaviors in Sprague–Dawley rats. Journal of Food Biochemistry. 2021, 45, e14014. [Google Scholar] [CrossRef]
- Machado, D.G.; Bettio, L.E.; Cunha, M.P.; Capra, J.C.; Dalmarco, J.B.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2009, 33, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behavioural Brain Research. 2013, 238, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Ferdousi, F.; Fukumitsu, S.; Kuwata, H.; Isoda, H. Antidepressant-and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomedicine & Pharmacotherapy. 2021, 144, 112291. [Google Scholar]
- Abdelhalim, A.; Karim, N.; Chebib, M.; Aburjai, T.; Khan, I.; Johnston, G.A.; Hanrahan, J. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis. Journal of Pharmacy & Pharmaceutical Sciences. 2015, 18, 448–459. [Google Scholar]
- Adebiyi, R.; Elsa, A.; Agaie, B.; Etuk, E. Antinociceptive and antidepressant like effects of Securidaca longepedunculata root extract in mice. Journal of ethnopharmacology. 2006, 107, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Loria, M.J.; Ali, Z.; Abe, N.; Sufka, K.J.; Khan, I.A. Effects of Sceletium tortuosum in rats. Journal of ethnopharmacology. 2014, 155, 731–735. [Google Scholar] [CrossRef]
- Machado, D.G.; Kaster, M.P.; Binfaré, R.W.; Dias, M.; Santos, A.R.; Pizzolatti, M.G.; et al. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2007, 31, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Wado, E.K.; Kubicki, M.; Ngatanko, A.H.H.; Blondelle, K.D.L.; Roland, R.N.; Balbine, K.; et al. Anxiolytic and antidepressant effects of Ziziphus mucronata hydromethanolic extract in male rats exposed to unpredictable chronic mild stress: Possible mechanisms of actions. Journal of ethnopharmacology. 2020, 260, 112987. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, Y.; Han, L.; Jia, Y.; Luo, S.; Zhang, D.; et al. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Research Bulletin. 2021, 171, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Zeng, G.-R.; Liu, J.-Q.; Luo, Z.-S.; Zhang, L.; Dai, X.-M.; et al. Ganoderma lucidum triterpenoids improve maternal separation-induced anxiety-and depression-like behaviors in mice by mitigating inflammation in the periphery and brain. Nutrients. 2022, 14, 2268. [Google Scholar] [CrossRef]
- Nagano, M.; Shimizu, K.; Kondo, R.; Hayashi, C.; Sato, D.; Kitagawa, K.; Ohnuki, K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomedical Research. 2010, 31, 231–237. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, C.; Li, B.-M.; Sun, C. Polygala japonica Houtt. reverses depression-like behavior and restores reduced hippocampal neurogenesis in chronic stress mice. Biomedicine & Pharmacotherapy. 2018, 99, 986–996. [Google Scholar]
- Kim, N.-H.; Jeong, H.-J.; Lee, J.-Y.; Go, H.; Ko, S.-G.; Hong, S.-H.; et al. The effect of hydrolyzed Spirulina by malted barley on forced swimming test in ICR mice. International Journal of Neuroscience. 2008, 118, 1523–1533. [Google Scholar] [CrossRef]
- Suresh, D.; Madhu, M.; Saritha, C.; Shankaraiah, P. Antidepressant activity of spirulina platensis in experimentally induced dipression in mice.; 2014. [Google Scholar]
- Soetantyo, G.I.; Sarto, M. The antidepressant effect of Chlorella vulgaris on female Wistar rats (Rattus norvegicus Berkenhout, 1769) with chronic unpredictable mild stress treatment. J Trop Biodivers Biotechnol. 2019, 4, 72–81. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Arakawa, M. Seaweed consumption and prevalence of depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study. BMC pregnancy and childbirth. 2014, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Allaert, F.-A.; Demais, H.; Collén, P.N. A randomized controlled double-blind clinical trial comparing versus placebo the effect of an edible algal extract (Ulva Lactuca) on the component of depression in healthy volunteers with anhedonia. BMC psychiatry. 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, C.; Cui, Y.; Momma, H.; Niu, K.; Nagatomi, R. Dietary seaweed intake and depressive symptoms in Japanese adults: a prospective cohort study. Nutrition journal. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Othman, M.B.; Demura, M.; Watanabe, M.; Isoda, H. Modulation of neurogenesis through the promotion of energy production activity is behind the antidepressant-like effect of colonial green alga, Botryococcus braunii. Frontiers in physiology. 2017, 8, 900. [Google Scholar] [CrossRef]
- Panahi, Y.; Badeli, R.; Karami, G.-R.; Badeli, Z.; Sahebkar, A. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complementary therapies in medicine. 2015, 23, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Talbott, S.; Hantla, D.; Capelli, B.; Ding, L.; Li, Y.; Artaria, C. Astaxanthin supplementation reduces depression and fatigue in healthy subjects. EC Nutrition. 2019, 14, 239–246. [Google Scholar]
- Siddiqui, P.J.A.; Khan, A.; Uddin, N.; Khaliq, S.; Rasheed, M.; Nawaz, S.; et al. Antidepressant-like deliverables from the sea: evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Bioscience, Biotechnology, and Biochemistry. 2017, 81, 1369–1378. [Google Scholar] [CrossRef]
- Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; da Conceição Rivanor, R.L.; Mota, É.F.; et al. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. International journal of biological macromolecules. 2018, 111, 534–541. [Google Scholar] [CrossRef]
- Violle, N.; Rozan, P.; Demais, H.; Nyvall Collen, P.; Bisson, J.-F. Evaluation of the antidepressant-and anxiolytic-like effects of a hydrophilic extract from the green seaweed Ulva sp. in rats. Nutritional neuroscience. 2018, 21, 248–256. [Google Scholar] [CrossRef]
- Wang, X.; Xiu, Z.; Du, Y.; Li, Y.; Yang, J.; Gao, Y.; et al. Brazilin treatment produces antidepressant-and anxiolytic-like effects in mice. Biological and Pharmaceutical Bulletin. 2019, 42, 1268–1274. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Z.; You, W.; Zhang, X.; Li, S.; Barish, P.A.; et al. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. European neuropsychopharmacology. 2010, 20, 405–413. [Google Scholar] [CrossRef]
- Shewale, P.B.; Patil, R.A.; Hiray, Y.A. Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test. Indian journal of pharmacology. 2012, 44, 454. [Google Scholar] [CrossRef]
- Ghazizadeh, J.; Sadigh-Eteghad, S.; Marx, W.; Fakhari, A.; Hamedeyazdan, S.; Torbati, M.; et al. The effects of lemon balm (Melissa officinalis L.) on depression and anxiety in clinical trials: A systematic review and meta-analysis. Phytotherapy Research. 2021, 35, 6690–6705. [Google Scholar] [CrossRef]
- Guzmán-Gutiérrez, S.; Gómez-Cansino, R.; García-Zebadúa, J.; Jiménez-Pérez, N.; Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. Journal of ethnopharmacology. 2012, 143, 673–679. [Google Scholar] [CrossRef]
- Kim, M.; Nam, E.S.; Lee, Y.; Kang, H.-J. Effects of lavender on anxiety, depression, and physiological parameters: Systematic review and meta-analysis. Asian nursing research. 2021, 15, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Fajemiroye, J.O.; Martins, J.L.R.; Ghedini, P.C.; Galdino, P.M.; Paula, J.A.M.d.; Realino de Paula, J.; et al. Antidepressive-like property of dichloromethane fraction of Pimenta pseudocaryophyllus and relevance of monoamine metabolic enzymes. Evidence-Based Complementary and Alternative Medicine. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.; Contreras, C.; Tellez-Alcantara, P. Mimosa pudica may possess antidepressant actions in the rat. Phytomedicine. 1999, 6, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vázquez, M.; Estrada-Reyes, R.; Escalona, A.A.; Velázquez, I.L.; Martínez-Mota, L.; Moreno, J.; Heinze, G. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. Journal of ethnopharmacology. 2012, 139, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Gabriela, G.-C.; Javier, A.-A.F.; Elisa, V.-A.; Gonzalo, V.-P.; Herlinda, B.-J. Antidepressant-like effect of Tagetes lucida Cav. extract in rats: involvement of the serotonergic system. The American Journal of Chinese Medicine. 2012, 40, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Shamim, S.; Younus, I.; Anwer, L.; Khaliq, S.A. Anxiolytic, antidepressant and inhibitory effect on MAO isoenzymes by Bougainvillea glabra flower extract in rats. Pakistan Journal of Pharmaceutical Sciences. 2021, 34, 1963–1968. [Google Scholar] [PubMed]
- Sarris, J.; Kavanagh, D.J.; Byrne, G.; Bone, K.; Adams, J.; Deed, G. The Kava Anxiety Depression Spectrum Study (KADSS): a randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum. Psychopharmacology. 2009, 205, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, A.; Parvin, N.; Raisi Dehkordi, Z.; Rafieian-Kopaei, M. The effect of valerian on the anxiety and depression symptoms of the menopause in women referred to shahrekord medical centers. Journal of Medicinal Plants. 2017, 16, 94–101. [Google Scholar]
- Tammadon, M.R.; Nobahar, M.; Hydarinia-Naieni, Z.; Ebrahimian, A.; Ghorbani, R.; Vafaei, A.A. The effects of valerian on sleep quality, depression, and state anxiety in hemodialysis patients: a randomized, double-blind, crossover clinical trial. Oman Medical Journal. 2021, 36, e255. [Google Scholar] [CrossRef]
- Doron, R.; Lotan, D.; Einat, N.; Yaffe, R.; Winer, A.; Marom, I.; et al. A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sciences. 2014, 94, 151–157. [Google Scholar] [CrossRef]
- Li, J.-M.; Yang, C.; Zhang, W.-Y.; Kong, L.-D. The effects of banxia houpu decoction on a chronic mild stress model of depression. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2003, 28, 55–59. [Google Scholar] [PubMed]
- Mayer, E.A. Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience. 2014, 34, 15490–15496. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Foster, J.A.; Neufeld, K.-A.M. Gut–brain axis: how the microbiome influences anxiety and depression. Trends in neurosciences. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar]
- Kelly, J.R.; Borre, Y.; O'Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of psychiatric research. 2016, 82, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology. 2015, 28, 203–209. [Google Scholar]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular psychiatry. 2016, 21, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clinics and practice. 2017, 7, 987. [Google Scholar] [CrossRef]
- Van de Wouw, M.; Boehme, M.; Lyte, J.M.; Wiley, N.; Strain, C.; O'Sullivan, O.; et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. The Journal of physiology. 2018, 596, 4923–4944. [Google Scholar] [CrossRef]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychotherapy and psychosomatics. 2016, 86, 31–46. [Google Scholar] [CrossRef]
- Dalile, B. Short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Li, Z.; Lai, J.; Zhang, P.; Ding, J.; Jiang, J.; Liu, C.; et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Molecular psychiatry. 2022, 27, 4123–4135. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain, behavior, and immunity. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in cellular neuroscience. 2015, 392. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kubera, M.; Leunis, J.-C.; Berk, M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. Journal of affective disorders. 2012, 141, 55–62. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015, 161, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain research. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; et al. GABA-modulating bacteria of the human gut microbiota. Nature microbiology. 2019, 4, 396–403. [Google Scholar] [CrossRef]
- Bear, T.L.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Advances in Nutrition. 2020, 11, 890–907. [Google Scholar] [CrossRef]
- Slyepchenko, A.; FCarvalho, A.; SCha, D.; Kasper, S.; SMcIntyre, R. Gut emotions-mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014, 13, 1770–1786. [Google Scholar]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Tian, P.; O'Riordan, K.J.; Lee Y-k Wang, G.; Zhao, J.; Zhang, H.; et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiology of stress. 2020, 12, 100216. [Google Scholar] [CrossRef]
- Tian, P.; Chen, Y.; Zhu, H.; Wang, L.; Qian, X.; Zou, R.; et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain, behavior, and immunity. 2022, 100, 233–241. [Google Scholar] [CrossRef]
- Tian, P.; Chen, Y.; Qian, X.; Zou, R.; Zhu, H.; Zhao, J.; et al. Pediococcus acidilactici CCFM6432 mitigates chronic stress-induced anxiety and gut microbial abnormalities. Food & Function. 2021, 12, 11241–11249. [Google Scholar]
- Knudsen, J.K.; Michaelsen, T.Y.; Bundgaard-Nielsen, C.; Nielsen, R.E.; Hjerrild, S.; Leutscher, P.; et al. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Scientific Reports. 2021, 11, 21869. [Google Scholar] [CrossRef]
- Doll, J.P.K.; Vázquez-Castellanos, J.F.; Schaub, A.C.; Schweinfurth, N.; Kettelhack, C.; Schneider, E.; et al. Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression-Case Report. Front Psychiatry. 2022, 13, 815422. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature reviews immunology. 2016, 16, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biological psychiatry. 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of interleukin-6 in depressive disorder. International journal of molecular sciences. 2020, 21, 2194. [Google Scholar] [CrossRef] [PubMed]
- Hodes, G.E.; Ménard, C.; Russo, S.J. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiology of stress. 2016, 4, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic medicine. 2009, 71, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O'connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews neuroscience. 2008, 9, 46–56. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Lawson, M.A.; Kelley, K.W. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011, 36, 426–436. [Google Scholar] [CrossRef]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: classical theories and new developments. Trends in neurosciences. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Kéri, S.; Szabó, C.; Kelemen, O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain, Behavior, and Immunity. 2014, 40, 235–243. [Google Scholar] [CrossRef]
- Isaković, J.; Gorup, D.; Mitrečić, D. Molecular mechanisms of microglia-and astrocyte-driven neurorestoration triggered by application of electromagnetic fields. Croatian medical journal. 2019, 60, 127–140. [Google Scholar] [CrossRef]
- He, G.-L.; Liu, Y.; Li, M.; Chen, C.-H.; Gao, P.; Yu, Z.-P.; Yang, X.-S. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses. Journal of Neuroinflammation. 2014, 11, 1–13. [Google Scholar] [CrossRef]
- Ng, Q.X.; Koh, S.S.H.; Chan, H.W.; Ho, C.Y.X. Clinical use of curcumin in depression: a meta-analysis. Journal of the American Medical Directors Association. 2017, 18, 503–508. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. Journal of affective disorders. 2014, 167, 368–375. [Google Scholar] [CrossRef]
- Yu, J.-J.; Pei, L.-B.; Zhang, Y.; Wen, Z.-Y.; Yang, J.-L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Journal of clinical psychopharmacology. 2015, 35, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; et al. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytotherapy research. 2014, 28, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Ramaholimihaso, T.; Bouazzaoui, F.; Kaladjian, A. Curcumin in depression: potential mechanisms of action and current evidence—a narrative review. Frontiers in psychiatry. 2020, 11, 572533. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; et al. Curcumin for depression: a meta-analysis. Critical reviews in food science and nutrition. 2020, 60, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, Z.; Gao, Z.; Xie, K.; Zhang, Q.; Jiang, H.; Pang, Q. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behavioural brain research. 2014, 271, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Lass, P.; Slawek, J.; Derejko, M.; Rubello, D. Neurological and psychiatric disorders in thyroid dysfunctions. The role of nuclear medicine: SPECT and PET imaging. Minerva endocrinologica. 2008, 33, 75–84. [Google Scholar] [PubMed]
- Kirkegaard, C.; Faber, J. The role of thyroid hormones in depression. European Journal of Endocrinology. 1998, 138, 1–9. [Google Scholar] [CrossRef]
- Ittermann, T.; Völzke, H.; Baumeister, S.E.; Appel, K.; Grabe, H.J. Diagnosed thyroid disorders are associated with depression and anxiety. Social psychiatry and psychiatric epidemiology. 2015, 50, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Goetz, T.; Glenn, T.; Whybrow, P. The thyroid-brain interaction in thyroid disorders and mood disorders. Journal of neuroendocrinology. 2008, 20, 1101–1114. [Google Scholar] [CrossRef] [PubMed]
- Nuguru, S.P.; Rachakonda, S.; Sripathi, S.; Khan, M.I.; Patel, N.; Meda, R.T. Hypothyroidism and depression: a narrative review. Cureus. 2022, 14. [Google Scholar] [CrossRef]
- Loh, H.H.; Lim, L.L.; Yee, A.; Loh, H.S. Association between subclinical hypothyroidism and depression: an updated systematic review and meta-analysis. BMC Psychiatry. 2019, 19, 12. [Google Scholar] [CrossRef]
- Cleare, A.; McGregor, A.; O'keane, V. Neuroendocrine evidence for an association between hypothyroidism, reduced central 5-HT activity and depression. Clinical endocrinology. 1995, 43, 713–719. [Google Scholar] [CrossRef]
- Duval, F.; Mokrani, M.-C.; Erb, A.; Danila, V.; Lopera, F.G.; Foucher, J.R.; Jeanjean, L.C. Thyroid axis activity and dopamine function in depression. Psychoneuroendocrinology. 2021, 128, 105219. [Google Scholar] [CrossRef]
- Swann, A. Thyroid hormone and norepinephrine: effects on alpha-2, beta, and reuptake sites in cerebral cortex and heart. Journal of neural transmission. 1988, 71, 195–205. [Google Scholar] [CrossRef]
- Haggerty Jr JJ, Prange Jr AJ. Borderline hypothyroidism and depression. Annual review of medicine. 1995, 46, 37–46. [CrossRef]
- Sullivan, P.; Wilson, D.; Mulder, R.; Joyce, P. The hypothalamic-pituitary-thyroid axis in major depression. Acta Psychiatrica Scandinavica. 1997, 95, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Hage, M.P.; Azar, S.T. The link between thyroid function and depression. Journal of thyroid research. 2011, 2012, 590648. [Google Scholar] [CrossRef] [PubMed]
- Hein, M.D.; Jackson, I.M. Thyroid function in psychiatric illness. General hospital psychiatry. 1990, 12, 232–244. [Google Scholar] [CrossRef]
- Kotkowska, Z.; Strzelecki, D. Depression and Autoimmune Hypothyroidism—Their Relationship and the Effects of Treating Psychiatric and Thyroid Disorders on Changes in Clinical and Biochemical Parameters Including BDNF and Other Cytokines—A Systematic Review. Pharmaceuticals. 2022, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Betsy, A.; Binitha, M.; Sarita, S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. International journal of trichology. 2013, 5, 40–42. [Google Scholar] [PubMed]
- Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proceedings of the nutrition society. 2019, 78, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: from pathophysiology to treatment. International journal of endocrinology. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Trifu, S.; Popescu, A.; Dragoi, A.; Trifu, A. Thyroid hormones as a third line of augmentation medication in treatment-resistant depression. Acta Endocrinológica (Bucharest). 2020, 16, 256. [Google Scholar] [CrossRef]
- Bauer, M.; Heinz, A.; Whybrow, P. Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Molecular psychiatry. 2002, 7, 140–156. [Google Scholar] [CrossRef]
- Ko, K.; Kopra, E.I.; Cleare, A.J.; Rucker, J.J. Psychedelic therapy for depressive symptoms: A systematic review and meta-analysis. Journal of Affective Disorders. 2023, 322, 194–204. [Google Scholar] [CrossRef]
- Leger, R.F.; Unterwald, E.M. Assessing the effects of methodological differences on outcomes in the use of psychedelics in the treatment of anxiety and depressive disorders: A systematic review and meta-analysis. Journal of Psychopharmacology. 2022, 36, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Luoma, J.B.; Chwyl, C.; Bathje, G.J.; Davis, A.K.; Lancelotta, R. A meta-analysis of placebo-controlled trials of psychedelic-assisted therapy. Journal of Psychoactive Drugs. 2020, 52, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Galvão-Coelho, N.L.; Marx, W.; Gonzalez, M.; Sinclair, J.; de Manincor, M.; Perkins, D.; Sarris, J. Classic serotonergic psychedelics for mood and depressive symptoms: a meta-analysis of mood disorder patients and healthy participants. Psychopharmacology. 2021, 238, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Shechet, B.; Nicholas, C.R.; Ng, C.W.; Deole, G.; Chen, Z.; Raison, C.L. Post-acute psychological effects of classical serotonergic psychedelics: a systematic review and meta-analysis. Psychological medicine. 2020, 50, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Muttoni, S.; Ardissino, M.; John, C. Classical psychedelics for the treatment of depression and anxiety: A systematic review. Journal of Affective Disorders. 2019, 258, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Li, N.-X.; Hu, Y.-R.; Chen, W.-N.; Zhang, B. Dose effect of psilocybin on primary and secondary depression: a preliminary systematic review and meta-analysis. Journal of Affective Disorders. 2022, 296, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Pace, B.T.; Nicholas, C.R.; Raison, C.L.; Hutson, P.R. The experimental effects of psilocybin on symptoms of anxiety and depression: A meta-analysis. Psychiatry Research. 2020, 284, 112749. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.A.; Carhart-Harris, R.; Nutt, D.J.; Erritzoe, D. Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies. Acta Psychiatrica Scandinavica. 2021, 143, 101–118. [Google Scholar] [CrossRef]
- Bahji, A.; Lunsky, I.; Gutierrez, G.; Vazquez, G. Efficacy and Safety of Four Psychedelic-Assisted Therapies for Adults with Symptoms of Depression, Anxiety, and Posttraumatic Stress Disorder: A Systematic Review and Meta-Analysis. Journal of Psychoactive Drugs. 2023, 1–16. [Google Scholar] [CrossRef]
- Sicignano, D.; Snow-Caroti, K.; Hernandez, A.V.; White, C.M. The Impact of Psychedelic Drugs on Anxiety and Depression in Advanced Cancer or other Life-threatening Disease: A Systematic Review With Meta-analysis. American Journal of Clinical Oncology. 2023, 46, 236–245. [Google Scholar] [CrossRef]
- Vargas, A.S.; Luís, Â.; Barroso, M.; Gallardo, E.; Pereira, L. Psilocybin as a New Approach to Treat Depression and Anxiety in the Context of Life-Threatening Diseases—A Systematic Review and Meta-Analysis of Clinical Trials. Biomedicines. 2020, 8, 331. [Google Scholar]
- Perez, N.; Langlest, F.; Mallet, L.; De Pieri, M.; Sentissi, O.; Thorens, G.; et al. Psilocybin-assisted therapy for depression: A systematic review and dose-response meta-analysis of human studies. European Neuropsychopharmacology. 2023, 76, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Newport, D.J.; Carpenter, L.L.; McDonald, W.M.; Potash, J.B.; Tohen, M.; Nemeroff, C.B. Ketamine and Other NMDA Antagonists: Early Clinical Trials and Possible Mechanisms in Depression. Am J Psychiatry. 2015, 172, 950–966. [Google Scholar]
- Bahji, A.; Lunsky, I.; Gutierrez, G.; Vazquez, G. Efficacy and Safety of Four Psychedelic-Assisted Therapies for Adults with Symptoms of Depression, Anxiety, and Posttraumatic Stress Disorder: A Systematic Review and Meta-Analysis. Journal of Psychoactive Drugs 1–16. [CrossRef]
- Sarris, J.; Perkins, D.; Cribb, L.; Schubert, V.; Opaleye, E.; Bouso, J.C.; et al. Ayahuasca use and reported effects on depression and anxiety symptoms: An international cross-sectional study of 11,912 consumers. Journal of Affective Disorders Reports. 2021, 4, 100098. [Google Scholar] [CrossRef]
- Galvão-Coelho, N.L.; Marx, W.; Gonzalez, M.; Sinclair, J.; de Manincor, M.; Perkins, D.; Sarris, J. Classic serotonergic psychedelics for mood and depressive symptoms: a meta-analysis of mood disorder patients and healthy participants. Psychopharmacology. 2021, 238, 341–354. [Google Scholar] [CrossRef]
- Dupuis, S.L.; Smale, B.J.A. An Examination of Relationship Between Psychological Well-Being and Depression and Leisure Activity Participation Among Older Adults. Loisir et Société / Society and Leisure. 1995, 18, 67–92. [Google Scholar] [CrossRef]
- Miyata, H. Impacts of reading habits on mindfulness and psychological status: A further analysis. WASEDA RILAS JOURNAL. 2020, 8, 207–218. [Google Scholar]
- Choi, N.G.; Kim, J.; DiNitto, D.M.; Marti, C.N. Perceived Social Cohesion, Frequency of Going Out, and Depressive Symptoms in Older Adults:Examination of Longitudinal Relationships. Gerontology and Geriatric Medicine. 2015, 1, 2333721415615478. [Google Scholar] [CrossRef]
- Hyun, S.; Lee, Y.; Park, S. No travel worsens depression: reciprocal relationship between travel and depression among older adults. Annals of General Psychiatry. 2022, 21, 31. [Google Scholar] [CrossRef]
- Downey, L.A.; Sarris, J.; Perkins, D. Legalization of psychedelic substances. JAMA. 2021, 326, 2434–2435. [Google Scholar] [CrossRef] [PubMed]
- Walsh, Z.; Thiessen, M.S. Psychedelics and the new behaviourism: considering the integration of third-wave behaviour therapies with psychedelic-assisted therapy. International Review of Psychiatry. 2018, 30, 343–349. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Kaelen, M.; Lövdén, M.; Nilsson, J.; Feilding, A.; Nutt, D.J.; Carhart-Harris, R.L. LSD-induced entropic brain activity predicts subsequent personality change. Human brain mapping. 2016, 37, 3203–3213. [Google Scholar] [CrossRef] [PubMed]
- Yaden, D.B.; Griffiths, R.R. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharmacology & Translational Science. 2020, 4, 568–572. [Google Scholar]
- Griffiths, R.; Richards, W.; Johnson, M.; McCann, U.; Jesse, R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J Psychopharmacol. 2008, 22, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Dyck, E.; Elcock, C. Reframing bummer trips: scientific and cultural explanations to adverse reactions to psychedelic drug use. The Social History of Alcohol and Drugs. 2020, 34, 271–296. [Google Scholar] [CrossRef]
- Kritzer, M.D.; Mischel, N.A.; Young, J.R.; Lai, C.S.; Masand, P.S.; Szabo, S.T.; Mathew, S.J. Ketamine for treatment of mood disorders and suicidality: A narrative review of recent progress. Ann Clin Psychiatry. 2022, 34, 33–43. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006, 63, 856–864. [Google Scholar] [CrossRef]
- Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013, 170, 1134–1142. [Google Scholar] [CrossRef]
- Kishimoto, T.; Chawla, J.M.; Hagi, K.; Zarate, C.A.; Kane, J.M.; Bauer, M.; Correll, C.U. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016, 46, 1459–1472. [Google Scholar] [CrossRef]
- Xu, Y.; Hackett, M.; Carter, G.; Loo, C.; Gálvez, V.; Glozier, N.; et al. Effects of Low-Dose and Very Low-Dose Ketamine among Patients with Major Depression: a Systematic Review and Meta-Analysis. Int J Neuropsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.T.; Ballard, E.D.; Bloch, M.H.; Mathew, S.J.; Murrough, J.W.; Feder, A.; et al. The Effect of a Single Dose of Intravenous Ketamine on Suicidal Ideation: A Systematic Review and Individual Participant Data Meta-Analysis. Am J Psychiatry. 2018, 175, 150–158. [Google Scholar] [CrossRef]
- Fava, M.; Freeman, M.P.; Flynn, M.; Judge, H.; Hoeppner, B.B.; Cusin, C.; et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020, 25, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.L.; Norris, S.; Talbot, J.; Birmingham, M.; Hatchard, T.; Ortiz, A.; et al. Single, Repeated, and Maintenance Ketamine Infusions for Treatment-Resistant Depression: A Randomized Controlled Trial. Am J Psychiatry. 2019, 176, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.B.; McIntyre, R.S.; Lipsitz, O.; Lee, Y.; Cha, D.S.; Nasri, F.; et al. Safety and tolerability of IV ketamine in adults with major depressive or bipolar disorder: results from the Canadian rapid treatment center of excellence. Expert Opin Drug Saf. 2020, 19, 1031–1040. [Google Scholar] [CrossRef]
- Sayin HU. Chapter 2 - Psychoactive Plants Used during Religious Rituals. In: Preedy VR, editor. Neuropathology of Drug Addictions and Substance Misuse. San Diego: Academic Press; 2016. p. 17-28.
- Guzmán, G.; Allen, J.; Gartz, J. A Worldwide geographical distribution of the Neurotropic Fungi, an analysis and discussion. Ann Mus Civ Rovereto. 1998, 14. [Google Scholar]
- Narby, J.; Pizuri, R.C. Plant teachers: Ayahuasca, tobacco, and the pursuit of knowledge; New World Library, 2021. [Google Scholar]
- Kaasik, H.; Kreegipuu, K. Ayahuasca Users in Estonia: Ceremonial Practices, Subjective Long-Term Effects, Mental Health, and Quality of Life. Journal of Psychoactive Drugs. 2020, 52, 255–263. [Google Scholar] [CrossRef]
- Fotiou, E.; Gearin, A.K. Purging and the body in the therapeutic use of ayahuasca. Social Science & Medicine. 2019, 239, 112532. [Google Scholar]
- Schmid, Y.; Gasser, P.; Oehen, P.; Liechti, M.E. Acute subjective effects in LSD- and MDMA-assisted psychotherapy. Journal of Psychopharmacology. 2021, 35, 362–374. [Google Scholar] [CrossRef]
- Holze, F.; Gasser, P.; Müller, F.; Dolder, P.C.; Liechti, M.E. Lysergic Acid Diethylamide–Assisted Therapy in Patients With Anxiety With and Without a Life-Threatening Illness: A Randomized, Double-Blind, Placebo-Controlled Phase II Study. Biological Psychiatry. 2023, 93, 215–223. [Google Scholar] [CrossRef]
- Sarris, J.; O’Neil, A.; Coulson, C.E.; Schweitzer, I.; Berk, M. Lifestyle medicine for depression. BMC psychiatry. 2014, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.-H.; Ho, F.Y.-Y.; Shi, N.-K.; Sarris, J.; Chung, K.-F.; Yeung, W.-F. Lifestyle medicine for depression: A meta-analysis of randomized controlled trials. Journal of Affective Disorders. 2021, 284, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gómez, I.; Bellón, J.Á.; Resurrección, D.M.; Cuijpers, P.; Moreno-Peral, P.; Rigabert, A.; et al. Effectiveness of universal multiple-risk lifestyle interventions in reducing depressive symptoms: Systematic review and meta-analysis. Preventive Medicine. 2020, 134, 106067. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Hood, S.D.; Drummond, P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. Journal of affective disorders. 2013, 148, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Sarris, J.; Coulson, C.E.; Jacka, F.N. Lifestyle management of unipolar depression. Acta Psychiatrica Scandinavica. 2013, 127, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, J.; Nawijn, L.; van Tol, M.-J.; van der Wee, N.J.; Veltman, D.J.; Penninx, B.W. Associations between depression, lifestyle and brain structure: A longitudinal MRI study. NeuroImage. 2021, 231, 117834. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Arafa, A.; Liu, K.; Eshak, E.S.; Hu, Y.; Dong, J.-Y. Combined healthy lifestyle and depressive symptoms: a meta-analysis of observational studies. Journal of affective disorders. 2021, 289, 144–150. [Google Scholar] [CrossRef]
- Van Dammen, L.; Wekker, V.; De Rooij, S.; Groen, H.; Hoek, A.; Roseboom, T. A systematic review and meta-analysis of lifestyle interventions in women of reproductive age with overweight or obesity: the effects on symptoms of depression and anxiety. Obesity reviews. 2018, 19, 1679–1687. [Google Scholar] [CrossRef]
- Bruins, J.; Jörg, F.; Bruggeman, R.; Slooff, C.; Corpeleijn, E.; Pijnenborg, M. The Effects of Lifestyle Interventions on (Long-Term) Weight Management, Cardiometabolic Risk and Depressive Symptoms in People with Psychotic Disorders: A Meta-Analysis. PLOS ONE. 2014, 9, e112276. [Google Scholar] [CrossRef]
- Pinniger, R.; Brown, R.F.; Thorsteinsson, E.B.; McKinley, P. Argentine tango dance compared to mindfulness meditation and a waiting-list control: A randomised trial for treating depression. Complementary Therapies in Medicine. 2012, 20, 377–384. [Google Scholar] [CrossRef]
- McCarney, R.W.; Schulz, J.; Grey, A.R. Effectiveness of mindfulness-based therapies in reducing symptoms of depression: A meta-analysis. European Journal of Psychotherapy & Counselling. 2012, 14, 279–299. [Google Scholar]
- Gee, B.; Orchard, F.; Clarke, E.; Joy, A.; Clarke, T.; Reynolds, S. The effect of non-pharmacological sleep interventions on depression symptoms: A meta-analysis of randomised controlled trials. Sleep Medicine Reviews. 2019, 43, 118–128. [Google Scholar] [CrossRef]
- Furuyashiki, A.; Tabuchi, K.; Norikoshi, K.; Kobayashi, T.; Oriyama, S. A comparative study of the physiological and psychological effects of forest bathing (Shinrin-yoku) on working age people with and without depressive tendencies. Environmental Health and Preventive Medicine. 2019, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ochiai, H.; Ochiai, T.; Takayama, N.; Kumeda, S.; Miura, T.; et al. Effects of forest bathing (shinrin-yoku) on serotonin in serum, depressive symptoms and subjective sleep quality in middle-aged males. Environmental Health and Preventive Medicine. 2022, 27, 44. [Google Scholar] [CrossRef] [PubMed]
- Souter, M.A.; Miller, M.D. Do Animal-Assisted Activities Effectively Treat Depression? A Meta-Analysis. 2015. [Google Scholar] [CrossRef]
- Stice, E.; Burton, E.; Kate Bearman, S.; Rohde, P. Randomized trial of a brief depression prevention program: An elusive search for a psychosocial placebo control condition. Behaviour Research and Therapy. 2007, 45, 863–876. [Google Scholar] [CrossRef]
- Chen, Y.; Ishak, Z. Gratitude Diary: The Impact on Depression Symptoms. Psychology. 2022, 13, 443–453. [Google Scholar] [CrossRef]
- Cregg, D.R.; Cheavens, J.S. Gratitude Interventions: Effective Self-help? A Meta-analysis of the Impact on Symptoms of Depression and Anxiety. Journal of Happiness Studies. 2021, 22, 413–445. [Google Scholar] [CrossRef]
- Feng, L.; Yin, R. Social Support and Hope Mediate the Relationship Between Gratitude and Depression Among Front-Line Medical Staff During the Pandemic of COVID-19. Frontiers in Psychology. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Bryan, J.L.; Young, C.M.; Lucas, S.; Quist, M.C. Should I say thank you? Gratitude encourages cognitive reappraisal and buffers the negative impact of ambivalence over emotional expression on depression. Personality and Individual Differences. 2018, 120, 253–258. [Google Scholar] [CrossRef]
- Kaniuka, A.R.; Kelliher Rabon, J.; Brooks, B.D.; Sirois, F.; Kleiman, E.; Hirsch, J.K. Gratitude and suicide risk among college students: Substantiating the protective benefits of being thankful. Journal of American College Health. 2021, 69, 660–667. [Google Scholar] [CrossRef]
- Hanusch, K.U.; Janssen, C.W. The impact of whole-body hyperthermia interventions on mood and depression - are we ready for recommendations for clinical application? Int J Hyperthermia. 2019, 36, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Stankovic, M.; Spuerck, I.; Shokraneh, F. Goal setting with young people for anxiety and depression: What works for whom in therapeutic relationships? A literature review and insight analysis. BMC Psychology. 2022, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.D.; Oancea, S.C.; Nucci, L.B.; Vogeltanz-Holm, N. The association between physical activity and depression among individuals residing in Brazil. Soc Psychiatry Psychiatr Epidemiol. 2018, 53, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.; Koyanagi, A.; Schuch, F.B.; Firth, J.; Rosenbaum, S.; Veronese, N.; et al. Physical activity and depression: a large cross-sectional, population-based study across 36 low- and middle-income countries. Acta Psychiatr Scand. 2016, 134, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.; Garcia, L.; Abbas, A.; Strain, T.; Schuch, F.B.; Golubic, R.; et al. Association Between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2022, 79, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Laird, E.; Rasmussen, C.L.; Kenny, R.A.; Herring, M.P. Physical Activity Dose and Depression in a Cohort of Older Adults in The Irish Longitudinal Study on Ageing. JAMA Netw Open. 2023, 6, e2322489. [Google Scholar] [CrossRef]
- Schuch, F.B.; Vancampfort, D.; Richards, J.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J Psychiatr Res. 2016, 77, 42–51. [Google Scholar] [CrossRef]
- Krogh, J.; Hjorthøj, C.; Speyer, H.; Gluud, C.; Nordentoft, M. Exercise for patients with major depression: a systematic review with meta-analysis and trial sequential analysis. BMJ Open. 2017, 7, e014820. [Google Scholar] [CrossRef]
- Dunn, A.L.; Trivedi, M.H.; Kampert, J.B.; Clark, C.G.; Chambliss, H.O. Exercise treatment for depression: efficacy and dose response. Am J Prev Med. 2005, 28, 1–8. [Google Scholar] [CrossRef]
- Meyer, J.D.; Koltyn, K.F.; Stegner, A.J.; Kim, J.S.; Cook, D.B. Influence of Exercise Intensity for Improving Depressed Mood in Depression: A Dose-Response Study. Behav Ther. 2016, 47, 527–537. [Google Scholar] [CrossRef]
- Lavebratt, C.; Herring, M.P.; Liu, J.J.; Wei, Y.B.; Bossoli, D.; Hallgren, M.; Forsell, Y. Interleukin-6 and depressive symptom severity in response to physical exercise. Psychiatry Res. 2017, 252, 270–276. [Google Scholar] [CrossRef]
- Phillips, W.M. Purpose in life, depression, and locus of control. Journal of Clinical Psychology. 1980, 36, 661–667. [Google Scholar] [CrossRef]
- Robak, R.W.; Griffin, P.W. Purpose in life: What is its relationship to happiness, depression, and grieving? North American Journal of Psychology. 2000, 2, 113–119. [Google Scholar]
- Jones, E. COVID-19 and the Blitz compared: mental health outcomes in the, U.K. The Lancet Psychiatry. 2021, 8, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Coverdale, B.J. Evaluating the Effectiveness of Upward Bound Programs; The Ohio State University, 2009. [Google Scholar]
- Rodiek, S. Influence of an outdoor garden on mood and stress in older persons. Journal of Therapeutic Horticulture. 2002, 13, 13–21. [Google Scholar]
- Dinas, P.; Koutedakis, Y.; Flouris, A. Effects of exercise and physical activity on depression. Irish journal of medical science. 2011, 180, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ewert, A. The Effects of Outdoor Adventure Activities Upon Self-Concept. 1977.
- Emmons, R.A.; Crumpler, C.A. Gratitude as a Human Strength: Appraising the Evidence. Journal of Social and Clinical Psychology. 2000, 19, 56–69. [Google Scholar] [CrossRef]
- Gogo, A.; Osta, A.; McClafferty, H.; Rana, D.T. Cultivating a way of being and doing: Individual strategies for physician well-being and resilience. Curr Probl Pediatr Adolesc Health Care. 2019, 49, 100663. [Google Scholar] [CrossRef]
- Davis, D.E.; Choe, E.; Meyers, J.; Wade, N.; Varjas, K.; Gifford, A.; et al. Thankful for the little things: A meta-analysis of gratitude interventions. J Couns Psychol. 2016, 63, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sheng, J.; Li, B.; Zhang, X. Recent advances in non-invasive brain stimulation for major depressive disorder. Fronteirs in Human Neuroscience. 2017, 11, 526. [Google Scholar] [CrossRef]
- Brononi, A.R.; Sampaio-Junior, B.; Moffa, A.H.; Aparicio, L.; Gordon, P.; Klein, I.; Rios, R.M. Noninvasive brain stimulation in psychiatric disorders: a primer. Brazilian Journal of Psychiatry. 2019, 4, 70–81. [Google Scholar] [CrossRef]
- Dunlop, K.; Hanlon, C.A.; Downar, J. Noninvasive brain stimulation treatments for addiction and major depression. Annals of the New York Academy of Sciences. 2017, 1394, 31–54. [Google Scholar] [CrossRef]
- Mutz, J.; Edgcumbe, D.R.; Brunoni, A.R.; Fu, C.H. Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: A systematic review and meta-analysis of randomised sham-controlled trials. Neuroscience and Biohevioral Reviews. 2018, 92, 291–303. [Google Scholar] [CrossRef]
- McClure, D.; Greenman, S.C.; Koppulu, S.S.; Varvara, M.; Yaseen, Z.S.; Galynker, I.I. A pilot study of safety and efficacy of cranial electrotherapy stimulation in treatment of bipolar II depression. J Nerv Ment Dis. 2015, 203, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Hussain, J.; Cohen, M. Clinical effects of regular dry sauna bathing: A systematic review. Evidence-Based Complementary and Alternative Medicine. 2018, 2018, 1857413. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, J.A.; Laukkanen, T.; Kunustor, S.K. Cardiovascular and other health benefits of sauna bathing: A review of the evidence. Mayo Clin Proc. 2018, 93, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, T.; Khan, H.; Zaccardi, F.; Laukkanen, J.A. Association between sauna bathing and fatal cardiovascular and all-cuase mortality. JAMA Intern Med. 2015, 175, 542–548. [Google Scholar] [CrossRef]
- Laukkanen, T.; Kunutsor, S.; Kauhanen, J.; Laukkanen, J.A. Sauna bathing is inversely associated with dementia and Alzheimer's disease in middle-aged Finnish men. Age & Ageing. 2017, 46, 245–249. [Google Scholar]
- Kunutsor, S.K.; Khan, H.; Laukkanen, T.; Laukkanen, J.A. Joint associations of sauna bathing and cardiorespiratory fitness on cardiovascular and all-cause mortality risk: a long-term prospective cohort study. Annals of Medicine. 2018, 50, 139–146. [Google Scholar] [CrossRef]
- Scoon, G.S.; Hopkins, W.G.; Mayhew, S.; Cotter, J.D. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. Journal of Science and Medicine in Sport. 2007, 10, 259–262. [Google Scholar] [CrossRef]
- Flux, M.C.; Smith, D.G.; Allen, J.J.B.; Mehl, M.R.; Medrano, A.; Begay, T.K.; et al. Association of plasma cytokines and antidepressant response following mild-intensity whole-body hyperthermia in major depressive disorder. Transl Psychiatry. 2023, 13, 132. [Google Scholar] [CrossRef]
- Amano, K.; Yanagihori, R.; Tei, C. Waon therapyis effective as the treatment of myalgic encephalomyelitis/Chronic fatigue syndrome. J Jpn Soc Balneol Climatol Phys Med. 2015, 78, 285–302. [Google Scholar]
- Soejima, Y.; Munemoto, T.; Masuda, A.; Uwatoko, Y.; Miyata, M.; Tei, C. Effects of Waon therapy on chronic fatigue syndrome: A pilot study. Intern Med. 2015, 54, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Lowry, C.A.; Hale, M.W.; Evans, A.K.; Heerkens, J.; Staub, D.R.; Gasser, P.J.; Shekhar, A. Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci. 2008, 1148, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Hanusch, K.U.; Janssen, C.H.; Billheimer, D.; Jenkins, I.; Spurgeon, E.; Lowry, C.A.; Raison, C.L. Whole-body hyperthermia for the treatment of major depression: associations with thermoregulatory cooling. Am J Psychiatry. 2013, 170, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Janssen, C.W.; Lowry, C.A.; Mehl, M.R.; Allen, J.J.; Kelly, K.L. Whole-body hyperthermia for the treatment of major depressive disorder.A randomized Clinical Trial. JAMA Psychiatry. 2016, 73, 789–795. [Google Scholar] [CrossRef]
- Drevets, W.C.; Bogers, W.; Raichle, M.E. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002, 12, 527–544. [Google Scholar] [CrossRef]
- Bansal, Y.; Kuhad, A. Mitochondrial Dysfunction in Depression. Curr Neuropharmacol. 2016, 14, 610–618. [Google Scholar] [CrossRef]
- Gardner, A.; Johansson, A.; Wibom, R.; Nennesmo, I.; von Döbeln, U.; Hagenfeldt, L.; Hällström, T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003, 76, 55–68. [Google Scholar] [CrossRef]
- Rezin, G.T.; Cardoso, M.R.; Gonçalves, C.L.; Scaini, G.; Fraga, D.B.; Riegel, R.E.; et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int. 2008, 53, 395–400. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; Böck, C.; Salinas-Manrique, J.; Kolassa, S.; Calzia, E.; Dietrich, D.E.; Kolassa, I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry. 2014, 4, e397. [Google Scholar] [CrossRef] [PubMed]
- Hroudová, J.; Fišar, Z.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013, 13, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Askalsky, P.; Losifescu, D.V. Transcranial photobiomodulation for the management of depression: Current perspectives. Neuropsychiatric Disease and Treatment. 2019, 15, 3255–3272. [Google Scholar] [CrossRef]
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical. 2016, 6, 113–124. [Google Scholar] [CrossRef]
- Salehpour, F.; Ahmadian, N.; Rasta, S.H.; Farhoudi, M.; Karimi, P.; Sadigh-Eteghad, S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging. 2017, 58, 140–150. [Google Scholar] [CrossRef]
- Wang, X.; Tian, F.; Reddy, D.D.; Nalawade, S.S.; Barrett, D.W.; Gonzalez-Lima, F.; Liu, H. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017, 37, 3789–3802. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, T.H.; Wider, J.M.; Lee, I.; Reynolds, C.A.; Liu, J.; Lepore, B.; et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep. 2018, 8, 3481. [Google Scholar] [CrossRef]
- Oron, U.; Ilic, S.; De Taboada, L.; Streeter, J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007, 25, 180–182. [Google Scholar] [CrossRef]
- Wu, Q.; Xuan, W.; Ando, T.; Xu, T.; Huang, L.; Huang, Y.Y.; et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med. 2012, 44, 218–226. [Google Scholar] [CrossRef]
- Gabel, C.P.; Petrie, S.R.; Mischoulon, D.; Hamblin, M.R.; Yeung, A.; Sangermano, L.; Cassano, P. A case control series for the effect of photobiomodulation in patients with low back pain and concurrent depression. Laser Ther. 2018, 27, 167–173. [Google Scholar] [CrossRef]
- Oron, A.; Oron, U. Low-Level Laser Therapy to the Bone Marrow Ameliorates Neurodegenerative Disease Progression in a Mouse Model of Alzheimer's Disease: A Minireview. Photomed Laser Surg. 2016, 34, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Real, T. I don't want to talk about it: Overcoming the secret legacy of male depression: Simon and Schuster; 1998.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).