Submitted:
20 February 2024
Posted:
20 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
3. Results
4. Discussion
4.1. Threats to Human Environmental Health and Advanced Treatment Technologies
4.2. Big Data and Machine Learning: Integrating Big Data and Machine Learning
5. Conclusion
References
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. International Journal of physical sciences 2007, 2, 112–118. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology 2021, 227. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids 2019, 290, 111197. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology 2012, 133–164. [Google Scholar]
- RoyChowdhury, A.; Datta, R.; Sarkar, D. Heavy metal pollution and remediation. In Green chemistry; Elsevier, 2018; pp. 359–373. [Google Scholar]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Munir, H.M.S.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental research 2022, 113918. [Google Scholar] [CrossRef] [PubMed]
- Kapahi, M.; Sachdeva, S. Bioremediation options for heavy metal pollution. Journal of health and pollution 2019, 9, 191203. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and environmental soil science 2014, 2014. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Duc, P.A.; Rangasamy, G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Chemosphere 2023, 313, 137323. [Google Scholar] [CrossRef]
- Sen Gupta, G.; Yadav, G.; Tiwari, S. Bioremediation of heavy metals: a new approach to sustainable agriculture. Restoration of wetland ecosystem: a trajectory towards a sustainable environment 2020, 195–226. [Google Scholar]
- Li, C.; Ji, X.; Luo, X. Phytoremediation of heavy metal pollution: A bibliometric and scientometric analysis from 1989 to 2018. International journal of environmental research and public health 2019, 16, 4755. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, J.; Liu, Q.; Dou, L.; Qu, Y.; Shi, H.; Sun, Y.; Chen, H.; Tian, Y.; Wu, F. Accurate Prediction of Soil Heavy Metal Pollution Using an Improved Machine Learning Method: A Case Study in the Pearl River Delta, China. Environmental Science & Technology 2023. [Google Scholar]
- Huang, G.; Wang, X.; Chen, D.; Wang, Y.; Zhu, S.; Zhang, T.; Liao, L.; Tian, Z.; Wei, N. A hybrid data-driven framework for diagnosing contributing factors for soil heavy metal contaminations using machine learning and spatial clustering analysis. Journal of Hazardous Materials 2022, 437, 129324. [Google Scholar] [CrossRef] [PubMed]
- Steffi, P.F.; Thirumalaiyammal, B.; Anburaj, R.; Mishel, P.F. Artificial Intelligence in Bioremediation Modelling and Clean-Up of Contaminated Sites: Recent Advances, Challenges and Opportunities. Omics Insights in Environmental Bioremediation 2022, 683–702. [Google Scholar]
- Gupta, P.K.; Yadav, B.; Kumar, A.; Himanshu, S.K. Machine learning and artificial intelligence application in constructed wetlands for industrial effluent treatment: advances and challenges in assessment and bioremediation modeling. Bioremediation for Environmental Sustainability 2021, 403–414. [Google Scholar]
- Li, H.; Zhou, Z.; Long, T.; Wei, Y.; Xu, J.; Liu, S.; Wang, X. Big-data analysis and machine learning based on oil pollution remediation cases from CERCLA database. Energies 2022, 15, 5698. [Google Scholar] [CrossRef]
- Gupta, S.; Aga, D.; Pruden, A.; Zhang, L.; Vikesland, P. Data analytics for environmental science and engineering research. Environmental Science & Technology 2021, 55, 10895–10907. [Google Scholar]
- Dutta, K.; Shityakov, S.; Khalifa, I. New trends in bioremediation technologies toward environment-friendly society: a mini-review. Frontiers in Bioengineering and Biotechnology 2021, 9, 666858. [Google Scholar] [CrossRef]
- Kumar, P.T.K.; Vinod, P.T.; Phoha, V.V.; Iyengar, S.S.; Iyengar, P. Design of a smart biomarker for bioremediation: a machine learning approach. Computers in Biology and Medicine 2011, 41, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: an alarming threat to environment and human health. Environmental biotechnology: For sustainable future 2019, 103–125. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. British medical bulletin 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture 2020, 6, 1783174. [Google Scholar]
- Jasu, A.; Ray, R.R. Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology 2021, 37, 102183. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of environmental management 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 2020, 11, 359. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed]
- Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Application of life cycle assessment as a tool for evaluating the sustainability of contaminated sites remediation: a systematic and bibliographic analysis. Science of the Total Environment 2019, 672, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.A.; Senanu, L.D.; Amenyeku, G.; Gyan, M.A.; Forson, D.; Safo, A.-R. Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon 2023. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ding, Y. Tackling Heavy Metal Pollution: Evaluating Governance Models and Frameworks. Sustainability 2023, 15, 15863. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A bibliography study of Shewanella oneidensis biofilm. FEMS Microbiology Ecology 2023, 99, fiad124. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World neurosurgery 2020, 137, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Wong, D. VOSviewer. Technical Services Quarterly 2018, 35, 219–220. [Google Scholar] [CrossRef]
- Ding, Y. Heavy metal pollution and transboundary issues in ASEAN countries. Water Policy 2019, 21, 1096–1106. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, S.M. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. International Journal of Environmental Science and Technology 2015, 12, 353–366. [Google Scholar] [CrossRef]
- Boyd, R.S. Heavy metal pollutants and chemical ecology: exploring new frontiers. Journal of chemical ecology 2010, 36, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water quality degradation due to heavy metal contamination: health impacts and eco-friendly approaches for heavy metal remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chinese Science Bulletin 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience 2020, 10, 2148–2166. [Google Scholar]
- Zhang, B.; Jiang, Y.; Ding, Y.; Zhang, J.; Balasubramanian, R. Iron-catalyzed synthesis of biowaste-derived magnetic carbonaceous materials for environmental remediation applications. Separation and Purification Technology 2022, 295, 121321. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Cohen, Y.; Cao, B. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Applied microbiology and biotechnology 2015, 99, 1967–1976. [Google Scholar] [CrossRef]
- Hou, L.; Li, K.; Ding, Y.; Li, Y.; Chen, J.; Wu, X.; Li, X. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 2012, 87, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, B.; Shen, X.; Zhong, L.; Li, X. Foam-assisted delivery of nanoscale zero valent iron in porous media. Journal of Environmental Engineering 2013, 139, 1206–1212. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation 2021, 22, 101504. [Google Scholar]
- Richter, C.H.; Xu, J.; Wilcox, B.A. Opportunities and challenges of the ecosystem approach. Futures 2015, 67, 40–51. [Google Scholar] [CrossRef]
- Zhang, Z.; Weng, Y.; Ding, Y.; Qian, S. Use of genetically modified bacteria to repair cracks in concrete. Materials 2019, 12, 3912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, D.; Ding, Y.; Wang, S. Mechanical performance of strain-hardening cementitious composites (SHCC) with bacterial addition. Journal of Infrastructure Preservation and Resilience 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, Y.; Qian, S. Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Construction and Building Materials 2019, 196, 195–203. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Y.; Hu, Y.; Cao, B.; Rice, S.A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS synthetic biology 2015, 4, 815–823. [Google Scholar] [CrossRef]
- Zhao, C.-e.; Chen, J.; Ding, Y.; Wang, V.B.; Bao, B.; Kjelleberg, S.; Cao, B.; Loo, S.C.J.; Wang, L.; Huang, W. Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Applied Materials & Interfaces 2015, 7, 14501–14505. [Google Scholar]
- Zhao, C.e.; Wu, J.; Ding, Y.; Wang, V.B.; Zhang, Y.; Kjelleberg, S.; Loo, J.S.C.; Cao, B.; Zhang, Q. Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2015, 2, 654–658. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, N.; Du, Y.; Ji, L.; Cao, B. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Applied and environmental microbiology 2014, 80, 1498–1506. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Szymanski, C.; Fredrickson, J.; Shi, L.; Cao, B.; Zhu, Z.; Yu, X.-Y. In situ molecular imaging of the biofilm and its matrix. Analytical chemistry 2016, 88, 11244–11252. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Xiong, Y.; Zhu, Z.; Yu, X.-Y. Molecular evidence of a toxic effect on a biofilm and its matrix. Analyst 2019, 144, 2498–2503. [Google Scholar] [CrossRef]
- Enuneku, A.; Omoruyi, O.; Tongo, I.; Ogbomida, E.; Ogbeide, O.; Ezemonye, L. Evaluating the potential health risks of heavy metal pollution in sediment and selected benthic fauna of Benin River, Southern Nigeria. Applied water science 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Coe, J.; Atay, M. Evaluating impact of race in facial recognition across machine learning and deep learning algorithms. Computers 2021, 10, 113. [Google Scholar] [CrossRef]
- Bachute, M.R.; Subhedar, J.M. Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications 2021, 6, 100164. [Google Scholar] [CrossRef]
- Shafaei, S.; Kugele, S.; Osman, M.H.; Knoll, A. Uncertainty in machine learning: A safety perspective on autonomous driving. 2018; pp. 458–464. [Google Scholar]
- Chen, S.; Ding, Y. Machine Learning and Its Applications in Studying the Geographical Distribution of Ants. Diversity 2022, 14, 706. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A Machine Learning Approach to Predicting Academic Performance in Pennsylvania’s Schools. Social Sciences 2023, 12, 118. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. Environmental Research Letters 2019, 14, 073001. [Google Scholar] [CrossRef]
- Wijaya, J.; Byeon, H.; Jung, W.; Park, J.; Oh, S. Machine learning modeling using microbiome data reveal microbial indicator for oil-contaminated groundwater. Journal of Water Process Engineering 2023, 53, 103610. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
