Submitted:
17 February 2024
Posted:
19 February 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Treatment of pediatric-onset multiple sclerosis
Disease Modifying Therapies
Interferons
Glatiramer acetate
Fingolimod
Teriflunomide
Azathioprine
Cyclophosphamide
Dimethyl fumarate
Rituximab
| Medication | Proposed Mechanism of Action | Dosing in pediatric population | Studies |
|---|---|---|---|
| Interferon-β |
reduction of lymphocyte cytokines inhibition of autoreactive T-cells induction of anti-inflammatory mediators inhibition of immune cell trafficking across the BBB1 |
in children > 10 years INF-β-1a: ΙΜ8 30 mcg once weekly INF-β-1a: sc9 22 mcg or 44 mcg three times weekly INF-β-1b: sc 8 250mcg every other day |
IM INFβ-1a: Ghezzi et al. [37] sc INFβ-1a: observational studies Pohl et al., REPLAY Study Group [33,34] sc INF-β-1b: observational studies Banwell et al., BETAPAEDIC study [35,36] Peginterferonβ-1a: NCT03958877 Open-label, randomized, active controlled – currently ongoing |
| Glatiramer acetate | shifting Th1 cells2 to Th2 (reg) cells3 | in children > 10 years sc 20 mg daily or sc 40 mg three times per week |
ITEMS, cohort study [40] |
| Fingolimod | retaining T-cells in lymph nodes reducing circulation of active T-cells in CNS4 |
Oral 0.25 mg daily for ≤40 kg, 0.5 mg daily for >40 kg |
PARADIGMS [55], double-blind, randomized, active comparator |
| Teriflunomide | inhibition DHODH5 in lymphocytes reducing circulation of active T- and B-cells in CNS |
14 mg daily ≥40 kg and 7 mg daily for <40 kg |
TERIKIDS [59], double-blind, randomized, placebo-controlled |
| Azathioprine | inhibition of DNA synthesis cytotoxic immune cell depletion |
2-3 mg/kg daily | |
| Cyclophosphamide | cytotoxic immune cell depletion | Induction regimen of 5 doses provided over 8 days followed by monthly pulse treatments or single induction course of 5 doses over 8 days or monthly without induction 600 to 1,000 mg/m2 per dose |
Observational, Makhani N et al. [72] |
| Dimethyl fumarate | anti-inflammatory properties in microglia, astrocytes neuroprotection |
Oral 120 mg BID10 for 7 days, then 240 mg BID | FOCUS, phase II, single-arm, open-label CONNECTED, follow-up of FOCUS [77,78] |
| Rituximab |
anti-CD20 monoclonal antibody, B-cell depletion |
750 mg/m2 (500-1000 mg) every 6 months, induction with 2 doses separated by 2 weeks |
Observational, Salzer J et al., Krysko KM et al. [80,81] |
| Daclizumab | anti-CD25 monoclonal antibody inhibition of IL-26 reduction of T-cell activation |
N/A | N/A |
| Alemtuzumab | anti-CD52 monoclonal antibody T-and B-cell depletion |
1st course: 60 mg over 5 days 2nd course (one year later): 36 mg over 3 days |
Open-label, non-randomized – currently ongoing |
| Ocrelizumab |
anti-CD20 monoclonal antibody, B-cell depletion |
600 mg IV every 6 months (1st dose: 2 doses of 300 mg IV separated by 2 weeks) |
Open-label, PK/PD11 study - currently ongoing |
| Natalizumab | anti-α4β1-integrin monoclonal antibody inhibition of T- and B-cell migration into CNS |
IV infusion 300 mg every 4 weeks | Open-label, PK/PD study - no results posted Retrospective observational - no results posted |
| Mitoxantrone | inhibition of DNA and RNA synthesis inhibition B-, T-cell and macrophage proliferation decrease of TNFa7 and IL-2 |
IV 12-14 mg/m2 every 3 month | Off label |
| Ofatumumab |
anti-CD20 monoclonal antibody, B-cell depletion |
N/A | NEOS, 3-arm double-blind, non-inferiority, randomized – currently ongoing |
| Siponimod | retaining T-cells in lymph nodes reducing circulation of active T-cells in CNS |
N/A | NEOS, 3-arm double-blind, non-inferiority, randomized – currently ongoing |
Daclizumab
Alemtuzumab
Ocrelizumab
Natalizumab
Mitoxantrone
Ofatumumab
Siponimod
Vitamin D
T-cell Receptor (TCR) vaccine
Stem cell therapy
Discussion
Conclusion
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet (London, England) 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nature reviews. Immunology 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Jeong, A.; Oleske, D.M.; Holman, J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature. J Child Neurol 2019, 34, 705–712. [Google Scholar] [CrossRef]
- Jakimovski, D.; Awan, S.; Eckert, S.P.; Farooq, O.; Weinstock-Guttman, B. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. CNS drugs 2022, 36, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Balijepalli, C.; Desai, K.; Gullapalli, L.; Druyts, E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. Mult Scler Relat Disord 2020, 44, 102260. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.B.D.M.S. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Neurology 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Banwell, B.; Ghezzi, A.; Bar-Or, A.; Mikaeloff, Y.; Tardieu, M. Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. The Lancet. Neurology 2007, 6, 887–902. [Google Scholar] [CrossRef]
- Mikaeloff, Y.; Caridade, G.; Assi, S.; Suissa, S.; Tardieu, M. Prognostic factors for early severity in a childhood multiple sclerosis cohort. Pediatrics 2006, 118, 1133–1139. [Google Scholar] [CrossRef]
- Willer, C.J.; Dyment, D.A.; Risch, N.J.; Sadovnick, A.D.; Ebers, G.C.; Canadian Collaborative Study, G. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A 2003, 100, 12877–12882. [Google Scholar] [CrossRef]
- Banwell, B.L. Pediatric multiple sclerosis. Current neurology and neuroscience reports 2004, 4, 245–252. [Google Scholar] [CrossRef]
- Vargas-Lowy, D.; Chitnis, T. Pathogenesis of pediatric multiple sclerosis. J Child Neurol 2012, 27, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, J.L.; Perera, D.I.; van der Mei, A.F.; Ponsonby, A.L.; Polanowski, A.M.; Thomson, R.J.; Taylor, B.V.; McKay, J.D.; Stankovich, J.; Dwyer, T. Past environmental sun exposure and risk of multiple sclerosis: a role for the Cdx-2 Vitamin D receptor variant in this interaction. Multiple sclerosis (Houndmills, Basingstoke, England) 2009, 15, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Mikaeloff, Y.; Caridade, G.; Tardieu, M.; Suissa, S.; group, K.s. Parental smoking at home and the risk of childhood-onset multiple sclerosis in children. Brain 2007, 130, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Krupp, L.; Kennedy, J.; Tellier, R.; Tenembaum, S.; Ness, J.; Belman, A.; Boiko, A.; Bykova, O.; Waubant, E.; et al. Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. The Lancet. Neurology 2007, 6, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Renoux, C.; Vukusic, S.; Mikaeloff, Y.; Edan, G.; Clanet, M.; Dubois, B.; Debouverie, M.; Brochet, B.; Lebrun-Frenay, C.; Pelletier, J.; et al. Natural history of multiple sclerosis with childhood onset. The New England journal of medicine 2007, 356, 2603–2613. [Google Scholar] [CrossRef]
- Deiva, K. Pediatric onset multiple sclerosis. Rev Neurol (Paris) 2020, 176, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: progress and challenges. Lancet (London, England) 2017, 389, 1336–1346. [Google Scholar] [CrossRef]
- Krupp, L.B.; Tardieu, M.; Amato, M.P.; Banwell, B.; Chitnis, T.; Dale, R.C.; Ghezzi, A.; Hintzen, R.; Kornberg, A.; Pohl, D.; et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Multiple sclerosis (Houndmills, Basingstoke, England) 2013, 19, 1261–1267. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet. Neurology 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Schwenkenbecher, P.; Wurster, U.; Konen, F.F.; Gingele, S.; Suhs, K.W.; Wattjes, M.P.; Stangel, M.; Skripuletz, T. Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis. Front Neurol 2019, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Fadda, G.; Brown, R.A.; Longoni, G.; Castro, D.A.; O'Mahony, J.; Verhey, L.H.; Branson, H.M.; Waters, P.; Bar-Or, A.; Marrie, R.A.; et al. MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. The Lancet. Child & adolescent health 2018, 2, 191–204. [Google Scholar] [CrossRef]
- Gorman, M.P.; Healy, B.C.; Polgar-Turcsanyi, M.; Chitnis, T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol 2009, 66, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Waubant, E.; Chabas, D.; Okuda, D.T.; Glenn, O.; Mowry, E.; Henry, R.G.; Strober, J.B.; Soares, B.; Wintermark, M.; Pelletier, D. Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults. Arch Neurol 2009, 66, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.A.; Weinstock-Guttman, B.; Ramanathan, M.; Ramasamy, D.P.; Willis, L.; Cox, J.L.; Zivadinov, R. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 2009, 132, 3392–3400. [Google Scholar] [CrossRef]
- Baroncini, D.; Simone, M.; Iaffaldano, P.; Brescia Morra, V.; Lanzillo, R.; Filippi, M.; Romeo, M.; Patti, F.; Chisari, C.G.; Cocco, E.; et al. Risk of Persistent Disability in Patients With Pediatric-Onset Multiple Sclerosis. JAMA neurology 2021, 78, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Kopp, T.I.; Blinkenberg, M.; Chalmer, T.A.; Petersen, T.; Ravnborg, M.H.; Soelberg Sorensen, P.; Magyari, M. Predictors of treatment outcome in patients with paediatric onset multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2020, 26, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B. Treatment of children and adolescents with multiple sclerosis. Expert review of neurotherapeutics 2005, 5, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.T.; Gorman, M.P.; Rensel, M.R.; Austin, T.E.; Hertz, D.P.; Kuntz, N.L.; Network of Pediatric Multiple Sclerosis Centers of Excellence of National Multiple Sclerosis, S. Management of pediatric central nervous system demyelinating disorders: consensus of United States neurologists. J Child Neurol 2011, 26, 675–682. [Google Scholar] [CrossRef]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon beta for Multiple Sclerosis. Cold Spring Harb Perspect Med 2018, 8. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature reviews. Immunology 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Dhib-Jalbut, S.; Marks, S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 2010, 74 Suppl 1, S17–24. [Google Scholar] [CrossRef]
- Pohl, D.; Rostasy, K.; Gartner, J.; Hanefeld, F. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology 2005, 64, 888–890. [Google Scholar] [CrossRef] [PubMed]
- Tenembaum, S.N.; Banwell, B.; Pohl, D.; Krupp, L.B.; Boyko, A.; Meinel, M.; Lehr, L.; Rocak, S.; Cantogno, E.V.; Moraga, M.S.; et al. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol 2013, 28, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Reder, A.T.; Krupp, L.; Tenembaum, S.; Eraksoy, M.; Alexey, B.; Pohl, D.; Freedman, M.; Schelensky, L.; Antonijevic, I. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology 2006, 66, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Gartner, J.; Bruck, W.; Weddige, A.; Hummel, H.; Norenberg, C.; Bugge, J.P.; Group, B.S. Interferon beta-1b in treatment-naive paediatric patients with relapsing-remitting multiple sclerosis: Two-year results from the BETAPAEDIC study. Mult Scler J Exp Transl Clin 2017, 3, 2055217317747623. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, A.; Amato, M.P.; Capobianco, M.; Gallo, P.; Marrosu, M.G.; Martinelli, V.; Milanese, C.; Moiola, L.; Milani, N.; La Mantia, L.; et al. Treatment of early-onset multiple sclerosis with intramuscular interferonbeta-1a: long-term results. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2007, 28, 127–132. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Nair, K.V.; Glajch, J.L.; Ganguly, T.C.; Kantor, D. Two decades of glatiramer acetate: From initial discovery to the current development of generics. J Neurol Sci 2017, 376, 255–259. [Google Scholar] [CrossRef]
- La Mantia, L.; Munari, L.M.; Lovati, R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev 2010, CD004678. [Google Scholar] [CrossRef]
- Ghezzi, A.; Amato, M.P.; Annovazzi, P.; Capobianco, M.; Gallo, P.; La Mantia, L.; Marrosu, M.G.; Martinelli, V.; Milani, N.; Moiola, L.; et al. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: the Italian experience. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2009, 30, 193–199. [Google Scholar] [CrossRef]
- Kornek, B.; Bernert, G.; Balassy, C.; Geldner, J.; Prayer, D.; Feucht, M. Glatiramer acetate treatment in patients with childhood and juvenile onset multiple sclerosis. Neuropediatrics 2003, 34, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Makhani, N.; Ngan, B.Y.; Kamath, B.M.; Yeh, E.A. Glatiramer acetate-induced acute hepatotoxicity in an adolescent with MS. Neurology 2013, 81, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, D.; Zaffaroni, M.; Moiola, L.; Lorefice, L.; Fenu, G.; Iaffaldano, P.; Simone, M.; Fanelli, F.; Patti, F.; D'Amico, E.; et al. Long-term follow-up of pediatric MS patients starting treatment with injectable first-line agents: A multicentre, Italian, retrospective, observational study. Multiple sclerosis (Houndmills, Basingstoke, England) 2019, 25, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Rensel, M. Review Of The Safety, Efficacy And Tolerability Of Fingolimod In The Treatment Of Pediatric Patients With Relapsing-Remitting Forms Of Multiple Sclerosis (RRMS). Pediatric health, medicine and therapeutics 2019, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.F.; Bowen, J.D.; Reder, A.T. The Direct Effects of Fingolimod in the Central Nervous System: Implications for Relapsing Multiple Sclerosis. CNS drugs 2016, 30, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, R.; Van Horssen, J.; Verzijl, D.; Witte, M.; Ronken, E.; Van Het Hof, B.; Lakeman, K.; Dijkstra, C.D.; Van Der Valk, P.; Reijerkerk, A.; et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 2010, 58, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Barkhof, F.; de Jong, R.; Sfikas, N.; de Vera, A.; Francis, G.; Cohen, J.; group, T.s. The influence of patient demographics, disease characteristics and treatment on brain volume loss in Trial Assessing Injectable Interferon vs FTY720 Oral in Relapsing-Remitting Multiple Sclerosis (TRANSFORMS), a phase 3 study of fingolimod in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2014, 20, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.A.; Radue, E.W.; Goodin, D.; Jeffery, D.; Rammohan, K.W.; Reder, A.T.; Vollmer, T.; Agius, M.A.; Kappos, L.; Stites, T.; et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet. Neurology 2014, 13, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. The New England journal of medicine 2010, 362, 402–415. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; O'Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. The New England journal of medicine 2010, 362, 387–401. [Google Scholar] [CrossRef]
- Radue, E.W.; O'Connor, P.; Polman, C.H.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Mueller-Lenke, N.; Agoropoulou, C.; Holdbrook, F.; de Vera, A.; et al. Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol 2012, 69, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O'Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W.; et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. The New England journal of medicine 2006, 355, 1124–1140. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xue, T.; Wang, Z.; Chen, Z.; Zhang, X.; Zhang, W.; Wang, Z. Different Doses of Fingolimod in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in pharmacology 2021, 12, 621856. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.Y.; Kim, S.H.; Kim, K.H.; Kwon, Y.N.; Kim, S.M.; Kim, S.W.; Shin, H.Y.; Chung, Y.H.; Min, J.H.; So, J.; et al. Safety and Temporal Pattern of the Lymphocyte Count During Fingolimod Therapy in Patients With Multiple Sclerosis: Real-World Korean Experience. Journal of clinical neurology (Seoul, Korea) 2022, 18, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Arnold, D.L.; Banwell, B.; Bruck, W.; Ghezzi, A.; Giovannoni, G.; Greenberg, B.; Krupp, L.; Rostasy, K.; Tardieu, M.; et al. Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. The New England journal of medicine 2018, 379, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gutlapalli, S.D.; Sohail, M.; Patel, P.; Midha, S.; Shukla, S.; Dhamija, D.; Bello, A.O.; Elshaikh, A.O. Fingolimod-Associated Macular Edema in the Treatment of Multiple Sclerosis. Cureus 2023, 15, e41520. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, C.; Zhao, X.; Zhang, Y.; Dai, Q.; Li, Y.; Chu, L. Teriflunomide for multiple sclerosis. Cochrane Database Syst Rev 2016, 3, CD009882. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef]
- Chitnis, T.; Banwell, B.; Kappos, L.; Arnold, D.L.; Gucuyener, K.; Deiva, K.; Skripchenko, N.; Cui, L.Y.; Saubadu, S.; Hu, W.; et al. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. The Lancet. Neurology 2021, 20, 1001–1011. [Google Scholar] [CrossRef]
- Costa, G.D.; Comi, G. Teriflunomide: an oral therapy for first-line treatment of children and adolescents living with relapsing-remitting multiple sclerosis. Expert review of neurotherapeutics 2023, 23, 681–687. [Google Scholar] [CrossRef]
- Paik, J. Teriflunomide: Pediatric First Approval. Paediatric drugs 2021, 23, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Laurson-Doube, J.; Rijke, N.; Helme, A.; Baneke, P.; Banwell, B.; Viswanathan, S.; Hemmer, B.; Yamout, B. Ethical use of off-label disease-modifying therapies for multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2021, 27, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Tiede, I.; Fritz, G.; Strand, S.; Poppe, D.; Dvorsky, R.; Strand, D.; Lehr, H.A.; Wirtz, S.; Becker, C.; Atreya, R.; et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. The Journal of clinical investigation 2003, 111, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Casetta, I.; Iuliano, G.; Filippini, G. Azathioprine for multiple sclerosis. Cochrane Database Syst Rev 2007, 2007, CD003982. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Janghorbani, M.; Shaygannejad, V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. Journal of neurology 2007, 254, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Srivastava, M.V.P.; Bhatia, R.; Goyal, V.; Singh, M.B.; Vishnu, V.Y.; Prabhakar, A. A Real-World Experience of Azathioprine Versus First-Line Disease-Modifying Therapy in Relapsing-Remitting Multiple Sclerosis-A Prospective Cohort Study. Brain Sci 2023, 13. [Google Scholar] [CrossRef]
- Costanzi, C.; Matiello, M.; Lucchinetti, C.F.; Weinshenker, B.G.; Pittock, S.J.; Mandrekar, J.; Thapa, P.; McKeon, A. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 2011, 77, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, Q.; Lu, T.; Sun, X.; Fang, L.; Lu, Z.; Hu, X.; Kermode, A.; Qiu, W. Azathioprine therapy in a case of pediatric multiple sclerosis that was seropositive for MOG-IgG. J Clin Neurosci 2017, 38, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Ogino, M.H.; Tadi, P. Cyclophosphamide. In StatPearls; StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Prasanna Tadi declares no relevant financial relationships with ineligible companies, 2024. [Google Scholar]
- Gomez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolanos, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2021, 42, 3775–3780. [Google Scholar] [CrossRef]
- Siddhartha, G.; Vijay, P. R-CHOP versus R-CVP in the treatment of follicular lymphoma: a meta-analysis and critical appraisal of current literature. J Hematol Oncol 2009, 2, 14. [Google Scholar] [CrossRef]
- Makhani, N.; Gorman, M.P.; Branson, H.M.; Stazzone, L.; Banwell, B.L.; Chitnis, T. Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology 2009, 72, 2076–2082. [Google Scholar] [CrossRef] [PubMed]
- Talar-Williams, C.; Hijazi, Y.M.; Walther, M.M.; Linehan, W.M.; Hallahan, C.W.; Lubensky, I.; Kerr, G.S.; Hoffman, G.S.; Fauci, A.S.; Sneller, M.C. Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann Intern Med 1996, 124, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Radis, C.D.; Kahl, L.E.; Baker, G.L.; Wasko, M.C.; Cash, J.M.; Gallatin, A.; Stolzer, B.L.; Agarwal, A.K.; Medsger, T.A., Jr.; Kwoh, C.K. Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study. Arthritis Rheum 1995, 38, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Mertens, A.C.; Mitby, P.; Whitton, J.; Stovall, M.; Yasui, Y.; Robison, L.L.; Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. The Journal of clinical endocrinology and metabolism 2006, 91, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Soin, D.; Ito, K.; Dhib-Jalbut, S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. Journal of molecular medicine (Berlin, Germany) 2019, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Alroughani, R.; Das, R.; Penner, N.; Pultz, J.; Taylor, C.; Eraly, S. Safety and Efficacy of Delayed-Release Dimethyl Fumarate in Pediatric Patients With Relapsing Multiple Sclerosis (FOCUS). Pediatr Neurol 2018, 83, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Alroughani, R.; Huppke, P.; Mazurkiewicz-Beldzinska, M.; Blaschek, A.; Valis, M.; Aaen, G.; Pultz, J.; Peng, X.; Beynon, V. Delayed-Release Dimethyl Fumarate Safety and Efficacy in Pediatric Patients With Relapsing-Remitting Multiple Sclerosis. Front Neurol 2020, 11, 606418. [Google Scholar] [CrossRef]
- Krysko, K.M.; Graves, J.; Rensel, M.; Weinstock-Guttman, B.; Aaen, G.; Benson, L.; Chitnis, T.; Gorman, M.; Goyal, M.; Krupp, L.; et al. Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology 2018, 91, e1778–e1787. [Google Scholar] [CrossRef] [PubMed]
- Salzer, J.; Lycke, J.; Wickstrom, R.; Naver, H.; Piehl, F.; Svenningsson, A. Rituximab in paediatric onset multiple sclerosis: a case series. Journal of neurology 2016, 263, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Krysko, K.M.; Graves, J.S.; Rensel, M.; Weinstock-Guttman, B.; Rutatangwa, A.; Aaen, G.; Belman, A.; Benson, L.; Chitnis, T.; Gorman, M.; et al. Real-World Effectiveness of Initial Disease-Modifying Therapies in Pediatric Multiple Sclerosis. Annals of neurology 2020, 88, 42–55. [Google Scholar] [CrossRef]
- Ghezzi, A.; Banwell, B.; Bar-Or, A.; Chitnis, T.; Dale, R.C.; Gorman, M.; Kornek, B.; Krupp, L.; Krysko, K.M.; Nosadini, M.; et al. Rituximab in patients with pediatric multiple sclerosis and other demyelinating disorders of the CNS: Practical considerations. Multiple sclerosis (Houndmills, Basingstoke, England) 2021, 27, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- The, L. End of the road for daclizumab in multiple sclerosis. Lancet (London, England) 2018, 391, 1000. [Google Scholar] [CrossRef]
- Gorman, M.P.; Tillema, J.M.; Ciliax, A.M.; Guttmann, C.R.; Chitnis, T. Daclizumab use in patients with pediatric multiple sclerosis. Arch Neurol 2012, 69, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. International journal of molecular sciences 2015, 16, 16414–16439. [Google Scholar] [CrossRef] [PubMed]
- Jure Hunt, D.; Traboulsee, A. Short-term outcomes of pediatric multiple sclerosis patients treated with alemtuzumab at a Canadian University multiple sclerosis clinic. Mult Scler J Exp Transl Clin 2020, 6, 2055217320926613. [Google Scholar] [CrossRef] [PubMed]
- Margoni, M.; Rinaldi, F.; Miante, S.; Franciotta, S.; Perini, P.; Gallo, P. Alemtuzumab following natalizumab in highly active paediatric-onset multiple sclerosis. Mult Scler J Exp Transl Clin 2019, 5, 2055217319875471. [Google Scholar] [CrossRef]
- Lamb, Y.N. Ocrelizumab: A Review in Multiple Sclerosis. Drugs 2022, 82, 323–334. [Google Scholar] [CrossRef]
- Bibinoglu Amirov, C.; Saltik, S.; Yalcinkaya, C.; Tutuncu, M.; Saip, S.; Siva, A.; Uygunoglu, U. Ocrelizumab in pediatric multiple sclerosis. Eur J Paediatr Neurol 2023, 43, 1–5. [Google Scholar] [CrossRef]
- Margoni, M.; Rinaldi, F.; Perini, P.; Gallo, P. Therapy of Pediatric-Onset Multiple Sclerosis: State of the Art, Challenges, and Opportunities. Front Neurol 2021, 12, 676095. [Google Scholar] [CrossRef]
- Faulds, D.; Balfour, J.A.; Chrisp, P.; Langtry, H.D. Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 1991, 41, 400–449. [Google Scholar] [CrossRef]
- Scott, L.J.; Figgitt, D.P. Mitoxantrone: a review of its use in multiple sclerosis. CNS drugs 2004, 18, 379–396. [Google Scholar] [CrossRef]
- Hartung, H.P.; Gonsette, R.; Konig, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T.; Mitoxantrone in Multiple Sclerosis Study, G. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet (London, England) 2002, 360, 2018–2025. [Google Scholar] [CrossRef]
- Etemadifar, M.; Afzali, P.; Abtahi, S.H.; Ramagopalan, S.V.; Nourian, S.M.; Murray, R.T.; Fereidan-Esfahani, M. Safety and efficacy of mitoxantrone in pediatric patients with aggressive multiple sclerosis. Eur J Paediatr Neurol 2014, 18, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Hagenbeek, A.; Gadeberg, O.; Johnson, P.; Pedersen, L.M.; Walewski, J.; Hellmann, A.; Link, B.K.; Robak, T.; Wojtukiewicz, M.; Pfreundschuh, M.; et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 2008, 111, 5486–5495. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. The New England journal of medicine 2020, 383, 546–557. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cross, A.H.; Winthrop, K.; Wiendl, H.; Nicholas, J.; Meuth, S.G.; Giacomini, P.S.; Sacca, F.; Mancione, L.; Zielman, R.; et al. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Multiple sclerosis (Houndmills, Basingstoke, England) 2022, 28, 1576–1590. [Google Scholar] [CrossRef]
- Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. British journal of pharmacology 2012, 167, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Gentile, A.; Musella, A.; Bullitta, S.; Fresegna, D.; De Vito, F.; Fantozzi, R.; Piras, E.; Gargano, F.; Borsellino, G.; Battistini, L.; et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. Journal of neuroinflammation 2016, 13, 207. [Google Scholar] [CrossRef]
- Selmaj, K.; Li, D.K.; Hartung, H.P.; Hemmer, B.; Kappos, L.; Freedman, M.S.; Stuve, O.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. The Lancet. Neurology 2013, 12, 756–767. [Google Scholar] [CrossRef]
- Tao, C.; Simpson, S., Jr.; van der Mei, I.; Blizzard, L.; Havrdova, E.; Horakova, D.; Shaygannejad, V.; Lugaresi, A.; Izquierdo, G.; Trojano, M.; et al. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016, 87, 1343–1349. [Google Scholar] [CrossRef]
- Tremlett, H.; Zhu, F.; Ascherio, A.; Munger, K.L. Sun exposure over the life course and associations with multiple sclerosis. Neurology 2018, 90, e1191–e1199. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M.; Sakiyama, R.; Coty, W.A. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. Journal of neurochemistry 1985, 44, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Gattoni-Celli, M.; Zhu, H.; Bhat, N.R.; Sambamurti, K.; Gattoni-Celli, S.; Kindy, M.S. Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis 2011, 25, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Boontanrart, M.; Hall, S.D.; Spanier, J.A.; Hayes, C.E.; Olson, J.K. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. Journal of neuroimmunology 2016, 292, 126–136. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, A.G.; Errea, O.; van Wijngaarden, P.; Gonzalez, G.A.; Kerninon, C.; Jarjour, A.A.; Lewis, H.J.; Jones, C.A.; Nait-Oumesmar, B.; Zhao, C.; et al. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol 2015, 211, 975–985. [Google Scholar] [CrossRef]
- Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of chemical neuroanatomy 2005, 29, 21–30. [Google Scholar] [CrossRef]
- Lee, P.W.; Selhorst, A.; Lampe, S.G.; Liu, Y.; Yang, Y.; Lovett-Racke, A.E. Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front Neurol 2020, 11, 19. [Google Scholar] [CrossRef]
- Nurminen, V.; Seuter, S.; Carlberg, C. Primary Vitamin D Target Genes of Human Monocytes. Front Physiol 2019, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Smolders, J.; Schuurman, K.G.; van Strien, M.E.; Melief, J.; Hendrickx, D.; Hol, E.M.; van Eden, C.; Luchetti, S.; Huitinga, I. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue. J Neuropathol Exp Neurol 2013, 72, 91–105. [Google Scholar] [CrossRef]
- Gomez-Pinedo, U.; Cuevas, J.A.; Benito-Martin, M.S.; Moreno-Jimenez, L.; Esteban-Garcia, N.; Torre-Fuentes, L.; Matias-Guiu, J.A.; Pytel, V.; Montero, P.; Matias-Guiu, J. Vitamin D increases remyelination by promoting oligodendrocyte lineage differentiation. Brain Behav 2020, 10, e01498. [Google Scholar] [CrossRef]
- Nystad, A.E.; Wergeland, S.; Aksnes, L.; Myhr, K.M.; Bo, L.; Torkildsen, O. Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone model. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 2014, 122, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Rostami, A.; Zhang, G.X. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 2015, 98, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Wei, D.; Rostami, A.; Zhang, G.X. 1,25-Dihydroxyvitamin D(3) suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Exp Mol Pathol 2017, 102, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Mowry, E.M.; Krupp, L.B.; Milazzo, M.; Chabas, D.; Strober, J.B.; Belman, A.L.; McDonald, J.C.; Oksenberg, J.R.; Bacchetti, P.; Waubant, E. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Annals of neurology 2010, 67, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ramagopalan, S.V.; Maugeri, N.J.; Handunnetthi, L.; Lincoln, M.R.; Orton, S.M.; Dyment, D.A.; Deluca, G.C.; Herrera, B.M.; Chao, M.J.; Sadovnick, A.D.; et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS genetics 2009, 5, e1000369. [Google Scholar] [CrossRef]
- Wagner, C.L.; Greer, F.R. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Antel, J.; Bania, M.; Noronha, A.; Neely, S. Defective suppressor cell function mediated by T8+ cell lines from patients with progressive multiple sclerosis. J Immunol 1986, 137, 3436–3439. [Google Scholar] [CrossRef] [PubMed]
- Vandenbark, A.A.; Culbertson, N.E.; Bartholomew, R.M.; Huan, J.; Agotsch, M.; LaTocha, D.; Yadav, V.; Mass, M.; Whitham, R.; Lovera, J.; et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2008, 123, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Vandenbark, A.A.; Chou, Y.K.; Whitham, R.; Mass, M.; Buenafe, A.; Liefeld, D.; Kavanagh, D.; Cooper, S.; Hashim, G.A.; Offner, H. Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nature medicine 1996, 2, 1109–1115. [Google Scholar] [CrossRef]
- Bourdette, D.N.; Edmonds, E.; Smith, C.; Bowen, J.D.; Guttmann, C.R.; Nagy, Z.P.; Simon, J.; Whitham, R.; Lovera, J.; Yadav, V.; et al. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2005, 11, 552–561. [Google Scholar] [CrossRef]
- Fassas, A.; Anagnostopoulos, A.; Kazis, A.; Kapinas, K.; Sakellari, I.; Kimiskidis, V.; Tsompanakou, A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 1997, 20, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.M.; Kemp, K.; Wilkins, A.; Scolding, N.J. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet (London, England) 2013, 382, 1204–1213. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Pirahesh, K.; Rafiei, N.; Afrashteh, F.; Ahmadabad, M.A.; Zabeti, A.; Mirmosayyeb, O. Autologous Hematopoietic Stem-Cell Transplantation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neurol Ther 2022, 11, 1553–1569. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.; Kirgizov, K.; Carlson, K.; Badoglio, M.; Mancardi, G.L.; De Luca, G.; Casanova, B.; Ouyang, J.; Bembeeva, R.; Haas, J.; et al. Autologous hematopoietic stem cell transplantation for pediatric multiple sclerosis: a registry-based study of the Autoimmune Diseases Working Party (ADWP) and Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2017, 52, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Tenembaum, S.; Banwell, B.; Krupp, L.; Pohl, D.; Rostasy, K.; Yeh, E.A.; Bykova, O.; Wassmer, E.; Tardieu, M.; et al. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2012, 18, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Goodin, D.S.; Arnason, B.G.; Coyle, P.K.; Frohman, E.M.; Paty, D.W.; Therapeutics; Technology Assessment Subcommittee of the American Academy of, N. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2003, 61, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Krapf, H.; Morrissey, S.P.; Zenker, O.; Zwingers, T.; Gonsette, R.; Hartung, H.P.; Group, M.S. Effect of mitoxantrone on MRI in progressive MS: results of the MIMS trial. Neurology 2005, 65, 690–695. [Google Scholar] [CrossRef]
- Hacohen, Y.; Banwell, B.; Ciccarelli, O. What does first-line therapy mean for paediatric multiple sclerosis in the current era? Multiple sclerosis (Houndmills, Basingstoke, England) 2021, 27, 1970–1976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
