Submitted:
17 February 2024
Posted:
18 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background
1.2. Brief Literature Review
1.3. Contribution and Paper Organization
2. Materials and Methods
2.1. Test Stand Description
2.2. Experimental Measurements
2.3. Mathematical modelling of the system
2.4. Model 1: Analytical Calculation
2.5. Model 2: Modeling and Simulation in Matlab/Simulink
2.5.1. Thermal modelling
2.5.2. Electrical Modelling: Solar Cell Modelling
2.5.3. Optical Model for the Glass Cover
2.5.4. Optical Characteristics of Glass Cover
3. Results and Discussion
ηel = 0.1210
ηgl = 0.5996
4. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
References
- OurWorldInData.org. Available on line: https://ourworldindata.org/grapher/sub-energy-fossil-renewables-nuclear, (accessed on 28.01.2024).
- Ritchie, H; Rosado, P; Roser, M. Energy Production and Consumption, Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/energy-production-consumption, 2020, (accessed on 28.01.2024).
- Badea, A; Necula, H. coordinators, Surse regenerabile de energie, Editura AGIR, 2013.
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652, Available on line: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L2413&qid=1699364355105 , (accessed on 28.01.2024).
- Irimia, O.; Tomozei, C.; Panainte-Lehadus ,M.; Dinu,M.C. Evaluation of the potential of wind energy as a source of electricity generation: Case study – Vanatori Wind Power Plant, 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria. [CrossRef]
- Chandrasekar,M; Senthilkumar, T. Five decades of evolution of solar photovoltaic thermal (PVT) technology – A critical insight on review articles, Journal of Cleaner Production, 2021, Volume 322, 128997, ISSN 0959-6526.
- Motoasca, M; de la Fontaine, C; Vermeulen, B. Photovoltaic-Thermal (PV/T) Hybrid Systems State-of-the-art technology, challenges and opportunities, 2018, available at: https://www.interregsolarise.eu/wp-content/uploads/2018/12/FINAL-SOLARISE-EVENT-18_10-2018-presPVT.pdf, (accesed on: 28.01.2024).
- Ben cheikh el hocine, H.; Touafek, K.; Kerrour ,F.; Haloui, H.; Khelifa, A.. Model Validation of an Empirical Photovoltaic Thermal (PV/T) Collector, Energy Procedia , 2015, volume 74. [CrossRef]
- Ouhsiane, L; Siroux, M.; Ganaoui, M.E.; Mimet, A. Multi-Objective Optimization of Hybrid PVT Solar Panels, 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 2018, pp. 1-5. [CrossRef]
- Rosli, M. A. M.; Misha, S; Sopian, K; Mat, S; Yusof Sulaiman, M; Salleh, E. Thermal Efficiency of the Photovoltaic Thermal System with Serpentine Tube Collector, Engineering, Environmental Science, Applied Mechanics and Materials, 2014. [CrossRef]
- Furbo, S; Perers, B; Dragsted, J; Gomes, J; Gomes, M; Coelho, P; Yıldızha, H; Yilmaz, I.H; Aksay, B; Bozkurt, A; Cabral, D; Hosouli, S; Hayati, A; Kaziukonytė, J; Sapeliauskas, E; Kaliasas, R. Best practices for PVT technology, International Solar Energy Society, SWC2021 Proceedings.
- Sciubba,E; Toro, C. Modeling and Simulation of a Hybrid PV/Thermal collector, 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2011.
- Ngunzi, V; Njoka, F; Kinyua, R. Modeling, simulation and performance evaluation of a PVT system for the Kenyan manufacturing sector, Heliyon, 2023, volume 9, issue 8, , e18823.
- Nualboonrueng, T; Tuenpusa, P; Ueda, Y; Akisawa, A. Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok, Energies, 2012, volume 5, 1229-1244;. [CrossRef]
- A photovoltaic thermal panel for heat-pump houses, available online: https://www.pv-magazine.com/2020/04/20/a-photovoltaic-thermal-panel-for-heat-pump-houses/, (accesed on: 28.01.2024) .
- Diwania, S; Agrawal, S; Siddiqui, A.S; Singh, S. Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement, International Journal of Energy and Environmental Engineering, 2020, pp.33–54. [CrossRef]
- Pokorny, N; Matuška,T. Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building, Sustainability, 2020, 12, 6071;. [CrossRef]
- Barbu, M; Minciuc, E; Frusescu, D.C; Tutica, D. Integration of Hybrid Photovoltaic Thermal Panels (PVT) in the District Heating System of Bucharest, 2021 10th International Conference on ENERGY and ENVIRONMENT (CIEM), DOI: 10.1109/CIEM52821.2021,14-15 Oct. 2021 Romania.
- Barbu, M; Darie, G; Siroux, M. Analysis of a Residential Photovoltaic-Thermal (PVT) System in Two Similar Climate Conditions, Energies, 2019, 12, 3595;. [CrossRef]
- Hazi, A; Hazi, G; Grigore, R; Vernica, S. Opportunity to use PVT systems for water heating in industry, Applied Thermal Engineering, 2014, volume 63, pp.151-157.
- Hazi, A; Grigore, R; Hazi, G. Energy efficiency of the PVT system used in industry, 2012 11th International Conference on Environment and Electrical Engineering, IEEE, 2012, pp.235-240. [CrossRef]
- Tsai, H.L. Design and Evaluation of a Photovoltaic/Thermal-Assisted Heat Pump Water Heating System, Energies, 2014, 7, 3319-3338;. [CrossRef]
- Al Tarabsheh,A; Etier, I; Fath, H; Ghazal, A; Morci, Y; Asad, M; El Haj, A. Performance of photovoltaic cells in photovoltaic thermal (PVT) modules, IET Renewable Power Generation, Online ISSN:1752-1424, 2016. [CrossRef]
- Kandilli, C. A comparative study on the energetic- energetic and economical performance of a photovoltaic thermal system (PVT), Res. Eng. Struct. Mat., Online Publication Date: 9 Feb 2019.
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology Applied Energy , 2010, 87, no. 2: 365- 379.
- Fujisawa, T; Tatsuo, T. Annual exergy evaluation on photovoltaic -thermal hybrid collector, Solar energy materials and solar cells, 1997, 47, no. 1-4 PP. 135-148.
- Lateef Abdullah, A; Misha,S; Tamaldin, N; Afzanizam, M; Rosli, M; Sachit, F.A. Hybrid Photovoltaic Thermal PVT Solar Systems Simulation via Simulink/Matlab, CFD Letters n11, Issue4(2019), 64-78.
- SR EN ISO 9806-2017, Solar thermal collectors, Test methods.
- Kramer, K. Status Quo of PVT Characterization, SHC Task 60 - Report B1, available at: https://task60.iea-shc.org/Data/Sites/1/publications/IEA-SHC-Task60-B1-Status-Quo-Report-PVT-Characterization.pdf , (accesed on: 31.01.2023).
- Boureima, D; Sikoudouin, T.M.Ky, Ouedraogo, E; Hayibo, K.S; Bathiebo, D.J. Theoretical Study of a Thermal Photovoltaic Hybrid Solar Collector, Indian Journal of Science and Technology, 2018, Vol 11(43). [CrossRef]
- The MathWorks, Inc., “Photovoltaic Thermal (PV/T) Hybrid Solar Panel”, Matlab Help Center, 2023. Retrieved 25.07.2023. https://www.mathworks.com/help/sps/ug/photovoltaic-thermal-pvt-hybrid-solar-panel.html.
- Grigore, R.M.; Vernica, S.G.; Popa, S.E.; Banu, I.V. PVT Hybrid Solar Panel - Simulink Model and Dataset. IEEE Dataport, January 17, 2024. [CrossRef]
- Banu, I.V.; Istrate, M. Modeling and Simulation of Photovoltaic Arrays. World Energy System Conference – WESC 2012, Buletinul AGIR, 2012, no. 3, 1-6.
- https://www.engineersedge.com/heat_transfer/thermal_conductivity_propylene_glycol_15916.htm , (accessed at 03.02.2024).
- Duffie, J.A; Beckman, W.A. Solar Engineering of Thermal Processes, Fourth Edition, Wiley, 2013.
- Fatehi, J. H; Sauer, K.J. Modeling the incidence angle dependence of photovoltaic modules in PVsyst, 2014 IEEE 40th Photovolt. Specialist Conf. (PVSC), Denver, CO, USA, 2014, pp. 1335-1338. [CrossRef]
- Santbergen, R; Goud, J.M; Zeman, M; van Roosmalen, J.A.M; van Zolingen, R.J.C. The AM1.5 absorption factor of thin-film solar cells, Sol. Energy Mater Sol. Cells, 2010, vol. 94, no. 5, pp. 715-723, ISSN 0927-0248. [CrossRef]
- Santbergen, R; van Zolingen, R.J.C. The absorption factor of crystalline silicon PV cells: A numerical and experimental study, Sol. Energy Mater Sol. Cells, 2008, vol. 92, no. 4, pp. 432-444, ISSN 0927-0248. [CrossRef]
- Li, W. et al., A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems, Renewable Energy, vol. 112, 2017, pp. 166-186, ISSN 0960-1481. [CrossRef]
- Ji, Y. et al., “Optical Design and Validation of an Infrared Transmissive Spectrum Splitting Concentrator Photovoltaic Module,” IEEE J. Photovolt., vol. 7, no. 5, pp. 1469-1478, Sept. 2017. [CrossRef]
- SUNSYSTEM, Solar Thermal System, catalogue, pg. 16-18, available at: https://www.amadeuscom.ro/wp-content/uploads/2021/08/Catalog-panouri-solare-Sunsystem.pdf.
- Banu, I. V.; Istrate, M.; Machidon, D.; Pantelimon, R. Study regarding modeling photovoltaic arrays using test data in MATLAB/Simulink. UPB Sci. Bull. C: Electr. Eng. Comput. Sci. 2015, 77:2, 227-234., available at : https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full83f_148621.pdf.











| Parameter | Value/Type |
|---|---|
| Height · Width · Thickness | 1650 x 990 x 40 mm |
| Weight | 28 kg |
| Frame | Aluminum |
| Front side | Tempered solar glass 3.2 mm |
| Back side | Aluminum panel |
| Type of PV module cells | polycrystalline |
| Number of cells/module/Size of cell | 60 (6x10) / 156 x 156 mm |
| Maximum power Pmax | 240 Wp |
| Open circuit voltage Voc | 37,2 V |
| Current at maximum power Imax | 7,84 A |
| Short circuit current Isc | 8.52 A |
| Voltage at maximum power Vmp | 30,6 V |
| Cell/ Module efficiency | 16.4 % / 14.7 % |
| Overall surface | 1.62 m2 |
| Nominal thermal capacity | 900 W |
| Heat carrier inlet/outlet | 2·G ½ ” |
| Distance between heat carrier inlet/outlet | 840 mm |
| Thermal Agent | PG 50% |
| Thermal Agent Volume | 1.17 liter |
| Flow rate of Thermal Agent | 1.5 ÷ 2,5 l/min. |
| Thermal loss coefficient k1 | 9.13 W/m2K |
| Thermal loss coefficient k2 | 0.00 W/m2K2 |
| Efficiency in relation to aperture ηo | 0.559 |
| Material of separator | Aluminum |
| Material of absorber pipe system | Cooper |
| Insulation | rigid PU– 20 mm |
| Temperature [°C] | Thermal Conductivity [W/mK] | Specific Heat [J/kgK] |
|---|---|---|
| 21.11 | 0.3632 | 3537.85 |
| 26.66 | 0.3649 | 3558.78 |
| 32.22 | 0.3684 | 3579.71 |
| 37.77 | 0.3701 | 3604.83 |
| 43.33 | 0.3719 | 3625.77 |
| Parameter | G | Ta | Tpv | Tt2 | Tf1 | Tf = (Tf1 + Tf2)/2 |
|---|---|---|---|---|---|---|
| hour | W/m2 | °C | °C | °C | °C | °C |
| 8am | 315 | 21.85 | 22.45 | 33 | 24.9 | 28.95 |
| 9am | 581 | 22.30 | 31.20 | 30 | 29.5 | 29.75 |
| 10am | 781 | 24 | 38.46 | 34 | 33.9 | 33.95 |
| 11am | 1005 | 25.9 | 44.48 | 38 | 37.7 | 37.85 |
| 12am | 1106 | 30.6 | 47.50 | 41 | 40.4 | 40.7 |
| 1pm | 1158 | 31.3 | 49.62 | 43.2 | 42.7 | 42.95 |
| 2pm | 1123 | 33 | 52.90 | 46 | 44.8 | 45.4 |
| 3pm | 1125 | 33.1 | 42.18 | 37 | 36.6 | 36.8 |
| 4pm | 903 | 34.2 | 38.18 | 38 | 37.4 | 37.7 |
| 5pm | 688 | 33.9 | 36.26 | 36 | 34 | 35 |
| 6pm | 364 | 32.7 | 36.08 | 36 | 34.5 | 35.25 |
| 7pm | 196 | 33.6 | 35.95 | 35.8 | 35.3 | 35.55 |
| PV/T Component, index | Thickness, L (m) | Thermal Conductivity k, (W/mK) | Specific Heat, cp, (J/kgK) |
|---|---|---|---|
| glass, g | 0.0032 | 1 | 800 |
| solar cell, pv | 0.000005 | 148 | 200 |
| separator, sepT | 0.0002 | 230 | 897 |
| heat exchanger (copper tube), e | 0.002 | 390 | 400 |
| insulation layer, ins | 0.002 | 0.022 | |
| backcover, b | 0.035 | 230 | 897 |
| Initial Temperatures [K] | Value |
|---|---|
| Glass cover, Tg0 [K] | 295 |
| PV solar cells, Tpv0 [K] | 295 |
| Heat exchanger, Te0 [K] | 295 |
| Water in the tank, Tw0 [K] | 295 |
| Back cover, Tb0 [K] | 295 |
| Geometry | Value |
| Area of a PV solar cell, Acell [m2] | 0.024336 |
| Number of PV solar cells, Ncell | 60 |
| Optical Properties | Value |
| Refractive index ratio glass/air, ng | 1.62 |
| Absorption coefficient of glass cover per unit length, Ag [1/m, m-1] | 0.2 |
| Thickness of glass cover, Lg [m] | 0.0032 |
| Reflection factor of PV solar cell, rpv | 0.15 |
| Heat Transfer Properties | Value |
| Temperature of ambient air, Ta [K] | 294.15 |
| Temperature of sky (for radiative heat transfer), Tsky [K] | 278.48 |
| Mass of glass cover, Mg [kg] | 11.6 |
| Mass of one PV solar cell, Mpv [kg] | 0.0726 |
| Mass of heat exchanger, Me [kg | 7.044 |
| Mass of back cover, Mb [kg] | 5 |
| Specific heat of glass, Cg [J/kg/K] | 800 |
| Specific heat of PV solar cell, Cpv [J/kg/K] | 200 |
| Specific heat of heat exchanger, Ce [J/kg/K] | 400 |
| Specific heat of back cover, Cb [J/kg/K] | 897 |
| Emissivity of glass, εg | 0.75 |
| Emissivity of PV solar cell, εpv | 0.7 |
| Free convection coefficient between ambient air and glass, hga [W/m2/K] | 6.1 |
| Free convection coefficient between glass and PV solar cells, hgpv [W/m2/K] | 24 |
| Free convection coefficient between back cover and ambient air, hba [W/m2/K] | 6.1 |
| Thermal conductivity of heat exchanger, ke [W/m/K] | 390 |
| Thickness of heat exchanger, Le [m] | 0.002 |
| Thermal conductivity of insulation layer, kins [W/m/K] | 0.022 |
| Thickness of insulation layer, Lins [m] | 0.02 |
| PV Solar Cell Electrical Properties | Value |
| Short-circuit current, Isc [A] | 8.52 |
| Open-circuit voltage, Voc [V] | 0.62 |
| Diode saturation current, Is [A] | 1e-6 |
| Diode saturation current, Is2 [A] | 0 |
| Solar-generated current for measurements, Iph0 [A] | 8.5445 |
| Solar irradiance used for measurements, G0 [W/m2] | 1000 |
| Quality factor, N1 | 1.5 |
| Quality factor, N2 | 2 |
| Series resistance, Rs [Ω] | 0 |
| Parallel resistance, Rp [Ω] | ∞ |
| First order temperature coefficient for Iph, TIPH1 [1/K, K-1] | 0.065 |
| Energy gap, EG [eV] | 1.11 |
| Temperature exponent for Is, TXIS1 | 3 |
| Temperature exponent for Is2, TXIS2 | 3/2 |
| Temperature exponent for Rs, TRS1 | 1 |
| Temperature exponent for Rp, TRP1 | 0 |
| Measurement temperature, Tmeas [℃] | 25 |
| Pipe Parameters | Value |
| Pipe length, length [m] | 5.83 |
| Cross-sectional area, area [m2] | 0.000201 |
| Hydraulic diameter, Dh [m] | 0.016 |
| Aggregate equivalent length of local resistances, lengthadd [m] | 0.8 |
| Internal surface absolute roughness, roughness [m] | 0.000015 |
| Laminar flow upper Reynolds number limit, Relam | 2000 |
| Turbulent flow lower Reynolds number limit, Retur | 4000 |
| Shape factor for laminar flow viscous friction, shapefactor | 64 |
| Nusselt number for laminar flow heat transfer, Nulam | 3.66 |
| Tank Parameters | Value |
| Maximum tank capacity, Volmax [m3] | 0.1 |
| Tank cross-sectional area, Atank [m2] | 0.148 |
| Initial volume in the tank, Voltank0 [m3] | 0.01 |
| Initial temperature in the tank, Ttank0 [K] | 295 |
| Insulating layer thickness, Lins [m] | 0.02 |
| Thermal conductivity of insulation layer, kins [W/m/K] | 0.022 |
| Free convection coefficient between tank and ambient air, hta [W/m2/K] | 10 |
| Pump Flow Input Parameters | Value |
| Internal circuit mass flow rate, mdotint [kg/s] | 0.026 |
| Demand mass flow rate (to the sink), mdotdem [kg/s] | 0.005 |
| Supply mass flow rate (from the source), mdotsup [kg/s] | 0.005 |
| Hour | ∆T | ηth | ηel | ηgl |
|---|---|---|---|---|
| 8am | 7.1 | 0.4456 | 0.1132 | 0.5587 |
| 9am | 7.45 | 0.4421 | 0.1172 | 0.5592 |
| 10am | 9.95 | 0.4428 | 0.1205 | 0.5633 |
| 11am | 11.95 | 0.4506 | 0.1232 | 0.5738 |
| 12am | 10.1 | 0.4757 | 0.1246 | 0.6003 |
| 1pm | 11.65 | 0.4672 | 0.1256 | 0.5928 |
| 2pm | 12.4 | 0.4583 | 0.1271 | 0.5854 |
| 3pm | 3.7 | 0.5290 | 0.1222 | 0.6512 |
| 4pm | 3.5 | 0.5237 | 0.1203 | 0.6440 |
| 5pm | 1.1 | 0.5444 | 0.1195 | 0.6639 |
| 6pm | 2.55 | 0.4951 | 0.1194 | 0.6145 |
| 7pm | 1.95 | 0.4683 | 0.1193 | 0.5876 |
| Parameter | Value |
|---|---|
| Total input solar energy in the period [kWh] | 10.1199 |
| Total electricity supplied to the load [kWh] | 1.2923 |
| Total absolute thermal energy in the water supplied to the user | 10.1358 |
| Total absolute thermal energy in the water extracted from the source [kWh] | 5.5004 |
| Total used thermal energy (sink – source) [kWh] | 4.6353 |
| Electrical efficiency | 0.12769 |
| Thermal efficiency | 0.45804 |
| Total efficiency | 0.58574 |
| Model | ηth | ηel | ηgl |
| Model 1 | 0.4786 | 0.1210 | 0.5996 |
| Model 2 | 0.4580 | 0.1277 | 0.5857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
