Submitted:
05 February 2024
Posted:
06 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Utilization of DESs in the Recovery of REEs
2.1. DESs as Non-Aqueous Leachants of REEs
2.2. DESs as a Medium to Separate REEs
2.2.1. Electrodeposition
2.2.2. Membranes
2.2.3. Solvent extraction
3. Miscelaneous DESs and REEs Uses
Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US Geological Survey, Statista, 2023. https://www.statista.com. Accessed October 2023.
- Investing News Network. https://investing news.com. Accessed November 2023.
- Liu, S.-L.; Fan, H.-R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.-F.; Li, X.-C. Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews 2023, 157, 105428. [Google Scholar] [CrossRef]
- Aditya Ranjan Ray, Mishra, S. Hydrometallurgical technique as better option for the recovery of rare earths from mine tailings and industrial wastes. Sustainable Chemistry and Pharmacy Volume 2023, 36, 101311. [CrossRef]
- Han, K.N., Kim, R., Kim, J. Recent advancements in hydrometallurgy: solubility and separation. Trans. Indian Inst. Met. 2023. [CrossRef]
- Abbott,A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K.. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [CrossRef]
- Benworth B. Hansen, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M. Klein, Alexandre Horton, Laxmi Adhikari, Tamar Zelovich, Brian W. Doherty, Burcu Gurkan, Edward J. Maginn, Arthur Ragauskas, Mark Dadmun, Thomas A. Zawodzinski, Gary A. Baker, Mark E. Tuckerman, Robert F. Savinell, and Joshua R. Sangoro. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 3, 1232–1285. [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters 2023, 19, 3397–3408. [Google Scholar] [CrossRef]
- Cichowska-Kopczy´nska, K.; Kopczy´nska, B.; Nowosielski, D.; Warmí, N. Deep eutectic solvents: properties and applications in CO2 separation. Molecules 2023, 28, 5293. [Google Scholar] [CrossRef] [PubMed]
- Aditi Prabhune; Ranjan Dey. Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids Volume 2023, 379, 121676. [CrossRef]
- Chen, Y.; Mu, T. Revisiting greenness of ionic liquids and deep eutectic solvents, Green Chem. Eng. 2021, 2, 174–186. [Google Scholar] [CrossRef]
- Suthar, P.; Kaushal, M.; Vaidya, D.; Thakur, M.; Chauhan, P.; Angmo, D.; Kashyap, S.; Negi, N. Deep eutectic solvents (DES): an update on the applications in food sectors. J. Agric. Food Res. 2023, 14, 100678. [Google Scholar] [CrossRef]
- Atilhan, M.; Aparicio, S. Molecular dynamics study on the use of deep eutectic solvents for enhanced oil recovery. J. Pet. Sci. Eng. 2022, 209, 109953. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, G.; Brewer, M.; Lv, Q.; Sudh¨olter, E.J.R. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery, Adv. Colloid Interface Sci. 2021, 294, 102467. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2002, 19, 2010–2011. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions. Green Chem. 2002, 4, 24–26. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheeda, R.K.; Tambyrajaha, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Shirota, H.; Koyakkat, M.; Cao, M.; Shimizu, M.; Asakura, S.; Kawamoto, H.; Moriyama, K. Facile preparation of deep eutectic solvents having high electrical conductivities. Journal of Molecular Liquids 2023, 372, 121176. [Google Scholar] [CrossRef]
- Koyakkat, M.; Moriyama, K.; Asakura, S.; Kawamoto, H.; Shirota, H. Deep eutectic solvents based on ammonium iodide and iodine possessing high electrical conductivity. Journal of Molecular Liquids 2023, 384, 122250. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Database of deep eutectic solvents and their physical properties: a review. J. Mol. Liq. 2023, 384, 121899. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Długosz, O. Natural deep eutectic solvents in the synthesis of inorganic nanoparticles. Materials 2023, 16, 627. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, C.; Ou, L. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Science of The Total Environment 2023, 902, 166095. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Shakourian-Fard, M.; Kamath, G.; Murshid, G.; Naser, J.; Al Ma’awali, S. Experimental and theoretical study of the physicochemical properties of the novel imidazole-based eutectic solvent. J. Mol. Graph. Modell. 2023, 118, 108319. [Google Scholar] [CrossRef] [PubMed]
- Uzochukwu, M.I.; Oyegoke, T.; Momoh, R.O.; Isa, M.T.; Shuwa, S.M.; Jibril, B.Y. Computational insights into deep eutectic solvent design: Modeling interactions and thermodynamic feasibility using choline chloride & glycerol. Chemical Engineering Journal Advances 2023, 16, 100564. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, PT. Ionic liquids and deep-eutectic solvents in extractive metallurgy: mismatch between academic research and industrial applicability. J. Sust. Metal. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Kanzaki, R. Deep eutectic solvents for liquid-liquid extraction. Anal. Sci. 2023, 39, 1021–1022. [Google Scholar] [CrossRef] [PubMed]
- [28]Panda, P.; Mishra, S. Deep eutectic solvents: Physico-chemical properties and their use for recovery of metal values from waste products. Journal of Molecular Liquids 2023, 390, 123070. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Xu, Z.; Dutta, S.; Valix, M.; Alessi, D.S.; Huang, L.; Zimmerman, J.B.; Tsang, D.C.W. Selective extraction of critical metals from spent lithium-ion batteries. Environ. Sci. Tech. 2023, 57, 3940–3950. [Google Scholar] [CrossRef]
- Zhu, A.; Bian, X.; Han, W.; Wen, Y.; Ye, K.; Wang, G.; Yan, J.; Cao, D.; Zhu, K.; Wang, S. Microwave-ultra-fast recovery of valuable metals from spent lithium-ion batteries by deep eutectic solvents. Waste Manage. 2023, 156, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, G.; Saneie, R.; Abdollahi, H.; Ebrahimi, E.; Rezaei, A.; Mohammadkhani, M. Application of deep eutectic solvents (DESs) as a green lixiviant for extraction of rare earth elements from caustic-treated monazite concentrate. J. Environ. Chem. Eng. 2023, 11, 110777. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, C.; Huang, D.; Zhao, X.; Wei, L. Electrodeposition of Rare-Earth Metals (Yttrium, Samarium and Terbium) from a Deep Eutectic Solvent. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering 2023, 52, 2478–2484. [Google Scholar]
- Xiang, G.; Xu, C.; Wang, S.; Li, J.; Chen, W.; Gu, D.; Zhang, Q.; Hua, Y. Electrodeposition of neodymium from betaine-ethylene glycol deep eutectic solvent using neodymium oxide as a precursor. Electrochem. Commun. 2023, 157, 107619. [Google Scholar] [CrossRef]
- Chen, L.; Cui, R.; Pan, W.; Dai, J.; Meng, M.; Dai, X.; Pan, J. Role of natural deep eutectic solvents (NADESs) in coagulation bath for PVDF-based membranes on enhanced permeation and separation of rare earth ions. J. Membr. Sci. 2023, 683, 121836. [Google Scholar] [CrossRef]
- Favero, U.G.; Schaeffer, N.; Passos, H.; Cruz, K.A.M.L.; Ananias, D.; Dourdain, S.; Hespanhol, M.C. Solvent extraction in non-ideal eutectic solvents–Application towards lanthanide separation. Sep. Purif. Technol. 2023, 314, 123592. [Google Scholar] [CrossRef]
- Gamare, J.; Vats, B.G. A hydrophobic deep eutectic solvent for nuclear fuel cycle: extraction of actinides and dissolution of uranium oxide. European J. Inorg. Chem. 2023. [CrossRef]
- Ni, S.; Gao, Y.; Yu, G.; Zhang, S.; Zeng, Z.; Sun, X. A sustainable strategy for targeted extraction of thorium from radioactive waste leachate based on hydrophobic deep eutectic solvent. J. Hazard. Mater. 2023, 460, 132465. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Yu, G.; Gao, Y.; Zhang, S.; Su, H.; Sun, X. Tailored hydrophobic deep eutectic solvent for removing trace aluminum impurity to produce high-purity GdCl3. Sep. Purif. Technol. 2023, 314, 123620. [Google Scholar] [CrossRef]
- Patra, Dev K.;Thombre, Aradhana V.;Kundu, Debashi. Generalized Pitzer-Debye-Hückel (PDH) Framework for the Deep Eutectic Solvent Assisted Extraction of Europium (III), Americium (III), and Uranium (VI). Solvent Extraction and Ion Exchange2023. [CrossRef]
- Prusty, S.; Pradhan, S.; Mishra, S. Extraction and separation studies of Nd/Fe and Sm/Co by deep eutectic solvent containing Aliquat 336 and glycerol. J. Chem. Technol. Biotechnol. 2023, 98, 1631–1641. [Google Scholar] [CrossRef]
- Ushizaki, S.; Kanemaru, S.; Sugamoto, K.; Baba, Y. Selective extraction equilibria of Sc(III), Y(III), Fe(III) and Al(III) from acidic media with toluene mixture of deep eutectic solvent (DES) composed of TOPO and isostearic acid. Anal. Sci. 2023, 39, 473–481. [Google Scholar] [CrossRef]
- Ahmad, T.; Iqbal, J.; Bustam, M.A.; Babar, M.; Tahir, M.B.; Sagir, M.; Irfan, M.; Asghar, H.M.A.; Hassan, A.; Riaz, A.; Chuah, L.F.; Bokhari, A.; Mubashir, M.; Show, P.L. Performance evaluation of phosphonium based deep eutectic solvents coated cerium oxide nanoparticles for CO2 capture. Environ. Res. 2023, 222, 115314. [Google Scholar] [CrossRef]
- Chen, T.-W.; Priya, T.S.; Chen, S.-M.; Kokulnathan, T.; Ahmed, F.; Alshahrani, T. Synthesis of praseodymium vanadate in deep eutectic solvent medium for electrochemical detection of furaltadone. Process Safety and Environmental Protection 2023, 174, 368–375. [Google Scholar] [CrossRef]
- Faizan, M.; Li, Y.; Wang, X.; Song, P.; Zhang, R.; Liu, R. Rare earth metal based DES assisted the VPO synthesis for n-butane selective oxidation toward maleic anhydride. Green Energy & Environment 2023, 8, 1737–1752. [Google Scholar] [CrossRef]
- Joel, C.; Biju, B.R.; Jerold, A.A.; Vimala Vanthana, A.S. Role of deep eutectic solvent in the surface modification of yttria based WO3 nanocomposite for application in nanoarchitectonics. Ceramics International 2023, 49, 36189–36198. [Google Scholar] [CrossRef]
- Hammond, O.S.; Bathke, E.K.; Bowron, D.T.; Edler, K.J. Trace water changes metal ion speciation in deep eutectic solvents: Ce3+ solvation and nanoscale water clustering in choline chloride-urea-water mixtures. Inorg. Chem. 2023, 62, 18069–180786. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, Vaishali; Anjali, None; Pandey, Siddharth. Constituent- and Composition-Dependent Surfactant Aggregation in (Lanthanide Salt + Urea) Deep Eutectic Solvents. LangmuirVolume 39, Issue 14, Pages 5129 - 513611 April 2023. [CrossRef]
- Patil, S.M.; Agrawal, R.; Gupta, R.; Gupta, S.K.; Ghosh, A.; Kumar, S.; Jayachandran, K.; Ghanty, T.K. Understanding the excited state dynamics and redox behavior of highly luminescent and electrochemically active Eu(iii)–DES complex. Dalton Trans. 2023, 52, 17349. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, V.S.; Pavlenko, L.M.; Bobrova, L.S.; Korniy, S.A.; Butyrina, T.E.; Danilov, F.I. Ni-La coatings as electrocatalysts for hydrogen evolution reaction deposited from electrolytes based on a deep eutectic solvent. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 3, 103–109. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Pavlenko, L.M.; Bobrova, L.S.; Korniy, S.A.; Danilov, F.I. Electrodeposition of coatings from urea–choline chloride-based plating baths containing Ni(II) and Ce(III) chloride salts and electrocatalytic activity of electrodeposits towards the hydrogen evolution reaction. Journal of Solid State Electrochemistry 2023. [CrossRef]
- Rahman, M.H.; Ahmed, S.; Mou, S.S.; Ismail, A.B. Efficient passivation of porous silicon with LaF3 by deep eutectic solvent based novel chemical route. Materials Science and Engineering: B 2023, 296, 116707. [Google Scholar] [CrossRef]
- Saif-ur-Rehman, M.; Mehdi, M.S.; Fakhar-e-Alam, M.; Asif, M.; Rehman, J.; Alshgari, R.A.; Jamal, M.; Zaman, S.U.; Umar, M.; Rafiq, S.; Muhammad, N.; Fawad, J.B.; Shafiee, S.A. Deep eutectic solvent coated cerium oxide nanoparticles based polysulfone membrane to mitigate environmental toxicology. Molecules 2023, 28, 7162. [Google Scholar] [CrossRef]
| HBA | HBD | Molar ratio HBA:HBD |
|---|---|---|
| PEG-400 Choline chloride Choline chloride Choline chloride Choline chloride NaOH NaOH Choline chloride Choline chloride Choline chloride Choline chloride |
PTSA PTSA Urea EG Urea:EG PEG-200 PEG-400 PTSA:EG PTSA:PEG AA DLLA |
1.1 2:1 1:2 1:2 2:4:1 1:44 1:44 2:1:1 2:1:1 1:2 1:2 |
| Element | 0.1 M HNO3 | 1 M HNO3 | 6 M HNO3 |
| La(III) Ce(III) Ce(IV) Pr(III) Nd(III) Eu(III) Gd(III) Y(III) Lu(III) |
0.59 0.63 12.0 2.77 1.49 6.56 3.93 1.60 2.98 |
1.0 1.90 11.0 3.47 3.16 8.16 4.94 6.38 6.72 |
0.19 0.05 6.52 0.02 0.19 0.51 0.36 1.18 1.90 |
| La(III): 1.9·105 Ce(III): 1.2·105 Pr(III): 5.5·104 Nd(III): 5.1·104 Sm(III): 8.7·103 Eu(III). 1.9·104 |
Gd(III): 2.5·104 Tb(III): 1.7·104 Dy(III): 2.3·104 Ho(III): 2.5·104 Y(III): 5.3·104 Er(III): 2.8·104 |
Tm(III): 2.6·104 Yb(III): 2.5·104 Lu(III): 1.4·104 Mg(II): 2.9·106 Al(III): 1.5·105 Ca(II): 1.3·106 |
| Diluent | Nd(III) | Fe(III) | Sm(III) | Co(II) |
|---|---|---|---|---|
| Heptane Hexane Carbon tetrachloride Kerosene |
20 3 5 6.5 |
<0.5 <0.5 <0.5 0.5 |
1.5 1.75 2 2.5 |
no extraction no extraction no extraction no extraction |
| pH | Current, µA |
|---|---|
| 3 5 7 9 |
-16 -21 -24 -16 |
| Molar hydration ratio | Complex |
|---|---|
| 2w 5w 10w |
[CeCl6H2O]3- [CeCl5(H2O)2]2- [CeCl5(H2O)3]2- |
| CO2 pure | CO2/CH4 | CO2/N2 | |
|---|---|---|---|
| Pristine membrane Mixed matrix membrane |
6.7 17.2 |
6.06 16.3 |
6.36 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
