Submitted:
02 February 2024
Posted:
05 February 2024
You are already at the latest version
Abstract
Keywords:
Manuscript
IL-1
IL-1 in MF/SS
IL-2
IL-2 in MF/SS
IL-3
IL-3 in MF/SS
IL-4
IL-4 in MF/SS
4. IL-5
IL-5 in MF/SS
IL-6
IL-6 in MF/SS
IL-7
IL-7 in MF/SS
IL-8
IL-9
IL-9 in MF/SS
IL-10
IL-10 in MF/SS
IL-11
IL-11 in MF/SS
IL-12
Il-12 in MF/SS
IL-13
IL-13 in MF/SS
IL-14
IL-14 and MF/SS
IL-15 and IL-17
IL-15 and IL-17 in MF/SS
IL-16
IL-16 and MF/SS
IL-18
IL-18 in MF/SS
IL-19, IL-20, IL-22, IL-24 and IL-26
IL-19, IL-20, IL-22, IL-24 and IL-26 in MF/SS
IL-21
IL-21 in MF/SS
IL-22
IL-23
IL-23 in MF/SS
IL-24
IL-25
IL-25 in MF/SS
IL-26
IL-27
IL-27 in MF/SS
IL-28 and IL-29
IL-30
IL-30 in MF/SS
IL-31 and IL-8
IL-31 and IL-8 in MF/SS
IL-32
IL-32 in MF/SS
IL-33
IL-33 in MF/SS
TNF- α
TNF- α in MF/SS
EGF
EGF in MF/SS
FGF
FGF in MF/SS
PDGR
PDGRα in MF/SS
Interferon type I, type II and type III
Interferon type I, type II and type III in MF/SS
Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019;133:1703–14. [CrossRef]
- Pileri A, Patrizi A, Agostinelli C, Neri I, Sabattini E, Bacci F, et al. Primary cutaneous lymphomas: a reprisal. Seminars in Diagnostic Pathology 2011;28:214–33. [CrossRef]
- Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol 2007;143:854–9. [CrossRef]
- Dobos G, de Masson A, Ram-Wolff C, Beylot-Barry M, Pham-Ledard A, Ortonne N, et al. Epidemiological changes in cutaneous lymphomas: an analysis of 8593 patients from the French Cutaneous Lymphoma Registry. Br J Dermatol 2021;184:1059–67. [CrossRef]
- Alessandro Pileri et al. Epidemiology cutaneous T-cell lymphomas: state of the art and a focus on the Italian Marche region. European Journal of Dermatology (EJD) n.d.
- Kayishunge D, Ly S, Su J, Wong HK. Epidemiologic Trends of Cutaneous T-Cell Lymphoma in Arkansas Reveals Demographic Disparities. Cancers (Basel) 2022;14:4329. [CrossRef]
- Miyashiro D, Sanches JA. Mycosis fungoides and Sézary syndrome: clinical presentation, diagnosis, staging, and therapeutic management. Frontiers in Oncology 2023;13.
- Dai J, Duvic M. Cutaneous T-Cell Lymphoma: Current and Emerging Therapies. Oncology (Williston Park) 2023;37:55–62. [CrossRef]
- Wojewoda K, Gillstedt M, Englund H, Ali S, Lewerin C, Osmancevic A. Diagnostic Outcomes and Treatment Modalities in Patients with Mycosis Fungoides in West Sweden—A Retrospective Register-Based Study. Cancers 2022;14:4661. [CrossRef]
- Pileri A, Guglielmo A, Grandi V, Violetti SA, Fanoni D, Fava P, et al. The Microenvironment’s Role in Mycosis Fungoides and Sézary Syndrome: From Progression to Therapeutic Implications. Cells 2021;10:2780. [CrossRef]
- Alberti-Violetti S, Sapienza MR, Del Corvo M, Melle F, Motta G, Venegoni L, et al. A Microenvironment-Related Nine-Gene Signature May Predict Survival in Mycosis Fungoides Patients at Diagnosis. Cells 2023;12:1944. [CrossRef]
- Dobos G, Lazaridou I, de Masson A. Mycosis Fungoides and Sézary Syndrome: Microenvironment and Cancer Progression. Cancers 2023;15:746. [CrossRef]
- Johnson VE, Vonderheid EC, Hess AD, Eischen CM, McGirt LY. Genetic Markers Associated with Progression in Early Mycosis Fungoides. J Eur Acad Dermatol Venereol 2014;28:1431–5. [CrossRef]
- Wobser M, Roth S, Appenzeller S, Houben R, Schrama D, Goebeler M, et al. Targeted Deep Sequencing of Mycosis Fungoides Reveals Intracellular Signaling Pathways Associated with Aggressiveness and Large Cell Transformation. Cancers (Basel) 2021;13:5512. [CrossRef]
- McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 2015;126:508–19. [CrossRef]
- Gan L, Shi H, Zhang Y, Sun J, Chen H. Proteomic Screening and Verification of Biomarkers in Different Stages of Mycosis Fungoides: A pilot Study. Frontiers in Cell and Developmental Biology 2021;9.
- Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009;27:519–50. [CrossRef]
- Wautier J-L, Wautier M-P. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int J Mol Sci 2023;24:9647. [CrossRef]
- Tsai Y-C, Schlaepfer T, Ignatova D, Chang Y-T, Valaperti A, Amarov B, et al. Boost of innate immunity cytokines as biomarkers of response to extracorporeal photopheresis in patients with leukaemic cutaneous T-cell lymphoma. Br J Dermatol 2023;189:603–11. [CrossRef]
- Gottlieb SL, Wolfe JT, Fox FE, DeNardo BJ, Macey WH, Bromley PG, et al. Treatment of cutaneous T-cell lymphoma with extracorporeal photopheresis monotherapy and in combination with recombinant interferon alfa: A 10-year experience at a single institution. Journal of the American Academy of Dermatology 1996;35:946–57. [CrossRef]
- Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004;4:665–74. [CrossRef]
- Brockdorff JL, Gu H, Mustelin T, Kaltoft K, Geisler C, Röpke C, et al. Gab2 is phosphorylated on tyrosine upon interleukin-2/interleukin-15 stimulation in mycosis-fungoides-derived tumor T cells and associates inducibly with SHP-2 and Stat5a. Exp Clin Immunogenet 2001;18:86–95. [CrossRef]
- Shohat M, Hodak E, Sredni B, Shohat B, Sredni D, David M. Cytokine profile of patients with mycosis fungoides and the immunomodulatory effect of AS101. Acta Derm Venereol 2001;81:255–7. [CrossRef]
- Kozenitzky L, David M, Sredai B, Albeck M, Shohat B. Immunomodulatory effects of AS101 on interleukin-2 production and T-lymphocyte function of lymphocytes treated with psoralens and ultraviolet A. Photodermatol Photoimmunol Photomed 1992;9:24–8.
- Foss FM. Interleukin‐2 Fusion Toxin: Targeted Therapy for Cutaneous T Cell Lymphoma. Annals of the New York Academy of Sciences 2001;941:166–76. [CrossRef]
- Wang Z, Ma J, Zhang H, Ramakrishna R, Mintzlaff D, Mathes DW, et al. CCR4-IL2 bispecific immunotoxin is more effective than brentuximab for targeted therapy of cutaneous T-cell lymphoma in a mouse CTCL model. FEBS Open Bio 2023;13:1309–19. [CrossRef]
- Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019;50:796–811. [CrossRef]
- Sigurdsson V, Toonstra J, Bihari IC, Bruijnzeel-Koomen CA, van Vloten WA, Thepen T. Interleukin 4 and interferon-gamma expression of the dermal infiltrate in patients with erythroderma and mycosis fungoides. An immuno-histochemical study. J Cutan Pathol 2000;27:429–35. [CrossRef]
- Noben-Trauth N, Paul WE, Sacks DL. IL-4- and IL-4 receptor-deficient BALB/c mice reveal differences in susceptibility to Leishmania major parasite substrains. J Immunol 1999;162:6132–40.
- Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, et al. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int J Mol Sci 2019;20:5856. [CrossRef]
- Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol 2018;9:888. [CrossRef]
- Saulite I, Ignatova D, Chang Y-T, Fassnacht C, Dimitriou F, Varypataki E, et al. Blockade of programmed cell death protein 1 (PD-1) in Sézary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. OncoImmunology 2020;9:1738797. [CrossRef]
- Ritlecitinib in CTCL. CtvVeevaCom n.d. Available online: https://ctv.veeva.com/study/ritlecitinib-in-ctcl.
- Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab Treatment in Adults with Moderate-to-Severe Atopic Dermatitis. New England Journal of Medicine 2014;371:130–9. [CrossRef]
- Buffon S, Alberti Violetti S, Avallone G, Venegoni L, Marzano AV, Mastorino L, et al. Mycosis fungoides and Sézary syndrome following dupilumab treatment: experience of two Italian tertiary care centres. Clinical and Experimental Dermatology 2023;48:1376–8. [CrossRef]
- Harb H, Chatila TA. Mechanisms of Dupilumab. Clin Exp Allergy 2020;50:5–14. [CrossRef]
- Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, et al. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol 2019;10:1514. [CrossRef]
- Nielsen M, Nissen MH, Gerwien J, Zocca M-B, Rasmussen HM, Nakajima K, et al. Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood 2002;99:973–7. [CrossRef]
- Yamamoto T, Katayama I, Nishioka K. Expression of stem cell factor in the lesional skin of systemic sclerosis. Dermatology 1998;197:109–14. [CrossRef]
- Watson C, Whittaker S, Smith N, Vora AJ, Dumonde DC, Brown KA. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes. Clin Exp Immunol 1996;105:112–9. [CrossRef]
- Kadin ME, Pavlov IY, Delgado JC, Vonderheid EC. High soluble CD30, CD25, and IL-6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides. J Invest Dermatol 2012;132:703–10. [CrossRef]
- Kadin ME. What Cytokines Can Tell Us About the Pathogenesis of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Aesthetic Surgery Journal 2019;39:S28–35. [CrossRef]
- Olszewska B, Gleń J, Zabłotna M, Nowicki RJ, Sokołowska-Wojdyło M. The polymorphisms of IL-6/STAT3 signaling pathway may contribute to cutaneous T-cell lymphomas susceptibility. Arch Dermatol Res 2021;313:25–31. [CrossRef]
- Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. Cutting Edge: The Common γ-Chain Is an Indispensable Subunit of the IL-21 Receptor Complex1. The Journal of Immunology 2001;167:1–5. [CrossRef]
- Winer H, Rodrigues GOL, Hixon JA, Aiello FB, Hsu TC, Wachter BT, et al. IL-7: Comprehensive review. Cytokine 2022;160:156049. [CrossRef]
- Asadullah K, Haeussler A, Friedrich M, Siegling A, Olaizola-Horn S, Trefzer U, et al. IL-7 mRNA is not overexpressed in mycosis fungoides and pleomorphic T-cell lymphoma and is likely to be an autocrine growth factor in vivo. Arch Dermatol Res 1996;289:9–13. [CrossRef]
- Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology 1994;56:559–64. [CrossRef]
- Kimata H, Lindley I. Detection of plasma interleukin-8 in atopic dermatitis. Arch Dis Child 1994;70:119–22.
- Abreu M, Miranda M, Castro M, Fernandes I, Cabral R, Santos AH, et al. IL-31 and IL-8 in Cutaneous T-Cell Lymphoma: Looking for Their Role in Itch. Advances in Hematology 2021;2021:e5582581. [CrossRef]
- Rojas-Zuleta WG, Sanchez E. IL-9: Function, Sources, and Detection. Methods Mol Biol 2017;1585:21–35. [CrossRef]
- Herrera A, Fredholm S, Cheng A, Mimitou EP, Seffens A, Bar-Natan M, et al. Low SATB1 Expression Promotes IL-5 and IL-9 Expression in Sézary Syndrome. J Invest Dermatol 2020;140:713–6. [CrossRef]
- Vieyra-Garcia PA, Wei T, Naym DG, Fredholm S, Fink-Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res 2016;22:3328–39. [CrossRef]
- Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. Adv Exp Med Biol 2019;1172:79–96. [CrossRef]
- Commins S, Steinke JW, Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 2008;121:1108–11. [CrossRef]
- Akatsuka T, Miyagaki T, Nakajima R, Kamijo H, Oka T, Takahashi N, et al. Decreased IL-10-producing regulatory B cells in patients with advanced mycosis fungoides. European Journal of Dermatology : EJD 2018;28:314–9. [CrossRef]
- Tiffon C, Adams J, van der Fits L, Wen S, Townsend P, Ganesan A, et al. The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br J Pharmacol 2011;162:1590–602. [CrossRef]
- Chang T-P, Poltoratsky V, Vancurova I. Bortezomib Inhibits Expression of TGFβ1, IL-10, and CXCR4, Resulting in Decreased Survival and Migration of Cutaneous T Cell Lymphoma Cells. J Immunol 2015;194:2942–53. [CrossRef]
- Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, et al. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2022;149:155750. [CrossRef]
- Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol 2012;13:722–8. [CrossRef]
- Rook AH, Kubin M, Cassin M, Vonderheid EC, Vowels BR, Wolfe JT, et al. IL-12 reverses cytokine and immune abnormalities in Sezary syndrome. J Immunol 1995;154:1491–8.
- Duvic M, Sherman ML, Wood GS, Kuzel TM, Olsen E, Foss F, et al. A phase II open-label study of recombinant human interleukin-12 in patients with stage IA, IB, or IIA mycosis fungoides. J Am Acad Dermatol 2006;55:807–13. [CrossRef]
- Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001;167:4668–75. [CrossRef]
- Zhang Y, Li C, Zhang M, Li Z. IL-13 and IL-13Rα1 are overexpressed in extranodal natural killer/T cell lymphoma and mediate tumor cell proliferation. Biochem Biophys Res Commun 2018;503:2715–20. [CrossRef]
- Kemp EH, Ajjan RA, Metcalfe RA, Watson PF, Weetman AP. IL-14 and IL-16 are expressed in the thyroid of patients with either Graves’ disease or Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 2015;83:726–32. [CrossRef]
- Marzec M, Liu X, Kasprzycka M, Witkiewicz A, Raghunath PN, El-Salem M, et al. IL-2- and IL-15-induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes. Blood 2008;111:2181–9. [CrossRef]
- Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, et al. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle 2014;13:1306–12. [CrossRef]
- Asadullah K, Haeussler-Quade A, Gellrich S, Hanneken S, Hansen-Hagge TE, Döcke WD, et al. IL-15 and IL-16 overexpression in cutaneous T-cell lymphomas: stage-dependent increase in mycosis fungoides progression. Exp Dermatol 2000;9:248–51. [CrossRef]
- Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 2011;3:166–79.
- Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, et al. Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discov 2016;6:986–1005. [CrossRef]
- Richmond J, Tuzova M, Cruikshank W, Center D. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J Cell Physiol 2014;229:139–47. [CrossRef]
- Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011;34:149–62. [CrossRef]
- KOŁKOWSKI K, GLEŃ J, OLSZEWSKA B, ZABŁOTNA M, NOWICKI RJ, SOKOŁOWSKA-WOJDYŁO M. Interleukin-17 Genes Polymorphisms are Significantly Associated with Cutaneous T-cell Lymphoma Susceptibility. Acta Derm Venereol 2022;102:2416. [CrossRef]
- Kaplanski G. Interleukin‐18: Biological properties and role in disease pathogenesis. Immunol Rev 2018;281:138–53. [CrossRef]
- Manfrere KCG, Torrealba MP, Ferreira FM, de Sousa ESA, Miyashiro D, Teixeira FME, et al. Imbalanced IL-1B and IL-18 Expression in Sézary Syndrome. Int J Mol Sci 2023;24:4674. [CrossRef]
- Kempuraj D, Frydas S, Kandere K, Madhappan B, Letourneau R, Christodoulou S, et al. Interleukin-19 (IL-19) network revisited. Int J Immunopathol Pharmacol 2003;16:95–7. [CrossRef]
- Senda N, Miyagaki T, Kamijo H, Nakajima R, Oka T, Takahashi N, et al. Increased HMGB1 levels in lesional skin and sera in patients with cutaneous T-cell lymphoma. Eur J Dermatol 2018;28:621–7. [CrossRef]
- Leonard WJ, Wan C-K. IL-21 Signaling in Immunity. F1000Res 2016;5:F1000 Faculty Rev-224. [CrossRef]
- Aulasevich N, Haist M, Försch S, Weidenthaler-Barth B, Mailänder V. The Role of the Immune Phenotype in Tumor Progression and Prognosis of Patients with Mycosis Fungoides: A Quantitative Immunohistology Whole Slide Approach. Cells 2022;11:3570. [CrossRef]
- Duvallet E, Semerano L, Assier E, Falgarone G, Boissier M-C. Interleukin-23: a key cytokine in inflammatory diseases. Ann Med 2011;43:503–11. [CrossRef]
- Liu Y, Shao Z, Shangguan G, Bie Q, Zhang B. Biological Properties and the Role of IL-25 in Disease Pathogenesis. J Immunol Res 2018;2018:6519465. [CrossRef]
- Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front Oncol 2019;9:969. [CrossRef]
- Yoshimoto T, Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol 2007;179:4415–23. [CrossRef]
- Singer EM, Shin DB, Nattkemper LA, Benoit BM, Klein RS, Didigu CA, et al. IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 2013;133:2783–5. [CrossRef]
- Ferretti E, Corcione A, Pistoia V. The IL-31/IL-31 receptor axis: general features and role in tumor microenvironment. J Leukoc Biol 2017;102:711–7. [CrossRef]
- Malek M, Gleń J, Rębała K, Kowalczyk A, Sobjanek M, Nowicki R, et al. Il-31 does not correlate to pruritus related to early stage cutaneous T-cell lymphomas but is involved in pathogenesis of the disease. Acta Derm Venereol 2015;95:283–8. [CrossRef]
- Yu KK, Smith NP, Essien SV, Teague JE, Vieyra-Garcia P, Gehad A, et al. IL-32 Supports the Survival of Malignant T Cells in Cutaneous T-cell Lymphoma. J Invest Dermatol 2022;142:2285-2288.e2. [CrossRef]
- Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan C, Ying S, et al. IL-33 Amplifies the Polarization of Alternatively Activated Macrophages That Contribute to Airway Inflammation1. Journal of Immunology (Baltimore, Md : 1950) 2009;183:6469–77. [CrossRef]
- Miller AM. Role of IL‐33 in inflammation and disease. J Inflamm (Lond) 2011;8:22. [CrossRef]
- Meephansan J, Tsuda H, Komine M, Tominaga S-I, Ohtsuki M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes. J Invest Dermatol 2012;132:2593–600. [CrossRef]
- Mager LF, Riether C, Schürch CM, Banz Y, Wasmer M-H, Stuber R, et al. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest 2015;125:2579–91. [CrossRef]
- Yoo J, Rodriguez Perez CE, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. TNF-α induces upregulation of EGFR expression and signaling in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2012;302:G805-814. [CrossRef]
- Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol 2002;80:231–8. [CrossRef]
- Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021;10:1201. [CrossRef]
- Horikawa S, Ishii Y, Hamashima T, Yamamoto S, Mori H, Fujimori T, et al. PDGFRα plays a crucial role in connective tissue remodeling. Sci Rep 2015;5:17948. [CrossRef]
- Yu Z, Vieyra-Garcia P, Benezeder T, Crouch JD, Kim IR, O’Malley JT, et al. Phototherapy Restores Deficient Type I IFN Production and Enhances Antitumor Responses in Mycosis Fungoides. J Invest Dermatol 2023:S0022-202X(23)02567-8. [CrossRef]
- Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 2018;9:64–79. [CrossRef]
- Uzé G, Monneron D. IL-28 and IL-29: newcomers to the interferon family. Biochimie 2007;89:729–34. [CrossRef]
- Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol 1997;15:749–95. [CrossRef]
- Tensen CP, Vermeer MH, van der Stoop PM, van Beek P, Scheper RJ, Boorsma DM, et al. Epidermal Interferon-γ Inducible Protein-10 (IP-10) and Monokine Induced by γ-Interferon (Mig) but not IL-8 mRNA Expression is Associated with Epidermotropism in Cutaneous T Cell Lymphomas. Journal of Investigative Dermatology 1998;111:222–6. [CrossRef]
- García-Vega Y, García-García I, Collazo-Caballero SE, Santely-Pravia EE, Cruz-Ramírez A, Tuero-Iglesias AD, et al. Pharmacokinetic and pharmacodynamic characterization of a new formulation containing synergistic proportions of interferons alpha-2b and gamma (HeberPAG) in patients with mycosis fungoides: an open-label trial. BMC Pharmacol Toxicol 2012;13:20. [CrossRef]
- Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019;39:12. [CrossRef]
- Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016;6:36107. [CrossRef]
- Lawlor F, Smith N p., Camp R d. r., Bacon K b., Black AK, Greaves M w., et al. Skin exudate levels of interleukin 6, interleukin i and other cytokines in mycosis fungoides. British Journal of Dermatology 1990;123:297–304. [CrossRef]
- Ying Z, Shiue L, Park K, Kollet J, Bijani P, Goswami M, et al. Blood transcriptional profiling reveals IL-1 and integrin signaling pathways associated with clinical response to extracorporeal photopheresis in patients with leukemic cutaneous T-cell lymphoma. Oncotarget 2019;10:3183–97. [CrossRef]
- Hodge S, Hodge G, Flower R, Han P. Surface and intracellular interleukin-2 receptor expression on various resting and activated populations involved in cell-mediated immunity in human peripheral blood. Scand J Immunol 2000;51:67–72. [CrossRef]
- Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998;8:615–23. [CrossRef]
- Rybojad M, Marolleau JP, Flageul B, Baccard M, Brandely M, Morel P, et al. Successful interleukin-2 therapy of advanced cutaneous T-cell lymphoma. British Journal of Dermatology 1992;127:63–4. [CrossRef]
- Baccard M, Marolleau JP, Rybojad M. Middle-Term Evolution of Patients With Advanced Cutaneous T-Cell Lymphoma Treated With High-Dose Recombinant Interleukin-2. Archives of Dermatology 1997;133:656. [CrossRef]
- Nagatani T, Kin ST, Baba N, Miyamoto H, Nakajima H, Katoh Y. A case of cutaneous T cell lymphoma treated with recombinant interleukin 2 (rIL-2). Acta Derm Venereol 1988;68:504–8.
- Querfeld C, Rosen ST, Guitart J, Rademaker A, Foss F, Gupta R, et al. Phase II trial of subcutaneous injections of human recombinant interleukin-2 for the treatment of mycosis fungoides and Sézary syndrome. J Am Acad Dermatol 2007;56:580–3. [CrossRef]
- Figgitt DP, Lamb HM, Goa KL. Denileukin diftitox. Am J Clin Dermatol 2000;1:67–72; discussion 73. [CrossRef]
- Kaminetzky D, Hymes KB. Denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Biologics 2008;2:717–24.
- Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. J Immunol 2012;189:4213–9. [CrossRef]
- Huanosta-Murillo E, Alcántara-Hernández M, Hernández-Rico B, Victoria-Acosta G, Miranda-Cruz P, Domínguez-Gómez MA, et al. NLRP3 Regulates IL-4 Expression in TOX+ CD4+ T Cells of Cutaneous T Cell Lymphoma to Potentially Promote Disease Progression. Front Immunol 2021;12:668369. [CrossRef]
- Huang X, Li Y, Fu M, Xin H-B. Polarizing Macrophages In Vitro. Methods Mol Biol 2018;1784:119–26. [CrossRef]
- Vowels BR, Lessin SR, Cassin M, Jaworsky C, Benoit B, Wolfe JT, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 1994;103:669–73. [CrossRef]
- Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol 1995;32:448–53. [CrossRef]
- Papadavid E, Economidou J, Psarra A, Kapsimali V, Mantzana V, Antoniou C, et al. The relevance of peripheral blood T-helper 1 and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sézary syndrome. Br J Dermatol 2003;148:709–18. [CrossRef]
- Litvinov IV, Cordeiro B, Fredholm S, Ødum N, Zargham H, Huang Y, et al. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle 2014;13:2975–82. [CrossRef]
- Vowels BR, Cassin M, Vonderheid EC, Rook AH. Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol 1992;99:90–4. [CrossRef]
- Geskin LJ, Viragova S, Stolz DB, Fuschiotti P. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation. Blood 2015;125:2798–805. [CrossRef]
- Furudate S, Fujimura T, Kakizaki A, Kambayashi Y, Asano M, Watabe A, et al. The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp Dermatol 2016;25:107–12. [CrossRef]
- Furudate S, Fujimura T, Kakizaki A, Hidaka T, Asano M, Aiba S. Tumor-associated M2 macrophages in mycosis fungoides acquire immunomodulatory function by interferon alpha and interferon gamma. J Dermatol Sci 2016;83:182–9. [CrossRef]
- Ferretti E, Hohaus S, Di Napoli A, Belmonte B, Cuccaro A, Cupelli E, et al. Interleukin-31 and thymic stromal lymphopoietin expression in plasma and lymph node from Hodgkin lymphoma patients. Oncotarget 2017;8:85263–75. [CrossRef]
- Guttman-Yassky E, Pavel AB, Diaz A, Zhang N, Del Duca E, Estrada Y, et al. Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers. Journal of Allergy and Clinical Immunology 2022;149:1318–28. [CrossRef]
- Guenova E, Watanabe R, Teague JE, Desimone JA, Jiang Y, Dowlatshahi M, et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 2013;19:3755–63. [CrossRef]
- Takahashi N, Sugaya M, Suga H, Oka T, Kawaguchi M, Miyagaki T, et al. Thymic Stromal Chemokine TSLP Acts through Th2 Cytokine Production to Induce Cutaneous T-cell Lymphoma. Cancer Research 2016;76:6241–52. [CrossRef]
- Miyagaki T, Sugaya M, Shibata S, Ohmatsu H, Fujita H, Tamaki K. Serum interleukin-27 levels in patients with cutaneous T-cell lymphoma. Clin Exp Dermatol 2010;35:e143-144. [CrossRef]
- Tuzova M, Richmond J, Wolpowitz D, Curiel-Lewandrowski C, Chaney K, Kupper T, et al. CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma 2015;56:440–9. [CrossRef]
- Stolearenco V, Namini MRJ, Hasselager SS, Gluud M, Buus TB, Willerslev-Olsen A, et al. Cellular Interactions and Inflammation in the Pathogenesis of Cutaneous T-Cell Lymphoma. Front Cell Dev Biol 2020;8:851. [CrossRef]
- Jfri A, Smith JS, Larocca C. Diagnosis of mycosis fungoides or Sézary syndrome after dupilumab use: A systematic review. Journal of the American Academy of Dermatology 2023;88:1164–6. [CrossRef]
- Yan D, Ramachandran V, Weston G, Kim RH, Latkowski J-A. Diagnosing mycosis fungoides after initiation of therapy with dupilumab: a case report and literature review. International Journal of Dermatology 2023;62:e500–3. [CrossRef]
- Miyagaki T, Sugaya M. Erythrodermic cutaneous T-cell lymphoma: How to differentiate this rare disease from atopic dermatitis. Journal of Dermatological Science 2011;64:1–6. [CrossRef]
- M S. [Immunoglobulin E in cutaneous lymphomas and in parapsoriasis en plaques (Brocq) (author’s transl)]. Dermatologica 1980;161.
- Jj G, J C, M R-L, J M. [IgE and cellular immunity in cutaneous lymphomas (author’s transl)]. Annales de Dermatologie et de Venereologie 1977;104.
- Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine 2020;382:1708–20. [CrossRef]
- Suchin KR, Cassin M, Gottleib SL, Sood S, Cucchiara AJ, Vonderheid EC, et al. Increased interleukin 5 production in eosinophilic Sézary syndrome: regulation by interferon alfa and interleukin 12. J Am Acad Dermatol 2001;44:28–32. [CrossRef]
- Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen C-J, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299:708–10. [CrossRef]
- Karamova AE, Verbenko DA, Vorontsova AA, Zhilova MB, Nikonorov AA, Gatiatulina ER, et al. Effect of PUVA and NB-UVB Therapy on the Skin Cytokine Profile in Patients with Mycosis Fungoides. J Oncol 2022;2022:3149293. [CrossRef]
- Chen D, Tang T-X, Deng H, Yang X-P, Tang Z-H. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021;12:747324. [CrossRef]
- Qin JZ, Kamarashev J, Zhang CL, Dummer R, Burg G, Döbbeling U. Constitutive and interleukin-7- and interleukin-15-stimulated DNA binding of STAT and novel factors in cutaneous T cell lymphoma cells. J Invest Dermatol 2001;117:583–9. [CrossRef]
- Foss FM, Koc Y, Stetler-Stevenson MA, Nguyen DT, O’Brien MC, Turner R, et al. Costimulation of cutaneous T-cell lymphoma cells by interleukin-7 and interleukin-2: potential autocrine or paracrine effectors in the Sézary syndrome. J Clin Oncol 1994;12:326–35. [CrossRef]
- Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 2014;13:3331–5. [CrossRef]
- Merle-Béral H, Schmitt C, Mossalayi D, Bismuth G, Dalloul A, Mentz F. Interleukin-7 and malignant T cells. Nouv Rev Fr Hematol (1978) 1993;35:231–2.
- Bagot M, Charue D, Boulland ML, Gaulard P, Revuz J, Schmitt C, et al. Interleukin-7 receptor expression in cutaneous T-cell lymphomas. Br J Dermatol 1996;135:572–5.
- Sportès C, Gress RE. Interleukin-7 immunotherapy. Adv Exp Med Biol 2007;601:321–33. [CrossRef]
- Doherty TA, Broide DH. Insights into the biology of IL-9 in asthma. J Allergy Clin Immunol 2022;150:585–6. [CrossRef]
- Fang Y, Chen X, Bai Q, Qin C, Mohamud AO, Zhu Z, et al. IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol 2015;111:969–74. [CrossRef]
- Zheng N, Lu Y. Targeting the IL-9 pathway in cancer immunotherapy. Hum Vaccin Immunother 2020;16:2333–40. [CrossRef]
- Ng THS, Britton G, Hill E, Verhagen J, Burton B, Wraith D. Regulation of Adaptive Immunity; The Role of Interleukin-10. Frontiers in Immunology 2013;4.
- Howes A, Gabryšová L, O’Garra A. Role of IL-10 and the IL-10 Receptor in Immune Responses. Reference Module in Biomedical Sciences, Elsevier; 2014. [CrossRef]
- Wu X, Hsu DK, Wang K-H, Huang Y, Mendoza L, Zhou Y, et al. IL-10 is overexpressed in human cutaneous T-cell lymphoma and is required for maximal tumor growth in a mouse model. Leuk Lymphoma 2019;60:1244–52. [CrossRef]
- Nedoszytko B, Olszewska B, Roszkiewicz J, Glen J, Zabłotna M, Ługowska-Umer H, et al. The role of polymorphism of interleukin-2, -10, -13 and TNF-α genes in cutaneous T-cell lymphoma pathogenesis. Postepy Dermatol Alergol 2016;33:429–34. [CrossRef]
- Dittrich A, Hessenkemper W, Schaper F. Systems biology of IL-6, IL-12 family cytokines. Cytokine Growth Factor Rev 2015;26:595–602. [CrossRef]
- Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021;184:983-999.e24. [CrossRef]
- Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, et al. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020;11:575597. [CrossRef]
- Showe LC, Fox FE, Williams D, Au K, Niu Z, Rook AH. Depressed IL-12-mediated signal transduction in T cells from patients with Sézary syndrome is associated with the absence of IL-12 receptor beta 2 mRNA and highly reduced levels of STAT4. J Immunol 1999;163:4073–9.
- Seo N, Tokura Y, Matsumoto K, Furukawa F, Takigawa M. Tumour-specific cytotoxic T lymphocyte activity in Th2-type Sézary syndrome: its enhancement by interferon-gamma (IFN-gamma) and IL-12 and fluctuations in association with disease activity. Clin Exp Immunol 1998;112:403–9. [CrossRef]
- Davis MS, Spencer RK, Johnson CE, Elhage KG, Jin JQ, Hakimi M, et al. Risk of Cutaneous T Cell Lymphoma with Psoriasis Biologic Therapies. Dermatol Ther (Heidelb) 2023. [CrossRef]
- Wynn TA. IL‐13 effector functions. Annu Rev Immunol 2003;21:425–56. [CrossRef]
- de Vries JE. The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol 1998;102:165–9. [CrossRef]
- Urban JF, Noben-Trauth N, Donaldson DD, Madden KB, Morris SC, Collins M, et al. IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 1998;8:255–64. [CrossRef]
- Alexander J, Brombacher F, McGachy HA, McKenzie ANJ, Walker W, Carter KC. An essential role for IL-13 in maintaining a non-healing response following Leishmania mexicana infection. Eur J Immunol 2002;32:2923–33. [CrossRef]
- Mohrs M, Ledermann B, Köhler G, Dorfmüller A, Gessner A, Brombacher F. Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J Immunol 1999;162:7302–8.
- Leigh R, Ellis R, Wattie J, Donaldson DD, Inman MD. Is interleukin-13 critical in maintaining airway hyperresponsiveness in allergen-challenged mice? Am J Respir Crit Care Med 2004;170:851–6. [CrossRef]
- Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011;60:1419–30. [CrossRef]
- Shi J, Song X, Traub B, Luxenhofer M, Kornmann M. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int J Mol Sci 2021;22:2998. [CrossRef]
- Lin C, Liu H, Zhang H, He H, Li H, Shen Z, et al. Interleukin-13 receptor α2 is associated with poor prognosis in patients with gastric cancer after gastrectomy. Oncotarget 2016;7:49281–8. [CrossRef]
- Skinnider BF, Kapp U, Mak TW. The role of interleukin 13 in classical Hodgkin lymphoma. Leuk Lymphoma 2002;43:1203–10. [CrossRef]
- Gluud M, Pallesen EMH, Buus TB, Gjerdrum LMR, Lindahl LM, Kamstrup MR, et al. Malignant T cells induce skin barrier defects through cytokine-mediated JAK/STAT signaling in cutaneous T-cell lymphoma. Blood 2023;141:180–93. [CrossRef]
- Hashimoto M, Miyagaki T, Komaki R, Takeuchi S, Kadono T. Development of Nodular Lesions after Dupilumab Therapy in Erythrodermic Mycosis Fungoides with Interleukin-13 Receptor alpha2 Expression. Acta Derm Venereol 2022;102:adv00766. [CrossRef]
- Nogami S, Satoh S, Tanaka-Nakadate S, Yoshida K, Nakano M, Terano A, et al. Identification and characterization of taxilin isoforms. Biochemical and Biophysical Research Communications 2004;319:936–43. [CrossRef]
- Ford R, Tamayo A, Martin B, Niu K, Claypool K, Cabanillas F, et al. Identification of B-cell growth factors (interleukin-14; high molecular weight-B-cell growth factors) in effusion fluids from patients with aggressive B-cell lymphomas. Blood 1995;86:283–93.
- Bodine BG, Bennion BG, Leatham E, Jimenez FR, Wright AJ, Jergensen ZR, et al. Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation. Respir Res 2014;15:133. [CrossRef]
- Singh AR, Peirce SK, Joshi S, Durden DL. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment. Exp Cell Res 2014;327:78–90. [CrossRef]
- Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012;33:35–41. [CrossRef]
- Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019;20:1594–602. [CrossRef]
- Kopp K, Ralfkiaer U, Mette Gjerdrum L, Helvad R, Pedersen I, Litman T, et al. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 2013;12:1939–47. [CrossRef]
- Döbbeling U, Dummer R, Laine E, Potoczna N, Qin JZ, Burg G. Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood 1998;92:252–8.
- Qin JZ, Zhang CL, Kamarashev J, Dummer R, Burg G, Döbbeling U. Interleukin-7 and interleukin-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 2001;98:2778–83. [CrossRef]
- Leroy S, Dubois S, Tenaud I, Chebassier N, Godard A, Jacques Y, et al. Interleukin-15 expression in cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome). British Journal of Dermatology 2001;144:1016–23. [CrossRef]
- Sugaya M. The Role of Th17-Related Cytokines in Atopic Dermatitis. Int J Mol Sci 2020;21:1314. [CrossRef]
- Wysocka M, Benoit BM, Newton S, Azzoni L, Montaner LJ, Rook AH. Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15. Blood 2004;104:4142–9. [CrossRef]
- Wysocka M, Dawany N, Benoit B, Kossenkov AV, Troxel AB, Gelfand JM, et al. Synergistic enhancement of cellular immune responses by the novel Toll receptor 7/8 agonist 3M-007 and interferon-γ: implications for therapy of cutaneous T-cell lymphoma. Leuk Lymphoma 2011;52:1970–9. [CrossRef]
- Krejsgaard T, Litvinov IV, Wang Y, Xia L, Willerslev-Olsen A, Koralov SB, et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood 2013;122:943–50. [CrossRef]
- Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW, et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 2006;20:1759–66. [CrossRef]
- Papathemeli D, Patsatsi A, Papanastassiou D, Koletsa T, Papathemelis T, Avgeros C, et al. Protein and mRNA Expression Levels of Interleukin-17A, -17F and -22 in Blood and Skin Samples of Patients with Mycosis Fungoides. Acta Dermato-Venereologica 2020;100:1–6. [CrossRef]
- Richmond J, Tuzova M, Parks A, Adams N, Martin E, Tawa M, et al. Interleukin-16 as a marker of Sézary syndrome onset and stage. J Clin Immunol 2011;31:39–50. [CrossRef]
- Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol 1999;162:5070–7.
- Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001;19:423–74. [CrossRef]
- Bostan E, Gokoz O, Atakan N. The role of NLRP1 and NLRP3 inflammasomes in the etiopathogeneses of pityriasis lichenoides chronica and mycosis fungoides: an immunohistochemical study. Arch Dermatol Res 2023;315:231–9. [CrossRef]
- Azuma Y-T, Matsuo Y, Kuwamura M, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm Bowel Dis 2010;16:1017–28. [CrossRef]
- Wei C-C, Hsu Y-H, Li H-H, Wang Y-C, Hsieh M-Y, Chen W-Y, et al. IL-20: biological functions and clinical implications. J Biomed Sci 2006;13:601–12. [CrossRef]
- Hsu Y-H, Hsing C-H, Li C-F, Chan C-H, Chang M-C, Yan J-J, et al. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 2012;188:1981–91. [CrossRef]
- Lee S-J, Cho S-C, Lee E-J, Kim S, Lee S-B, Lim J-H, et al. Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-κB) activation by inducing the up-regulation of p21(WAF1) protein expression. J Biol Chem 2013;288:5539–52. [CrossRef]
- Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/8545104/ (accessed January 9, 2024).
- Whitaker EL, Filippov VA, Duerksen-Hughes PJ (2012) Interleukin 24: mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth F R 23:323–331 - Cerca con Google n.d. https://www.google.com/search?q=Whitaker+EL%2C+Filippov+VA%2C+Duerksen-Hughes+PJ+(2012)+Interleukin+24%3A+mechanisms+and+therapeutic+potential+of+an+anti-cancer+gene.+Cytokine+Growth+F+R+23%3A323%E2%80%93331&rlz=1C1ONGR_itIT1041IT1041&oq=Whitaker+EL%2C+Filippov+VA%2C+Duerksen-Hughes+PJ+(2012)+Interleukin+24%3A+mechanisms+and+therapeutic+potential+of+an+anti-cancer+gene.+Cytokine+Growth+F+R+23%3A323%E2%80%93331&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzU4NGowajSoAgCwAgA&sourceid=chrome&ie=UTF-8 (accessed January 9, 2024).
- Stephen-Victor E, Fickenscher H, Bayry J. IL-26: An Emerging Proinflammatory Member of the IL-10 Cytokine Family with Multifaceted Actions in Antiviral, Antimicrobial, and Autoimmune Responses. PLoS Pathog 2016;12:e1005624. [CrossRef]
- Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2008;26:57–79. [CrossRef]
- Li Y, Li Y-F, Si C-Z, Zhu Y-H, Jin Y, Zhu T-T, et al. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells. Virus Res 2016;220:172–8. [CrossRef]
- Lamprecht B, Kreher S, Anagnostopoulos I, Jöhrens K, Monteleone G, Jundt F, et al. Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α. Blood 2008;112:3339–47. [CrossRef]
- Tang C, Chen S, Qian H, Huang W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 2012;135:112–24. [CrossRef]
- Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995;181:381–6.
- Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 2000;13:715–25. [CrossRef]
- Bardazzi F, Viviani F, Piraccini BM, Lasagni C, Bigi L, Manfredini M, et al. Tildrakizumab in Complex Psoriatic Patients: An Experience in Emilia-Romagna (Italy). J Cutan Med Surg 2023;27:126–32. [CrossRef]
- Näslund-Koch C, Zachariae C, Skov L. Tildrakizumab: An Evidence-Based Review of Its Use in the Treatment of Moderate-to-Severe Chronic Plaque Psoriasis. Ther Clin Risk Manag 2020;16:903–16. [CrossRef]
- Sugaya M, Miyagaki T, Ohmatsu H, Suga H, Kai H, Kamata M, et al. Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci 2012;68:45–51. [CrossRef]
- Fahmy LM, Schreidah CM, Lapolla BA, Magro CM, Geskin LJ. Mycosis fungoides diagnosed after exposure to risankizumab for psoriasis. JAAD Case Rep 2023;41:85–9. [CrossRef]
- Amitay-Laish I, Guenova E, Ortiz-Romero PL, Vico-Alonso C, Rozati S, Geskin LJ, et al. The Course of Mycosis Fungoides under Cytokine Pathway Blockers: A Multicentre Analysis of Real-life Clinical Data. Acta Derm Venereol 2020;100:adv00277. [CrossRef]
- Gowhari Shabgah A, Amir A, Gardanova ZR, Olegovna Zekiy A, Thangavelu L, Ebrahimi Nik M, et al. Interleukin-25: New perspective and state-of-the-art in cancer prognosis and treatment approaches. Cancer Med 2021;10:5191–202. [CrossRef]
- Nakajima R, Miyagaki T, Hirakawa M, Oka T, Takahashi N, Suga H, et al. Interleukin-25 is involved in cutaneous T-cell lymphoma progression by establishing a T helper 2-dominant microenvironment. Br J Dermatol 2018;178:1373–82. [CrossRef]
- Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 2002;16:779–90. [CrossRef]
- Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki T, Koyanagi Y, et al. Potent antitumor activity of interleukin-27. Cancer Res 2004;64:1152–6. [CrossRef]
- Salcedo R, Hixon JA, Stauffer JK, Jalah R, Brooks AD, Khan T, et al. Immunologic and Therapeutic Synergy of IL-27 and IL-2: Enhancement of T Cell Sensitization, Tumor-Specific CTL Reactivity and Complete Regression of Disseminated Neuroblastoma Metastases in the Liver and Bone Marrow. J Immunol 2009;182:4328–38. [CrossRef]
- Dibra D, Cutrera J, Xia X, Li S. WSX1 Expression in Tumors Induces Immune Tolerance via Suppression of Effector Immune Cells. PLOS ONE 2011;6:e19072. [CrossRef]
- Nattkemper LA, Martinez-Escala M-E, Gelman AB, Singer EM, Rook AH, Guitart J, et al. Cutaneous T-cell Lymphoma and Pruritus: The Expression of IL-31 and its Receptors in the Skin. Acta Derm Venereol 2016;96:894–8. [CrossRef]
- Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 2018;73:29–36. [CrossRef]
- Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;5:3711–21.
- Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M, et al. Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 2000;60:2290–9.
- Ohmatsu H, Sugaya M, Suga H, Morimura S, Miyagaki T, Kai H, et al. Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm Venereol 2012;92:282–3. [CrossRef]
- Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J. Human Th2 but not Th9 cells release IL-31 in a STAT6/NF-κB-dependent way. J Immunol 2014;193:645–54. [CrossRef]
- Olszewska B, Żawrocki A, Gleń J, Lakomy J, Karczewska J, Zabłotna M, et al. Interleukin-31 is overexpressed in skin and serum in cutaneous T-cell lymphomas but does not correlate to pruritus. Postepy Dermatol Alergol 2022;39:81–7. [CrossRef]
- Chechlinska M, Kowalewska M, Nowak R. Systemic inflammation as a confounding factor in cancer biomarker discovery and validation. Nat Rev Cancer 2010;10:2–3. [CrossRef]
- Sloot YJE, Smit JW, Joosten LAB, Netea-Maier RT. Insights into the role of IL-32 in cancer. Seminars in Immunology 2018;38:24–32. [CrossRef]
- Ribeiro-Dias F, Saar Gomes R, de Lima Silva LL, dos Santos JC, Joosten LAB. Interleukin 32: a novel player in the control of infectious diseases. Journal of Leukocyte Biology 2017;101:39–52. [CrossRef]
- Lei J, Xu F, Deng C, Nie X, Zhong L, Wu Z, et al. Fusobacterium nucleatum promotes the early occurrence of esophageal cancer through upregulation of IL-32/PRTN3 expression. Cancer Sci 2023;114:2414–28. [CrossRef]
- Zhai J-M, An Y-H, Wang W, Fan Y-G, Yao G-L. IL-32 expression indicates unfavorable prognosis in patients with colon cancer. Oncol Lett 2019;17:4655–60. [CrossRef]
- Nold-Petry CA, Rudloff I, Baumer Y, Ruvo M, Marasco D, Botti P, et al. IL-32 promotes angiogenesis. J Immunol 2014;192:589–602. [CrossRef]
- Han L, Chen S, Chen Z, Zhou B, Zheng Y, Shen L. Interleukin 32 Promotes Foxp3+ Treg Cell Development and CD8+ T Cell Function in Human Esophageal Squamous Cell Carcinoma Microenvironment. Front Cell Dev Biol 2021;9:704853. [CrossRef]
- Han S, Yang Y. Interleukin-32: Frenemy in cancer? BMB Rep 2019;52:165–74. [CrossRef]
- van Kester MS, Borg MK, Zoutman WH, Out-Luiting JJ, Jansen PM, Dreef EJ, et al. A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides. J Invest Dermatol 2012;132:2050–9. [CrossRef]
- Suga H, Sugaya M, Miyagaki T, Kawaguchi M, Fujita H, Asano Y, et al. The role of IL-32 in cutaneous T-cell lymphoma. J Invest Dermatol 2014;134:1428–35. [CrossRef]
- Ohmatsu H, Humme D, Gulati N, Gonzalez J, Möbs M, Suárez-Fariñas M, et al. IL32 is progressively expressed in mycosis fungoides independent of helper T-cell 2 and helper T-cell 9 polarization. Cancer Immunol Res 2014;2:890–900. [CrossRef]
- Liew FY, Girard J-P, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol 2016;16:676–89. [CrossRef]
- Tamagawa-Mineoka R, Katoh N, Kishimoto S. Platelet activation in patients with psoriasis: increased plasma levels of platelet-derived microparticles and soluble P-selectin. J Am Acad Dermatol 2010;62:621–6. [CrossRef]
- Wasmer M-H, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Front Immunol 2016;7:682. [CrossRef]
- Rustowska-Rogowska A, Gleń J, Jarząbek T, Rogowski W, Rębała K, Zabłotna M, et al. Interleukin-33 polymorphisms and serum concentrations in mycosis fungoides. Int J Dermatol 2020;59:345–51. [CrossRef]
- Tsimberidou A-M, Giles FJ, Duvic M, Kurzrock R. Pilot study of etanercept in patients with relapsed cutaneous T-cell lymphomas. J Am Acad Dermatol 2004;51:200–4. [CrossRef]
- Tsimberidou A-M, Alvarado Y, Giles FJ. Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 2002;2:437–48. [CrossRef]
- Daliani D, Ulmer RA, Jackow C, Pugh W, Gansbacher B, Cabanillas F, et al. Tumor necrosis factor-alpha and interferon-gamma, but not HTLV-I tax, are likely factors in the epidermotropism of cutaneous T-cell lymphoma via induction of interferon-inducible protein-10. Leuk Lymphoma 1998;29:315–28. [CrossRef]
- Giri DK, Aggarwal BB. Constitutive Activation of NF-κB Causes Resistance to Apoptosis in Human Cutaneous T Cell Lymphoma HuT-78 Cells: AUTOCRINE ROLE OF TUMOR NECROSIS FACTOR AND REACTIVE OXYGEN INTERMEDIATES *. Journal of Biological Chemistry 1998;273:14008–14. [CrossRef]
- Martinez-Escala ME, Posligua AL, Wickless H, Rutherford A, Sable KA, Rubio-Gonzalez B, et al. Progression of undiagnosed cutaneous lymphoma after anti-tumor necrosis factor-alpha therapy. J Am Acad Dermatol 2018;78:1068–76. [CrossRef]
- Partarrieu-Mejías F, Díaz-Corpas T, Pérez-Ferriols A, Alegre-de Miquel V. Mycosis fungoides after treatment with tumor necrosis factor-alpha inhibitors for psoriasis: progression or onset? Int J Dermatol 2019;58:e103–5. [CrossRef]
- Amitay-Laish I, Davidovici B, Moyal L, Gurevich M, Akerman L, Hodak E. Lack of detectable effect of narrow-band ultraviolet B on peripheral blood mononuclear cell cytokine expression in early-stage mycosis fungoides. Photodermatol Photoimmunol Photomed 2018;34:350–3. [CrossRef]
- Suga H, Sugaya M, Toyama T, Sumida H, Fujita H, Kogure A, et al. A Case of Mycosis Fungoides with Large Cell Transformation Associated with Infliximab Treatment. Acta Dermato-Venereologica 2014;94:233–4. [CrossRef]
- Adams AE, Zwicker J, Curiel C, Kadin ME, Falchuk KR, Drews R, et al. Aggressive cutaneous T-cell lymphomas after TNFα blockade. Journal of the American Academy of Dermatology 2004;51:660–2. [CrossRef]
- Lourari S, Prey S, Livideanu C, Jamard B, Lamant L, Cantagrel A, et al. Cutaneous T-cell lymphoma following treatment of rheumatoid arthritis with tumour necrosis factor-α blocking agents: two cases. Journal of the European Academy of Dermatology and Venereology 2009;23:967–8. [CrossRef]
- Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P. The epidermal growth factor. Cell Biol Int 1995;19:413–30. [CrossRef]
- Wong RWC, Guillaud L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 2004;15:147–56. [CrossRef]
- Feng P, Catt KJ, Knecht M. Transforming growth factor beta regulates the inhibitory actions of epidermal growth factor during granulosa cell differentiation. Journal of Biological Chemistry 1986;261:14167–70. [CrossRef]
- Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang M-Z, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiological Reviews 2016;96:1025–69. [CrossRef]
- Yun Y-R, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010;2010:218142. [CrossRef]
- Paraneoplastic scleroderma in the setting of CD30+ large cell transformation of mycosis fungoides - PMC n.d. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357550/ (accessed January 9, 2024).
- Krejsgaard T, Lindahl LM, Mongan NP, Wasik MA, Litvinov IV, Iversen L, et al. Malignant inflammation in cutaneous T-cell lymphoma—a hostile takeover. Semin Immunopathol 2017;39:269–82. [CrossRef]
- Heldin C-H, Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb Perspect Biol 2013;5:a009100. [CrossRef]
- Demoulin J-B, Montano-Almendras CP. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res 2012;2:44–56.
- Belinsky MG, Cai KQ, Zhou Y, Luo B, Pei J, Rink L, et al. Succinate dehydrogenase deficiency in a PDGFRA mutated GIST. BMC Cancer 2017;17:512. [CrossRef]
- Weiner DM, Durgin JS, Wysocka M, Rook AH. The Immunopathogenesis and Immunotherapy of Cutaneous T Cell Lymphoma: Part II, Current and Future Approaches. J Am Acad Dermatol 2021;84:597–604. [CrossRef]
- Yoo EK, Cassin M, Lessin SR, Rook AH. Complete molecular remission during biologic response modifier therapy for Sézary syndrome is associated with enhanced helper T type 1 cytokine production and natural killer cell activity. J Am Acad Dermatol 2001;45:208–16. [CrossRef]
- Spaccarelli N, Rook AH. The Use of Interferons in the Treatment of Cutaneous T-Cell Lymphoma. Dermatologic Clinics 2015;33:731–45. [CrossRef]
- Filipi M, Jack S. Interferons in the Treatment of Multiple Sclerosis: A Clinical Efficacy, Safety, and Tolerability Update. Int J MS Care 2020;22:165–72. [CrossRef]
- Killestein J, Polman CH. Determinants of interferon β efficacy in patients with multiple sclerosis. Nat Rev Neurol 2011;7:221–8. [CrossRef]
- Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. Clin Cancer Res 2011;17:6118–24. [CrossRef]
- Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991–8. [CrossRef]
- Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793–800. [CrossRef]
- Alspach E, Lussier DM, Schreiber RD. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol 2019;11:a028480. [CrossRef]
- Kotenko SV, Durbin JE. Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem 2017;292:7295–303. [CrossRef]
- Kuzel TM, Roenigk HH, Samuelson E, Herrmann JJ, Hurria A, Rademaker AW, et al. Effectiveness of interferon alfa-2a combined with phototherapy for mycosis fungoides and the Sézary syndrome. JCO 1995;13:257–63. [CrossRef]
- Zinzani PL, Mazza P, Gherlinzoni F. Beta interferon in the treatment of mycosis fungoides. Haematologica 1988;73:547–8.
- Sarris AH, Esgleyes-Ribot T, Crow M, Broxmeyer HE, Karasawas N, Pugh W, et al. Cytokine Loops Involving Interferon-γ and IP-10, a Cytokine Chemotactic for CD4+ Lymphocytes: An Explanation for the Epidermotropism of Cutaneous T-Cell Lymphoma? Blood 1995;86:651–8. [CrossRef]
- Asadullah K, Haeussler A, Sterry W, Docke W, Volk H. Interferon gamma and tumor necrosis factor alpha mRNA expression in mycosis fungoides progression [letter; comment]. Blood 1996;88:757–8. [CrossRef]
- Sugaya M, Tokura Y, Hamada T, Tsuboi R, Moroi Y, Nakahara T, et al. Phase II study of i.v. interferon-gamma in Japanese patients with mycosis fungoides. J Dermatol 2014;41:50–6. [CrossRef]
- McGinnis KS, Ubriani R, Newton S, Junkins-Hopkins JM, Vittorio CC, Kim EJ, et al. The addition of interferon gamma to oral bexarotene therapy with photopheresis for Sézary syndrome. Arch Dermatol 2005;141:1176–8. [CrossRef]
- Gardner JM, Introcaso CE, Nasta SD, Kim EJ, Vittorio CC, Rook AH. A novel regimen of vorinostat with interferon gamma for refractory Sézary syndrome. J Am Acad Dermatol 2009;61:112–6. [CrossRef]
- Shimauchi T, Sugita K, Nishio D, Isoda H, Abe S, Yamada Y, et al. Alterations of serum Th1 and Th2 chemokines by combination therapy of interferon-gamma and narrowband UVB in patients with mycosis fungoides. J Dermatol Sci 2008;50:217–25. [CrossRef]
- Jonak C, Tittes J, Brunner PM, Guenova E. Mycosis fungoides and Sézary syndrome. J Dtsch Dermatol Ges 2021;19:1307–34. [CrossRef]
- Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105:3768–85. [CrossRef]
- Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, et al. Defining early mycosis fungoides. J Am Acad Dermatol 2005;53:1053–63. [CrossRef]
- Latzka J. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome – Update 2023. European Journal of Cancer 2023.
- Trautinger F, Eder J, Assaf C, Bagot M, Cozzio A, Dummer R, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2017. Eur J Cancer 2017;77:57–74. [CrossRef]
- Quaglino P, Prince HM, Cowan R, Vermeer M, Papadavid E, Bagot M, et al. Treatment of early-stage mycosis fungoides: results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) study. Br J Dermatol 2021;184:722–30. [CrossRef]
- Quaglino P, Maule M, Prince HM, Porcu P, Horwitz S, Duvic M, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium. Annals of Oncology 2017;28:2517–25. [CrossRef]
- Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:2375–90. [CrossRef]
- Gaydosik AM, Stonesifer CJ, Tabib T, Lafyatis R, Geskin LJ, Fuschiotti P. The mycosis fungoides cutaneous microenvironment shapes dysfunctional cell trafficking, antitumor immunity, matrix interactions, and angiogenesis. JCI Insight 2023;8. [CrossRef]
- Kalliara E, Belfrage E, Gullberg U, Drott K, Ek S. Spatially Guided and Single Cell Tools to Map the Microenvironment in Cutaneous T-Cell Lymphoma. Cancers 2023;15:2362. [CrossRef]
- Xiao A, Akilov OE. Targeting the CD47-SIRPα Axis: Present Therapies and the Future for Cutaneous T-cell Lymphoma. Cells 2022;11:3591. [CrossRef]
- Johanny LD, Sokumbi O, Hobbs MM, Jiang L. Polarization of Macrophages in Granulomatous Cutaneous T Cell Lymphoma Granulomatous Mycosis Fungoides Microenvironment. Dermatopathology 2022;9:54–9. [CrossRef]
- Patil K, Kuttikrishnan S, Khan AQ, Ahmad F, Alam M, Buddenkotte J, et al. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Seminars in Cancer Biology 2022;86:382–99. [CrossRef]
- Liu J, Zhu S, Tang W, Huang Q, Mei Y, Yang H. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell Int 2021;21:55. [CrossRef]
- Pileri A, Morsia E, Zengarini C, Torre E, Goteri G, Quaglino P, et al. Epidemiology of cutaneous T-cell lymphomas: state of the art and a focus on the Italian Marche region. European Journal of Dermatology 2023;33:360–7. [CrossRef]
- Bresin A, Caprini E, Russo G, Narducci MG. Challenging Cutaneous T-Cell Lymphoma: What Animal Models Tell us So Far. Journal of Investigative Dermatology 2022;142:1533–40. [CrossRef]
- de Masson A, Darbord D, Dobos G, Boisson M, Roelens M, Ram-Wolff C, et al. Macrophage-derived CXCL9 and CXCL11, T-cell skin homing, and disease control in mogamulizumab-treated CTCL patients. Blood 2022;139:1820–32. [CrossRef]
- Barta SK, Liu N, DerSarkissian M, Chang R, Ye M, Duh MS, et al. Real-World Treatment Patterns and Clinical Outcomes With Brentuximab Vedotin or Other Standard Therapies in Patients With Previously Treated Cutaneous T-Cell Lymphoma in the United States. Clinical Lymphoma Myeloma and Leukemia 2023. [CrossRef]
- Stuver R, Geller S. Advances in the treatment of mycoses fungoides and Sézary syndrome: a narrative update in skin-directed therapies and immune-based treatments. Frontiers in Immunology 2023;14.
- Kumar A, Vardhana S, Moskowitz AJ, Porcu P, Dogan A, Dubovsky JA, et al. Pilot trial of ibrutinib in patients with relapsed or refractory T-cell lymphoma. Blood Adv 2018;2:871–6. [CrossRef]
- Duvic M. Treatment of Cutaneous T-Cell Lymphoma from a Dermatologist’s Perspective. Clinical Lymphoma 2000;1:S15–20. [CrossRef]
- Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, et al. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget 2015;6:20555–69. [CrossRef]
- Vadivel CK, Gluud M, Torres-Rusillo S, Boding L, Willerslev-Olsen A, Buus TB, et al. JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers 2021;13:280. [CrossRef]
- Nielsen M, Kæstel CG, Eriksen KW, Woetmann A, Stokkedal T, Kaltoft K, et al. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 1999;13:735–8. [CrossRef]
- Castillo DE, Romanelli P, Lev-Tov H, Kerdel F. A case of erythrodermic mycosis fungoides responding to upadacitinib. JAAD Case Reports 2022;30:91–3. [CrossRef]
- Moskowitz AJ, Ghione P, Jacobsen E, Ruan J, Schatz JH, Noor S, et al. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood 2021;138:2828–37. [CrossRef]
| CYTOKINE | FUNCTION | ROLE IN MF/SS | POTENTIAL TARGETED THERAPIES EVALUATED |
|---|---|---|---|
| IL- 1 | Pro-inflammatory [17]. | Elevated in treated patient; potential biomarker of photopheresis response [19,20]. | No studies available |
| IL-2 | Pro-inflammatory Upregulate T cells and to increase the cytotoxicity of monocytes and natural killer (NK) [21]. |
May have an CTCL suppressive action, but still controversial [22,23]. |
AS101 inihbits IL2R, increasing in IL-2 and suggesting an immunosuppressive role [24]. Denileukin Diftitox, which seems to reach a response of 36-40% of CTCLs in some studies [25]. CCR4-IL2 IT, in pre-clinical models seems to be promising in inducing CTCLs remission [26]. |
| IL-3 | Pluripotent and hematopoietic factor required for survival and proliferation of hematopoietic progenitor cells [27]. | Unknown | No studies available |
| IL-4 | Negatively modulate Th1 T-cells; skews to a Th2 phenotype of naïve T-cells [28] | Contribuites to immune evasion and tumor progression microenvironments (Still debated) [29]. Can (with IL-33) inducing IL-31 secretions, involved in itch pathogenesis [28,30] |
Anti PD-1 (Nivolumab), could reduce malignant Th2 cells, but It’s controversial [31,32] JAK inhibitor (Ritlecitinib) showed promising effect in reducing Th2 neoplastic cells (IIA trial ongoing) [33]. Dupilumab by blocking IL-4 and Il-13, could induce an immune system against the tumour and blocking Th2 Cells proliferation, but is debated due to reported misdiagnosed MFs treated with dupilumab with a dramatic progression [34,35,36]. |
| IL-5 | Stimulates eosinophilic cascade [37]. | Related to erythroderma and elevated serum levels of IgE. Seems to be overexpressed by CTCL T-Cells[38] |
AS101 increased IFN-γ and a decreases Il-5, so to affect CTCL progression [24,39] |
| IL-6 | Pro-inflammatory. Differentiates plasma cells and increases adhesion molecule production [40]. |
Hyperxpressed in CTCL samples. Seems to be related to a higher risk of MF progression [41,42]. Il-6 polymorphism may be related to worse disease prognosis [43]. | No studies available |
| Il-7 | Hemapoietic factor stimulates the development of lymphoid lineage [44]. | Linked to activation of CD8+ SS clone cells, but studies are not concordant [45,46] | No studies available |
| IL-8 | IL-8 is a chemotactic factor for neutrophils and other granulocytes. The oncogenic role is achieved by binding the IL-8 R localized on cancer cells and on microenvironment cells [47]. | Involved in pruritus and CTCL progression [48,49] | No studies available |
| IL-9 | Stimulates various hematopoietic cell proliferation and to prevent immune cells apoptosis. Seems to be related to hematologic neoplasias [50]. |
High levels have been linked in patients with SS [51] and MF [52] | No studies available |
| IL-10 | Anti-inflammatory. Prevention of autoimmune diseases Can contribute to Infection and tumour progression [53,54]. |
Higher levels of IL-10 have been detected in MF/SS biopsies compared with normal skin [55,56] |
Vorinostat and romidepsin may exert their therapeutic action due to the downregulation of IL-10 RNA expression [56]. Bortezomib modulates cytokine expression in CTCL, acting on TGFβ1 and IL-10 down-regulation [57] |
| IL-11 | Anti-inflammatory properties. Hematopoiesis, production of platelets from megakaryocytes and hemostasis [58]. |
Unknown | No studies available |
| IL-12 | Activates NK cells and promotes the differentiation of Th1 cells [59]. | Reduced or suppressed IL-12 pathway in CTCL developement, especially in SS patients [60]. | Recombinant IL-12 mat restore NK cells functions in CTCLs [61]. |
| IL-13 | Anti-inflammatory. Related to Th2 axis [62]. |
IL-13 may act as an autocrine factor in lymphoma cell proliferation through IL-13Rα1 and IL-13-Rα2 signalling [63]. A higher expression of IL-13 and its receptors correlates with late stages, while in the early stage, the expression was low [63]. |
Dupilumab, by blocking IL-4 and Il-12, could induce an immune system against the tumour and halt Th2 cell proliferation but is debated due to reported misdiagnosed MFs treated with dupilumab with a dramatic progression [34,35,36]. |
| IL-14 | Growth of B cells. Produced by T cells and certain malignant B cells [64]. | Unknown | No studies available |
| IL-15 | Enhances CD8 T cell cytotoxic activity, B cell differentiation, Ig synthesis, and DC maturation [65]. | This is implied in the recruitment of CD4+ memory T-cells to the skin, induction of T-cell proliferation, and inhibition of apoptotic cell death [65,66]. Linked to higher stages of CTCL and assumed to promote disease progression [67]. |
HDAC hinibhitors[68] could halt Zeb1, which lead to an overexpression of IL-15[69]. |
| IL-16 | Pro-inflammatory [70] | Related to early MF stages [70]. | No studies available |
| IL-17 | Enhances immune response against infectious agents. Upregulates pro-inflammatory cytokine s, chemokines, metalloproteinases, and antimicrobial peptides [71]. | Low expression of IL-17 mRNA levels in MF/SS samples compared to healthy donors [66,72]. | No studies available |
| IL-18 | Has a role in adaptive immunity. Induces IFN- γ production [73]. | Higher expression in all MF stages compared to control cases. Role in tumour escape in SS [74]. | No studies available |
| IL-19 | Pro-inflammatory [75]. | IL-19 levels correlated positively with HMGB1, a protein associated with angiogenesis, Th2 polarization and CTCL progression [76] | No studies available |
| IL-20 | Immunosuppression [75]. | Unknown | No studies available |
| IL-21 | IL-21 enhances cytotoxicity and induces the production of IFN- γ and perforin by NK cells [77]. | Unknown | No studies available |
| IL-22 | Immunosuppression [54]. | IL-22 could play a role in establishing the tumour microenvironment in MF [78]. | No studies available |
| il-23 | Pro-inflammatory [79] | Unknown | No studies available |
| IL-24 | Pro-inflammatory [54] | Unknown | No studies available |
| IL-25 | Cause Th2 phenotype polarization and IL-4, IL-5, and IL-13 production. It inhibits TH1 and TH17 responses through inhibition of IL-12 and IL-23 [80]. | Higher expression in MF and SS epidermal keratinocytes, compared to controls. IL-25 levels in skin lesions related to disease progression and serum levels correlated with LDH levels[41]. IL-25 enhanced IL-13 production by tumour shifting to a Th2 dominant microenvironment [80]. |
No studies available |
| IL-26 | Pro-inflammatory [54] | Unknown | No studies available |
| IL-27 | IL-27 promotes Th1 immunity, IFN-γ production by NK and T cell and inhibits Th2 response [81] | IL-27 levels were higher in advance stages compared to early stages or controls in MF [81,82]. | No studies available |
| Il-28 | See IFN-γ | Unknown | No studies available |
| Il-29 | See IFN-γ | Unknown | No studies available |
| il-30 | Pro-inflammatory [81] | Unknown | No studies available |
| IL-31 | Produced by CD4+ Th2 cells, mast cells and dendritic cells. It modulates fibroblasts and eosinophils. | Increased levels have been detected in both serum and skin lesions [83]. It seems to be related with pruritus, but is still debated [49,84,85]. |
No studies available |
| il-32 | Immunosuppression and cancer progression [30]. | IL-32 is associated to MF development and progression [86]. | No studies available |
| IL-33 | Cause M2 macrophages differentiation and induce maturation of dendritic cells [87]. Promotes Th1-mediated responses, including cell-mediated cytotoxicity [88]. |
IL-33 might accelerate MF progression via a paracrine action in the tumour microenvironment [89,90]. | No studies available |
| TNF-α | Pro-inflammatory [91] | TNF – α has been implicated in the development of CTCL by the promotion of epidermotropism via induction of interferon-inducible protein. TNF-a acts as an autocrine growth factor, enhancing its tumorigenic action and empowering NF/KB pathway | No studies available |
| EGF | Epidermal stem cells proliferation and differentiation [92] | Possible role due to its known effect in inhibiting IFN type 1, which low levels relates to MF development [91]. | No studies available |
| FGF | Mesenchimal stem cells proliferation, survival, migration, and differentiation [93]. | FGF role has been hypothesized in paraneoplastic scleroderma in MF [93]. | No studies available |
| PDGF | Varous cellular lines growth, proliferation, and differentiation [94]. | Unknown | No studies available |
| iFN[95,96] | Pro-inflammatory [97,98,99,100] | No studies available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
