Submitted:
01 February 2024
Posted:
01 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Haptic Technologies and Related Areas of Research
2.1. Artificial Skin
2.2. Artificial Vision
2.3. Artificial Hearing
2.4. Physical Models
3. Haptic Applications
3.1. Medicine
3.2. Games and Gamification
3.3. Services
3.4. Rehabilitation
3.5. Personal Assistance
4. Haptics in Special Education
5. Discussion
6. Conclusions
Acknowledgments
References
- Álvarez Ariza, J.; Baez, H. Understanding the role of single-board computers in engineering and computer science education: A systematic literature review. Computer Applications in Engineering Education 2021. [Google Scholar] [CrossRef]
- Almusawi, H.A.; Durugbo, C.M.; Bugawa, A.M. Wearable Technology in Education: A Systematic Review. IEEE Transactions on Learning Technologies 2021, 14, 540–554. [Google Scholar] [CrossRef]
- Cyber-Physical Systems for PEdagogical Rehabilitation in Special EDucation. Available online: https://www.ehu.eus/ccwintco/cybSPEED (accessed on 9 June 2023).
- Marwati, A.; Dewi, O.C.; Wiguna, T.; Aisyah, A. Visual-sensory-based quiet room: A study of visual comfort, lighting, and safe space in reducing maladaptive behaviour and emotion for autistic users. Journal of Accessibility and Design for All 2023, 13, 69–93. [Google Scholar] [CrossRef]
- Scheibel, G.; Zimmerman, K.N.; Wills, H.P. Increasing On-Task Behavior Using Technology-Based Self-Monitoring: A Meta-Analysis of I-Connect. Journal of Special Education Technology 2023, 38, 146–160. [Google Scholar] [CrossRef]
- Donmez, M. A systematic literature review for the use of eye-tracking in special education. Education and Information Technologies 2023, 28, 6515–6540. [Google Scholar] [CrossRef]
- Lewis-Dagnell, S.; Parsons, S.; Kovshoff, H. Creative methods developed to facilitate the voices of children and young people with complex needs about their education: A systematic review and conceptual analysis of voice. Educational Research Review 2023, 39, 100529. [Google Scholar] [CrossRef]
- Gallud, J.A.; Carreño, M.; Tesoriero, R.; Sandoval, A.; Lozano, M.D.; Durán, I.; Penichet, V.M.R.; Cosio, R. Technology-enhanced and game based learning for children with special needs: A systematic mapping study. Universal Access in the Information Society 2023, 22, 227–240. [Google Scholar] [CrossRef]
- Trudel, S.M.; Winter, E.L.; Fitzmaurice, B.; Norman, G.; Bray, C.R. Integration of physical health and sensory processing assessment for children with autism spectrum disorder in schools. Psychology in the Schools 2023, 60, 378–400. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pits.22704. [CrossRef]
- Zhu, M.; Biswas, S.; Dinulescu, S.I.; Kastor, N.; Hawkes, E.W.; Visell, Y. Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications. Proceedings of the IEEE 2022, 110, 246–272. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Blazauskas, T.; Salvietti, G.; Ramos, I.; Vert, S.; Radianti, J.; Majchrzak, T.A.; Oliveira, D. A Perspective Review on Integrating VR/AR with Haptics into STEM Education for Multi-Sensory Learning. Robotics 2022, 11. [Google Scholar] [CrossRef]
- Wójcik, M. Haptic technology - potential for library services. Library Hi Tech 2019, 37, 883–893. [Google Scholar] [CrossRef]
- Cantoni, V.; Cellario, M.; Porta, M. Perspectives and challenges in e-learning: Towards natural interaction paradigms. Journal of Visual Languages & Computing 2004, 15, 333–345, Image Understanding and Retrieval. [Google Scholar] [CrossRef]
- Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.; Papanastasiou, E. Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills. Virtual Reality 2019, 23, 425–436. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Z.; Brooks, J.; Lopes, P. Chemical Haptics: Rendering Haptic Sensations via Topical Stimulants. The 34th Annual ACM Symposium on User Interface Software and Technology; Association for Computing Machinery: New York, NY, USA, 2021; UIST’21; pp. 239–257. [Google Scholar] [CrossRef]
- Artificial skin could help rehabilitation and enhance virtual reality. Available online: https://actu.epfl.ch/news/artificial-skin-could-help-rehabilitation-and-enha (accessed on 27 September 2019).
- Inside Reality Labs Research: Bringing Touch to the Virtual World. Available online: https://about.fb.com/news/2021/11/reality-labs-haptic-gloves-research (accessed on 16 November 2021).
- Electronic “Skin” Brings Sense of Touch and Pain to Prosthetic Hands. Available online: https://www.techbriefs.com/component/content/article/tb/pub/briefs/bio-medical/37624 (accessed on 1 September 2020).
- Piacenza, P.; Behrman, K.; Schifferer, B.; Kymissis, I.; Ciocarlie, M. A Sensorized Multicurved Robot Finger With Data-Driven Touch Sensing via Overlapping Light Signals. IEEE/ASME Transactions on Mechatronics 2020, 25, 2416–2427. [Google Scholar] [CrossRef]
- Schiatti, L.; Cappagli, G.; Martolini, C.; Maviglia, A.; Signorini, S.; Gori, M.; Crepaldi, M. A Novel Wearable and Wireless Device to Investigate Perception in Interactive Scenarios. Annu Int Conf IEEE Eng Med Biol Soc 2020, 1, 3252–3255. [Google Scholar] [CrossRef]
- Romeo, K.; Pissaloux, E.; Gay, S.L.; Truong, N.T.; Djoussouf, L. The MAPS: Toward a Novel Mobility Assistance System for Visually Impaired People. Sensors 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Cai, P.; Guo, X.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z.; Luo, Y.; Loh, X.J.; Chen, X. An artificial sensory neuron with visual-haptic fusion. Nature Communications 2020, 11, 4602. [Google Scholar] [CrossRef] [PubMed]
- Teenage Engineering Rumble: A bolt-on haptic subwoofer for the OPZ. Available online: https://www.gearnews.com/teenage-engineering-rumble-a-bolt-on-haptic-subwoofer-for-the-op-z (accessed on 12 September 2019).
- Sensory Substitution. Available online: https://eagleman.com/science/sensory-substitution (accessed on 15 June 2023).
- Spencer, B. Incorporating the sense of smell into patient and haptic surgical simulators. IEEE Transactions on Information Technology in Biomedicine 2006, 10, 168–173. [Google Scholar] [CrossRef]
- Vi, C.T.; Ablart, D.; Gatti, E.; Velasco, C.; Obrist, M. Not just seeing, but also feeling art: Mid-air haptic experiences integrated in a multisensory art exhibition. International Journal of Human-Computer Studies 2017, 108, 1–14. [Google Scholar] [CrossRef]
- Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences 2014, 111, 1703–1707. [Google Scholar] [CrossRef]
- TESLASUIT Dev Kit. Available online: https://teslasuit.io (accessed on 26 September 2022).
- Hamza-Lup, F.G.; Popovici, D.M.; Bogdan, C.M. Haptic Feedback Systems in Medical Education. Journal of Advanced Distributed LearningTechnology 2013, arXiv:cs.HC/1811.074731, 7–16. [Google Scholar]
- Deakin builds robotic surgical system with sense of touch. Available online: https://www.deakin.edu.au/about-deakin/news-and-media-releases/articles/deakin-builds-robotic- surgical-system-with-sense-of-touch (accessed on 13 October 2016).
- Oh, S.; Jung, Y.; Kim, S.; Kim, S.; Hu, X.; Lim, H.; Kim, C. Remote tactile sensing system integrated with magnetic synapse. Scientific Reports 2017, 7, 16963. [Google Scholar] [CrossRef]
- Obst, T.; Burgkart, R.; Ruckhäberle, E.; Riener, R. The delivery simulator: A new application of medical VR. Stud Health Technol Inform 2004, 98, 281–287. [Google Scholar]
- Rehder, R.; Abd-El-Barr, M.; Hooten, K.; Weinstock, P.; Madsen, J.R.; Cohen, A.R. The role of simulation in neurosurgery. Childs Nerv Syst 2016, 32, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, P.; Rehder, R.; Prabhu, S.P.; Forbes, P.W.; Roussin, C.J.; Cohen, A.R. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr 2017, 20, 1–9. [Google Scholar] [CrossRef]
- Wiet, G.J.; Schmalbrock, P.; Powell, K.; Stredney, D. Use of ultra-high-resolution data for temporal bone dissection simulation. Otolaryngol Head Neck Surg 2005, 133, 911–915. [Google Scholar] [CrossRef]
- Cohen, A.R.; Lohani, S.; Manjila, S.; Natsupakpong, S.; Brown, N.; Cavusoglu, M.C. Virtual reality simulation: Basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst 2013, 29, 1235–1244. [Google Scholar] [CrossRef]
- Saber, N.R.; Menon, V.; St-Pierre, J.C.; Looi, T.; Drake, J.M.; Cyril, X. Development of a patient-specific surgical simulator for pediatric laparoscopic procedures. Stud Health Technol Inform 2014, 196, 360–364. [Google Scholar]
- Oquendo, Y.A.; Riddle, E.W.; Hiller, D.; Blinman, T.A.; Kuchenbecker, K.J. Automatically rating trainee skill at a pediatric laparoscopic suturing task. Surg Endosc 2018, 32, 1840–1857. [Google Scholar] [CrossRef]
- Valdez, T.A.; Kudaravalli, S.; Kavanagh, K.R. Combined web and haptic simulation system: A pilot study. Int J Pediatr Otorhinolaryngol 2020, 138, 110371. [Google Scholar] [CrossRef] [PubMed]
- Cappa, P.; Clerico, A.; Nov, O.; Porfiri, M. Can force feedback and science learning enhance the effectiveness of neuro-rehabilitation? An experimental study on using a low-cost 3D joystick and a virtual visit to a zoo. PLoS One 2013, 8, e83945. [Google Scholar] [CrossRef]
- Hapticast: Podcast episodes. Available online: https://rss.com/podcasts/hapticast (accessed on 14 June 2023).
- A través del sentido del tacto, buscan mejorar aprendizaje de física. Available online: https://conecta.tec.mx/es/noticias/ciudad-de-mexico/educacion/traves-del-sentido-del-tacto-buscan- mejorar-aprendizaje-de-fisica (accessed on 13 April 2021).
- Van Baelen, D.; Ellerbroek, J.; (René) van Paassen, M.M.; Mulder, M. Design of a Haptic Feedback System for Flight Envelope Protection. Journal of Guidance, Control, and Dynamics 2020, 43, 700–714. [Google Scholar] [CrossRef]
- WeWALK Smart Cane. Available online: https://wewalk.io/en (accessed on 20 October 2021).
- Yoshida, R.K. A Guttman scalogram analysis of haptic perception for trainable mentally retarded children. Am J Ment Defic 1973, 77, 439–444. [Google Scholar] [PubMed]
- Derevensky, J.L. Relative contributions of active and passive touch to a child’s knowledge of physical objects. Percept Mot Skills 1979, 48, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Streri, A.; Spelke, E.; Rameix, E. Modality-specific and amodal aspects of object perception in infancy: the case of active touch. Cognition 1993, 47, 251–279. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.G.; Tsai, C.L.; Stoffregen, T.; Chang, C.H.; Chen, F.C. Perception of Object Length Via Manual Wielding in Children With and Without Developmental Coordination Disorder. J Mot Behav 2016, 48, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Dekker, R. Visually impaired children and haptic intelligence test scores: intelligence test for visually impaired children (ITVIC). Dev Med Child Neurol 1993, 35, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Max, M.L.; Gonzalez, J.R. Blind persons navigate in virtual reality (VR); hearing and feeling communicates “reality”. Stud Health Technol Inform 1997, 39, 54–59. [Google Scholar]
- Alexander, J.M.; Johnson, K.E.; Schreiber, J.B. Knowledge is not everything: Analysis of children’s performance on a haptic comparison task. J Exp Child Psychol 2002, 82, 341–366. [Google Scholar] [CrossRef]
- Mason, C.; Mason, E. Haptic medicine. Stud Health Technol Inform 2009, 149, 368–385. [Google Scholar]
- Palsbo, S.E.; Marr, D.; Streng, T.; Bay, B.K.; Norblad, A.W. Towards a modified consumer haptic device for robotic-assisted fine-motor repetitive motion training. Disabil Rehabil Assist Technol 2011, 6, 546–551. [Google Scholar] [CrossRef]
- Guneysu Ozgur, A.; Özgür, A.; Asselborn, T.; Johal, W.; Yadollahi, E.; Bruno, B.; Skweres, M.; Dillenbourg, P. Iterative Design and Evaluation of a Tangible Robot-Assisted Handwriting Activity for Special Education. Front Robot AI 2020, 7, 29. [Google Scholar] [CrossRef]
- Shire, K.A.; Hill, L.J.B.; Snapp-Childs, W.; Bingham, G.P.; Kountouriotis, G.K.; Barber, S.; Mon-Williams, M. Robot Guided ’Pen Skill’ Training in Children with Motor Difficulties. PLoS One 2016, 11, e0151354. [Google Scholar] [CrossRef]
- Park, W.; Korres, G.; Moonesinghe, T.; Eid, M. Investigating Haptic Guidance Methods for Teaching Children Handwriting Skills. IEEE Trans Haptics 2019, 12, 461–469. [Google Scholar] [CrossRef]
- Bara, F.; Gentaz, E. Haptics in teaching handwriting: The role of perceptual and visuo-motor skills. Hum Mov Sci 2011, 30, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.; Koustriava, E. The impact of vision in spatial coding. Res Dev Disabil 2011, 32, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Snapp-Childs, W.; Shire, K.; Hill, L.; Mon-Williams, M.; Bingham, G.P. Training compliance control yields improved drawing in 5-11year old children with motor difficulties. Hum Mov Sci 2016, 48, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.T.; Holst-Wolf, J.M.; Tsai, C.L.; Chen, F.C.; Konczak, J. Haptic perception is altered in children with developmental coordination disorder. Neuropsychologia 2019, 127, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.T.; Hsu, H.J. Not only motor skill performance but also haptic function is impaired in children with developmental language disorder. Res Dev Disabil 2023, 134, 104412. [Google Scholar] [CrossRef]
- Tseng, Y.T.; Tsai, C.L.; Wu, T.H.; Chen, Y.W.; Lin, Y.H. Table Tennis, as a Method of Sensorimotor Training, Induces Haptic and Motor Gains in Children With a Probable Developmental Coordination Disorder. Motor Control 2023, 1–18. [Google Scholar] [CrossRef]
- Pouw, W.; Wassenburg, S.I.; Hostetter, A.B.; de Koning, B.B.; Paas, F. Does gesture strengthen sensorimotor knowledge of objects? The case of the size-weight illusion. Psychol Res 2020, 84, 966–980. [Google Scholar] [CrossRef]
- Kamermans, K.L.; Pouw, W.; Fassi, L.; Aslanidou, A.; Paas, F.; Hostetter, A.B. The role of gesture as simulated action in reinterpretation of mental imagery. Acta Psychol (Amst) 2019, 197, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Kamermans, K.L.; Pouw, W.; Mast, F.W.; Paas, F. Reinterpretation in visual imagery is possible without visual cues: A validation of previous research. Psychol Res 2019, 83, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Wauthia, E.; Lefebvre, L.; Vallet, G.T.; Ris, L.; Loureiro, I.S. Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Arch Gerontol Geriatr 2022, 102, 104715. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, K.; Poulin-Dubois, D.; Zesiger, P.; Friend, M. Assessing a continuum of lexical-semantic knowledge in the second year of life: A multimodal approach. J Exp Child Psychol 2017, 158, 95–111. [Google Scholar] [CrossRef]
- Dunn, W.; Griffith, J.W.; Sabata, D.; Morrison, M.T.; MacDermid, J.C.; Darragh, A.; Schaaf, R.; Dudgeon, B.; Connor, L.T.; Carey, L.; Tanquary, J. Measuring change in somatosensation across the lifespan. Am J Occup Ther 2015, 69, 6903290020p1–9. [Google Scholar] [CrossRef] [PubMed]
- Russo-Johnson, C.; Troseth, G.; Duncan, C.; Mesghina, A. All Tapped Out: Touchscreen Interactivity and Young Children’s Word Learning. Front Psychol 2017, 8, 578. [Google Scholar] [CrossRef]
- Dubuque, E.M.; Collins, L.; Dubuque, M.L. Improving Performance Covertly and Remotely with Tactile Stimulation. Behav Anal Pract 2021, 14, 203–207. [Google Scholar] [CrossRef] [PubMed]
- McLinden, M. Mediating haptic exploratory strategies in children who have visual impairment and intellectual disabilities. J Intellect Disabil Res 2012, 56, 129–139. [Google Scholar] [CrossRef]
- Schott, N.; Haibach-Beach, P.; Knöpfle, I.; Neuberger, V. The effects of visual impairment on motor imagery in children and adolescents. Res Dev Disabil 2021, 109, 103835. [Google Scholar] [CrossRef]
- Murphy, K.; Darrah, M. Haptics-Based Apps for Middle School Students with Visual Impairments. IEEE Trans Haptics 2015, 8, 318–326. [Google Scholar] [CrossRef]
- Espinosa-Castaneda, R.; Medellin-Castillo, H.I. Virtual Haptic Perception as an Educational Assistive Technology: A Case Study in Inclusive Education. IEEE Trans Haptics 2021, 14, 152–160. [Google Scholar] [CrossRef]
- Peñeñory, V.M.; Manresa-Yee, C.; Riquelme, I.; Collazos, C.A.; Fardoun, H.M. Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children. Sensors (Basel) 2018, 18. [Google Scholar] [CrossRef]
- Ogrinc, M.; Farkhatdinov, I.; Walker, R.; Burdet, E. Horseback riding therapy for a deafblind individual enabled by a haptic interface. Assist Technol 2018, 30, 143–150. [Google Scholar] [CrossRef]
- Martens, M.; Rinnert, G.C.; Andersen, C. Child-Centered Design: Developing an Inclusive Letter Writing App. Front Psychol 2018, 9, 2277. [Google Scholar] [CrossRef]
- Suggate, S.P.; Martzog, P. Screen-time influences children’s mental imagery performance. Dev Sci 2020, 23, e12978. [Google Scholar] [CrossRef]
- Dewe, H.; Gottwald, J.M.; Bird, L.A.; Brenton, H.; Gillies, M.; Cowie, D. My Virtual Self: The Role of Movement in Children’s Sense of Embodiment. IEEE Trans Vis Comput Graph 2022, 28, 4061–4072. [Google Scholar] [CrossRef] [PubMed]
- Orta Martinez, M.; Nunez, C.M.; Liao, T.; Morimoto, T.K.; Okamura, A.M. Evolution and Analysis of Hapkit: An Open-Source Haptic Device for Educational Applications. IEEE Trans Haptics 2020, 13, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Fitter, N.T.; Kuchenbecker, K.J. Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs. Front Robot AI 2018, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Reid, D. Virtual reality in pediatric neurorehabilitation: Attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology 2011, 36, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Valori, I.; Carnevali, L.; Farroni, T. Agency and reward across development and in autism: A free-choice paradigm. PLoS One 2023, 18, e0284407. [Google Scholar] [CrossRef] [PubMed]
- Rehman, I.U.; Sobnath, D.; Nasralla, M.M.; Winnett, M.; Anwar, A.; Asif, W.; Sherazi, H.H.R. Features of Mobile Apps for People with Autism in a Post COVID-19 Scenario: Current Status and Recommendations for Apps Using AI. Diagnostics (Basel) 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.; Poliakoff, E.; Gowen, E.; Couth, S.; Champion, R.A.; Warren, P.A. Similarities in Autistic and Neurotypical Visual-Haptic Perception When Making Judgements About Conflicting Sensory Stimuli. Multisens Res 2017, 30, 509–536. [Google Scholar] [CrossRef]
- Nakano, T.; Kato, N.; Kitazawa, S. Superior haptic-to-visual shape matching in autism spectrum disorders. Neuropsychologia 2012, 50, 696–703. [Google Scholar] [CrossRef]
- Hadad, B.S.; Schwartz, S. Perception in autism does not adhere to Weber’s law. Elife 2019, 8. [Google Scholar] [CrossRef]
- Casellato, C.; Gandolla, M.; Crippa, A.; Pedrocchi, A. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder. IEEE Int Conf Rehabil Robot 2017, 2017, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, A.J.; Pedneault, F.; Houle, M.; Bilodeau, C.; Gauvin, M.P.; Groleau, D.; Brochu, P.; Couture, M. Case study assessing the feasibility of using a wearable haptic device or humanoid robot to facilitate transitions in occupational therapy sessions for children with autism spectrum disorder. J Rehabil Assist Technol Eng 2021, 8, 20556683211049041. [Google Scholar] [CrossRef] [PubMed]
- NAO robot. Available online: https://wewalk.io/en/ (accessed on 21 June 2023).




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
