Submitted:
31 January 2024
Posted:
01 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Human Microbiota and Human-Friendly Microbes with Anti-Inflammatory Properties
3. Bacteria and Yeasts with Anti-Inflammatory Properties in Food
3.1. Vitamins Producing LAB
3.2. Anti-Inflammatory Exopolysaccharides (EPS)—Producing Bacteria
3.3. Biosurfactants with Anti-Inflammatory Properties—Producing Bacteria
3.4. Bacteriocins with Anti-Inflammatory Properties—Producing Lactobacilli
3.5. Other Substances with Anti-Inflammatory Effects Produced by Lactobacilli
| Strain | Activity | Reference |
|---|---|---|
| L. reuteri DSM 17938 (lysate) | decreased levels of IL-6 and IL-8 | [16] |
| L. reuteri ATCC PTA6475 | synthesizes folate; suppression of TNF- α production in human monocytes |
[50] |
| L. reuteri MG9012 | Reduced NO production | [84] |
| L. paracasei CBA L74 | ||
| L. brevis | GABA production; inhibition of NO and iNOs production, and NF-kB activity | [78] |
| L. fermentum MG9014 | reduced NO production | [84] |
| L. plantarum CRL2130 | produces riboflavin; intestinal inflammation reduction via pro-inflammatory cytokines control |
[45] |
| L. plantarum OLL 2712 | induced activity of IL-10 | [82] |
| L.plantarum M2, L.plantarum K09 | TNF-α suppression | [83] |
| L. paraplantarum BGCG11 | EPS production; decreased levels IL-1β, TNF-α,/and iNOS, and enhanced levels IL-10 and IL-6 | [62] |
| L. rhamnosus RW-9595M | EPS production; IL-10 production inhibition | [63] |
| Lactobacillus rhamnosus | reduced levels of IL-6 and C Reactive Protein | [74] |
| L. intestinalis LE1 and L. johnsonii LE2 | reduces in vitro mercury toxicity on the intestinal mucosa | [85] |
| L. plantarum SGL 07, L. salivarius SGL 19 (lysates) | stimulation of keratinocytes proliferation | [17] |
|
L. plantarum CRL2130, Streptococcus thermophilus CRL807, and Streptococcus thermophilus CRL808 (blend) |
riboflavin, folate production, immune-modulatory properties; decreased levels of IL-6, increase in TNF-α | [51] |
|
L. casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, Bifidobacterium (B.) longum, B. breve, B. infantis, and S. salivarius (blend) |
decreased levels of TNF-α and IL-6 in colon tissue | [52] |
|
Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Acetobacter, Kluyveromyces, Torula, Candida, Saccharomyces (kefir consortium) |
kefiran production; induced CD4+ and CD8+ T-lymphocytes popoulations | [57] |
| kefiran production; normalized levels of IL4 and IL5 levels | [58] | |
|
L. casei, L. acidophilus, Lactococcus lactis, Leuconostoc citrovorum, L. mesenteroides, Acetobacter aceti, A. rasens, Streptococcus thermophilus, S. lactis, Kluyveromuces sp, Sacharomyces sp (Tibetan mushroom consortia) |
granuloma formation inhibition | [61] |
|
Lactobacillus sp., Acetobacter xylinoides, Gluconobacter oxydans, Komagataeibacter xylinum, Gluconacetobacter hansenii, Oenococcus oeni, Komagataeibacter europaeus, Schizosaccharomyces pombe, Zygosaccharomyces kombuchaensis, Torulaspora delbrueckii, Saccharomyces sp., Brettanomyces sp. (kombucha consortia) |
riboflavin production; 87-91 % improved anti-inflammatory activity; IC50 value close to the maximal inhibitory concentration of nordihydroguaiaretic acid | [80] |
|
Leuconostoc mesenteroides BioE-LMD, Bacillus licheniformis BioE-BL11 (isolated from Korean kimchi) |
EPS production; inhibited secretion of IL-6; increased secretion of IL-10 | [64] |
|
L. plantarum LM17 and LM19, L. rhamnosus LM07 (agave fermentation stage) |
decreased intestinal permeability | [65] |
|
L. casei EMRO 002, L. casei EMRO 213, L. plantarum EMRO 009, L. fermentum EMRO 211, L. rhamnosus EMRO 014, L. bulgaricus EMRO 212, Rhodopseudomonas palustris EMRO 201 (multistrain extract) |
Inhibition of migration inhibitory factor tautomerase activity | [86] |
|
L.mucosae AN1, L. fermentum SNR1 (encapsulated) |
anti-inflammatory cytokines upregulation and pro-inflammatory cytokines downregulation | [41] |
4. Fungi with Anti-Inflammatory Potential
5. Marine Bacteria and Fungi with Anti-Inflammatory Properties
| Strain | Activity | Reference |
|---|---|---|
| A. flocculosus 16D-1 | inhibition of IL-6 expression | [105] |
| A.terreus | NO inhibition | [106] |
| A. terreus CFCC 81836 | NO inhibition | [108] |
| A.versicolor | possession of alkaloids which act against iNOs | [107] |
| Aspergillus sp. SCSIOW2 | NO inhibition | [109] |
| A. niger SCSIO Jcsw6F30 | act against the COX-2 | [110] |
| Aspergillus sp. SCSIO Ind09F01 | act against the COX-2 | [111] |
| A. violaceofuscus | act against the IL-10 expression | [112] |
| P.thomii | NO inhibition | [116] |
| Penicillium atrovenetum | possession of anti-neuroinflammatory meroterpenoid citreohybridonol | [117] |
| Penicillium glabrum (SF-7123) | NO inhibition | [118] |
| Bacillus liquefaciens M116 | granuloma reduction | [119] |
| Bacillus sp. | inhibition the activities of LOX and COX enzymes | [120] |
| Bacillus spp. BTCZ31 | melanin production; COX and LOX inhibition |
[121] |
| Micrococcus sp. | produces yellow pigment reducing the wound closure period | [123] |
| Brevibacterium sp. | anti-inflammatory activity comparable to diclofenac | [124] |
| Eurotium amstelodami | produces asperflavin; inhibition of LPS-induced NO, PGE2, TNF-α, IL-1β, and IL-6 production; | [126] |
| Vibrio cyclitrophicus | EPA production | [131] |
| Cellulophaga | EPA and DHA production | [132] |
| Pibocella | EPA and DHA production | [132] |
| Porphyridium sp. | ARA production | [128] |
| Streptomyces specialis | inhibition of mRNA expression of iNOs and IL-6 | [133] |
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li,C. -Q.; Ma,Q.-Y.; Gao, X.-Z.; Wang, X.; Zhang, B.-L. Research progress in anti-inflammatory bioactive substances. Mar. Drugs 2021, 17, 572. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Nicolson, K.; Smith, B. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 2, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.; Monteiro, J.; Silva, D.; Alencar, A.; Silva, K.; Coelho, L.; Pacheco, W.; Silva, D.; Silva, M.; Silva, L.; Monteiro, A. Surface-active compounds produced by microorganisms. Antibiotics 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Abdulkhaleq, L.; Assi, M.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.; Hezmee, M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.; West, A.P.; Ghosh, S. NF-kappaB and the immune response. Oncogene 2006, 25, 6758–6780. [Google Scholar] [CrossRef] [PubMed]
- Rumende, C.; Susanto, E.; Sitorus, T. The management of cytokine storm in COVID-19. Acta Med. Indones. 2020, 52, 3–306. [Google Scholar] [PubMed]
- Bird, P.; Badhwar, V.; Fallon, K.; Kwok, K.; Tang, J. High SARS-CoV-2 infection rates in respiratory staff nurses and correlation of COVID-19 symptom patterns with PCR positivity and relative viral loads. J. Infect. 2020, 81, 3–452. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yin, Z.; Hu, Y.; Mei, H. Controlling cytokine storm is vital in COVID-19. Front. Immunol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Lubberts, E.; Van den Berg, W. Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis. Madame Curie Bioscience Database. Austin, TX: Landes Bioscience, 2000, 2000-13.
- Andriani, Y.; Marlina, L.; Mohamad, H.; Amir, H.; Radzi, S. A. M.; Saidin, J. Anti-inflammatory activity of bacteria associated with marine sponge (Haliclona amboinensis) via reducting no production and inhibiting cyclooxygenase-1, cyclooxygenase-2, and secretory phospholipase A2 activities. Asian J. Pharm. Clin. Res. 2017, 10, 95–100. [Google Scholar] [CrossRef]
- Koppel, N.; Balskus, E. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 2016, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.; Bucci, V.; Stein, R.; McKenney, P.; Ling, L. et. al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015, 517, 205–208. [Google Scholar] [CrossRef]
- Byrd, A.; Belkaid, Y.; Segre, Y. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Gomaa, E. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef]
- Khmaladze, I.; Butler, E.; Fabre, S.; Gillbro, J. Lactobacillus reuteri DSM 17938—A comparative study on the effect of probiotics and lysates on human skin, Exp Dermatol 2019, 28, 822–828. 28. [CrossRef]
- Brandi, J.; Cheri, S.; Manfredi, M.; Di Carlo, C.; Vanella, V.; Federici, F.; Bombiero, E.; et al. Exploring the wound healing,anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Sci. Rep. 2020, 10, 11572. [Google Scholar] [CrossRef]
- Kaci, J.; Goudercourt, D.; Dennin, V.; Pot, B.; Dore, J.; Ehrlich, C.; Renault, P.; et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl. Environ. Microbiol. 2013, 80, 3–928. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J. and Dierksen, K. Bacterial replacement therapy: adapting germ warfare’ to infection prevention. Trends Biotechnol. 2003, 21, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Rigauts, C.; Aizawa, J.; Taylor, S.; et al. Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. Eur. Respir. J. 2022, 59, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, S.; Zhao, N.; Liu, C.; Zhang, F.; Guo, Y.; Liu, H. CXCL8 chemokine in ulcerative colitis. Biomed. Pharmacother. 2021, 138, 111427. [Google Scholar] [CrossRef]
- Bourgonje, A.; Feelisch, M.; Faber, K.; Pasch, A.; Dijkstra, G.; van Goor, H. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol. Med. 2020, 26, 1034–1046. [Google Scholar] [CrossRef]
- Flynn, S. and Eisenstein, S. Inflammatory bowel disease presentation and diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef]
- Glassner, K. L.; Abraham, B.; Quigley, E. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 2020, 154, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D. A.; Frank, D. N.; Pace, N. R.; Gordon, J. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 2008, 3, 6–417. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Seksik, P.; Rigottier-Gois, L.; et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis. 2006, 12, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, N.; Quigley, C.; Paw, C.; Butala, S.; Schneider, E.; Pandiyan, P. Role of short chain fatty acids in controlling tregs and immunopathology during mucosalinfection. Front. Microbiol. 2018, 24, 9–1995. [Google Scholar] [CrossRef] [PubMed]
- Kropp, C.; Corf, K.; Relizani, K.; Tambosco, K.; Martinez, C.; et al. The keystone commensal bacterium Christensenella minuta DSM 22607 displays anti-inflammatory properties both in vitro and in vivo. Scientific Reports 2021, 11, 11494. [Google Scholar] [CrossRef] [PubMed]
- Relizani, K.; Le Corf, K.; Kropp, C.; Martin-Rosique, R.; Kissi, D.; Déjean, G.; Bruno, L.; et al. Selection of a novel strain of Christensenella minuta as a future biotherapy for Crohn’s disease. Sci. Rep. 2022; 12, 30. [Google Scholar] [CrossRef]
- Zakrzewski, M.; Simms, L.; Brown, A.; Appleyard, M.; Irwin, J.; Waddell, N.; Radford-Smith. IL23R-protective coding variant promotes beneficial bacteria and diversity in the ileal microbiome in healthy individuals without inflammatory bowel disease. J. Crohn’s Colitis 2018, 13, 451–461. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pasolli, E.; Ercolini, D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr. Biol. 2020, 30, 4932–4943. [Google Scholar] [CrossRef] [PubMed]
- Quévrain, E.; Maubert, M.; Michon, C.; et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut Online First, 2015; 65. [Google Scholar] [CrossRef]
- Touch, S.; Godefroy, C.; Rolhion, N.; Danne, C.; Oeuvray, C.; et al. Human CD4+CD8alpha+ tregs induced by Faecalibacterium prausnitzii protect against intestinal inflammation. JCI Insight 2022, 7, 12. [Google Scholar] [CrossRef]
- Yokota, Y.; Shikano, A.; Kuda, T.; Takei, M.; Takahashi, H.; Kimura, B. Lactobacillus plantarum AN1 cells increase caecal L. reuteri in anICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int. J. Immunopharmacol. 2018, 56, 119–127. [Google Scholar] [CrossRef]
- Ng, S.; Lam, E.; Lam, T.; Chan, Y.; Law, W.; Tse, P.; Kamm, M.; Sung, J.; Chan, F.; Wu, J. Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J. Gastroenterol. Hepatol. 2013, 28, 10–1624. [Google Scholar] [CrossRef] [PubMed]
- Weber, C. IBD: Lactococcus lactis alleviates oxidative stress andcolitis in mice. Nature Rev. Gastroenterol. Hepatol. 2015, 12, 8–429. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.; Carvalho, A.; Miquel-Clopés, A.; Jones, E.; Juodeikis, R.; Stentz, R.; Carding, S. Extracellular vesicles produced by the humann gut comensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Gholami-Shabani, M.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Food Microbiology: application of microorganisms in food industry. IntechOpen,. [CrossRef]
- 39. FAO/WHO, Guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 2022.
- Choi, E.-J.; Lee, H.; Kim, W.; Han, K.; Iwasa, M.; Kobayashi, K.; Debnath, T.; Tang, Y.; Kwak, Y.; Yoon, J.; Kim, E. Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Ayyanna, R.; Ankaiah, D.; Arul, V. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Imam, F.; Nadeem, A.; Al-Harbi, M.; Iqbal, M.; Ahmad, S. Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int. Immunopharmacol. 2014, 21, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Bialy, A.; Pochec, E.; Plytycz, B. Immunomodulatory effect of riboflavin deficiency and enrichment-reversible pathological response versus silencing of inflammatory activation. J. Physiol. Pharmacol. 2015, 66, 793–802. [Google Scholar]
- Alam, M.; Iqbal, S.; Naseem, I. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: mechanistic and therapeutic strategies. Arch. Biochem. Biophys. 2015, 584, 10–19. [Google Scholar] [CrossRef]
- Levit, R.; Savoy de Giori, G.; de Moreno, A.; de LeBlanc and LeBlanc, J. Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J. Appl. Microbiol. 2017, 124, 232–240. [Google Scholar] [CrossRef]
- Levit, R.; Savoy de Giori, G.; de Moreno, A. ; de LeBlanc; LeBlanc, J. Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Beneficial Microbes, 2017; 8, 65–72. [Google Scholar] [CrossRef]
- Baszczuk, A.; Thielemann, A.; Musialik, K.; Kopczynski, J.; Bielawska, L.; Dzumak, A.; Kopczynski, Z.; Wysocka, E. The impact of supplementation with folic acid on homocysteine concentration and selected lipoprotein parameters in patients with primary hypertension. J. Nutr. Sci. Vitaminol. 2017, 63, 96–103. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.; Liu, X.; Cui, W.; Li, D. Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients 2017, 9, 4. [Google Scholar] [CrossRef]
- Burr, N.; Hull, M.; Subramanian, V. Folic acid supplementation may reduce colorectal cancer risk in patients with inflammatory bowel disease: a systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Saulnier, D.; Spinler, J.; Hemarajata, P.; Gao, C.; Jones, S.; Grimm, A.; Balderas, M.; Burstein, M.; Morra, C.; Roeth, D.; Kalkum, M.; Versalovic, J. FolC2-mediated folate metabolism contributesto suppression of inflammation by probiotic Lactobacillus reuteri. MicrobiologyOpen 2016, 5, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Levit, R.; Savoy de Giori, G.; de Moreno, A.; de LeBlanc; LeBlanc, J. Beneficial effect of a mixture of vitamin-producing and immunemodulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Appl. Microbiol. Biotechnol. 2019, 103, 8937–8945. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Wang, H.; Ma, Y.; Zhao, X.; Yang, H.; Qian, J.; Li, J. VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice. World J. Gastroenterol. 2018, 24, 4254–4262. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J. G.; Levit, R.; de Giori, G.; de Moreno, A. ; de LeBlanc. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl. Microbiol. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Albuquerque, M.; Bedani, R.; LeBlanc, J.; Saad, S. Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk. Int. J. Food Microbiol. 2017, 26, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Carrizo, S.; de Moreno, A.; de LeBlanc, J.; LeBlanc; Rollan, G. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res. Int. 2020, 127, 108735. [Google Scholar] [CrossRef] [PubMed]
- Juarez del Valle, M.; Laiño, J.; Savoy de Giori, G.; LeBlanc, J. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-definedmedium. J. BasicMicrobiol 2017, 57, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jenab, A.; Roghanian, R.; Emtiazi, G. Encapsulation of platelet in kefiran polymer and detection of bioavailability of immobilized platelet in probiotic kefiran as a new drug for surface bleeding. J. Med. Microbiol. 2015, 4, 45–55. [Google Scholar]
- Kwon, O.; Ahn, K.; Lee, M.; Kim, S.; Park, B.; Kim, M.; Lee, I.; Oh, S.; Lee, H. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma. Arch. Pharm. Res. 2008, 31, 1590–1596. [Google Scholar] [CrossRef]
- Jenab, A.; Roghanian, R.; Emtiazi, G. Bacterial natural compounds with anti-inflammatory and immunomodulatory properties (mini review). Drug Des. Dev. Ther. 2020, 3787–3801. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.; Schneedorf, J. Fiorini, J.; de Oliveira, B.; Carvalho, J. Efeito da administração de cogumelo tibetano, um consórcio microbiano, sobre a peristalse intestinal em ratos. Braz. J. Pharmacog 2005, 15, 3–212. [Google Scholar] [CrossRef]
- Diniz, R.; Garla, L.; Schneedorf, J.; Carvalho, J. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol. Res. 2003, 47, 49–52. [Google Scholar] [CrossRef]
- Dinić, M.; Pecikoza, U.; Djokić, J.; Stepanović-Petrović, R.; Milenković, M.; Stevanović, M.; Filipović, N.; Begović, J.; Golić, N.; Lukić, J. Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Zaghian, S.; Shokri, D.; Emtiazi, G. Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Ann. Microbiol. 2012, 62, 1189–1197. [Google Scholar] [CrossRef]
- Kook, S.; Lee, Y.; Jeong, E.; Kim, S. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. J. Func. Foods 2019, 54, 211–219. [Google Scholar] [CrossRef]
- Hernández-Delgado, N.; Torres-Maravilla, E.; Mayorga-Reyes, L.; Martín, R.; Langella, P.; Pérez-Pastén-Borja, R.; Sánchez-Pardo, M.; Bermúdez-Humarán, L. Antioxidant and anti-inflammatory properties of probiotic candidate strains isolated during fermentation of agave (Agave angustifolia Haw). Microorganisms 2021, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S. and Allen, P. Immunomodulatory roles of polysaccharide capsules in the intestine. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Giri, S.; Sen, S.; Jun, J.; Sukumaran, V.; Park, S. Role of Bacillus licheniformis VS16-derived biosurfactant in mediating immune responses in Carp Rohu and its application to the food industry. Front. Microbiol. 2017; 8, 514. [Google Scholar] [CrossRef]
- Karanth, N.; Deo, P.; Veenanadig, N. Microbial production of biosurfactants and their importance. Curr. Sci. 1999, 10, 116–126. [Google Scholar]
- Fanaei, M. and Emtiazi, G. Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MSanalysis. J. Mol. Liq. 2018, 268, 707–714. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Dong, B.; Ma, X.; Hou, L.; Cao, X.; Wang, C. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 2015, 38, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef] [PubMed]
- Voloshyna, I.; Soloshenko, K.; Krasinko, V.; Lych, I.; Shkotova, L. Bacteriocins Lactobacillus — an alternative to antimicrobial drugs. Biopolymers and Cell Vol. 2021, 37, 85–97. [Google Scholar] [CrossRef]
- Sivaraj, A.; Sundar, R. Manikkam, R.; Parthasarathy, K.; Rani, U.; Kumar, V. Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy. Asian Pac. J. Trop. Med. 2018; 11, 453–459. [Google Scholar] [CrossRef]
- Zhou, B. and Zhang, D. Antibacterial effects of bacteriocins isolated from Lactobacillus rhamnosus (ATCC 53103) in a rabbit model of knee implant infection. Exp Ther Med 2018, 15, 2985–2989. [Google Scholar] [CrossRef]
- Crittenden, D.; Chebib, M.; Jordan, M. Stabilization of zwitterions in solution: GABA Analogues. J. Phys. Chem. A 2005, 109, 4195–4201. [Google Scholar] [CrossRef]
- Strain, G. Nutrition, brain function and behavior, Psychiatr. Clin. N. Am. 1981, 4, 253–268. [Google Scholar] [CrossRef]
- Mitsushima, D.; Shwe, T. Funabashi, T.; Shinohara, K.; Kimura, F. GABA release in the medial preoptic area of cyclic female rats. Neuroscience 2002, 113, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-L.; Nguyen, T.; Kim, J.-S.; Park, J.-Y.; Kang, C.-H. Isolation of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria with anti-inflammatory effects from fermented foods in Korea. Fermentation 2023, 9, 612. [Google Scholar] [CrossRef]
- Soltani, L.; Qiu, H.; Aleksic, M.; Glinka, Y.; Zhao, F.; Liu, R.; Li, Y.; Zhang, N.; Chakrabarti, R.; et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl. Acad. Sci. USA 2011, 108, 11692–11697. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling microbial ecology of industrialscale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017, 93, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, T.; Ozaki, S.; Mochizuki, J.; Furuichi, K.; Asami, Y. Effects of Lactobacillus plantarum strain OLL2712 culture conditions on the anti-inflammatory activities for murine immune cells and obese and type 2 diabetic mice. Appl. Environ. Microbiol. 2017, 83, e03001–16. [Google Scholar] [CrossRef] [PubMed]
- Kostelac, D.; Geric, M.; Gajski, G.; Markov, K.; Domijan, A.; Jakopovic, I. Z.; Svetec, I.; Frece, J. Lactic acid bacteria isolated from equid milk and their extracellular metabolites show great probiotic properties and anti-inflammatory potential. Int. Dairy. J. 2021, 112, 104828. [Google Scholar] [CrossRef]
- Kim, K.-T.; Kim, J.-W.; Kim, S.-I.; Kim, S.; Nguyen, T.; Kang, C.-H. Antioxidant and anti-inflammatory effect and probiotic properties of lactic acid bacteria isolated from canine and feline feces. Microorganisms 2021, 9, 1971. [Google Scholar] [CrossRef]
- Rodríguez-Viso, P.; Domene, A.; V´elez, D.; Devesa, V.; Zúniga, M. and Monedero, V. Lactic acid bacteria strains reduce in vitro mercury toxicity on the intestinal mucosa. Food Chem. Toxicol. 2023, 173. [Google Scholar] [CrossRef] [PubMed]
- Nyotohadi, D. and Kok, T. Potential of multi-strain probiotics extract as an antiinflammatory agent through inhibition of macrophage migration inhibitory factor activity. Funct. Foods Health Dis. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Muller, L.; Kuhn, T.; Koch, M.; Fuhrmann, G. Stimulation of probiotic bacteria induces release of membrane vesicles with augmented anti-inflammatory activity. ACS Appl. Bio Mater. 2021, 4, 3739–3748. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Dauros-Singorenko, P.; Whitcombe, A.; Payne, L.; Blenkiron, C.; Phillips, A.; Swift, S. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J. Extracell. Vesicles 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Calandra, T. and Roger, T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nature Rev. Immunol. 2003, 3, 10–791. [Google Scholar] [CrossRef] [PubMed]
- Aksakal, A.; Kerget, B.; Kerget, F.; Aşkın, S. Evaluation of the relationship between macrophage migration inhibitory factor level and clinical course in patients with COVID-19 pneumonia. J. Med. Virol. 2021, 93, 6519–6524. [Google Scholar] [CrossRef]
- Aeberli, D.; Leech, M.; Morand, E. Macrophage migration inhibitory factor and glucocorticoid sensitivity. Rheumatology 2006, 45, 937–943. [Google Scholar] [CrossRef]
- Zagato, E.; Mileti, E.; Massimiliano, L. Fasano, F.; Budelli, A.; Penna, G; Rescigno, M. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have antiinflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo. PLoS ONE 2014, 9, e87615. [Google Scholar] [CrossRef]
- Song, D.; Lee, H.; Kim, G.-B.; Kang, S.-S. Whey fermented by Enterococcus faecalis M157 exhibits antiinflammatory and antibiofilm activities against oral pathogenic bacteria. J. Dairy. Sci. 2022, 105, 1900–1912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, C.; Zhang, X.; Chen, H.; Dong, J.; Lu, W. ; Song, Z; Zhou, W. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J. Neuroinflamm. 2018; 15, 37. [Google Scholar] [CrossRef]
- Du, B.; Lin, C.; Bian, Z; Xu, B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Pretsch, A.; Nagl, M.; Schwendinger, K.; Kreiseder, B.; Wiederstein, M.; et al. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS ONE 2014, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Elawady, M.; Hamed, A.; Alsallami, W.; Gabr, E.; Abdel-Monem, M.; Hassan, M. Bioactive metabolite from endophytic Aspergillus versicolor sb5 with anti-acetylcholinesterase, anti-inflammatory and antioxidant activities: in vitro and in silico studies. Microorganisms 2023, 11, 1062. [Google Scholar] [CrossRef]
- Hu, Q.; Qiao, Y.; Zhang, Z.; Deng, Y.; Chen, T.; Tao, L.; et al. New polyketides with anti-inflammatory activity from the fungus Aspergillus rugulosa. Front. Pharmacol. 2021; 12. [Google Scholar] [CrossRef]
- Kim, J.; Baek, J.; Bang, S.; Kim, J.; Jin, Y.; Lee, J.; et al. New anti-inflammatory β-resorcylic acid lactones derived from an endophytic fungus, Colletotrichum sp. A.C.S. Omega 2023, 8, 3530–3538. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Dong, X.-Y.; Ning, J.-L.; Jin, Y.-X.; Wang, J.-K.; Feng, T. Chemical constituents from the fungus Phellinus baumii and their anti-inflammatory activity. Phytochem. Lett. 2023, 54, 18–22. [Google Scholar] [CrossRef]
- Al-Rabia, M.; Mohamed, G.; Ibrahim, S.; Asfour, H. Anti-inflammatory ergosterol derivatives from the endophytic fungus Fusarium chlamydosporum. Nat. Product. Res. 2020, 35, 5011–5020. [Google Scholar] [CrossRef]
- Ye, M.; Bak, J.; An, C.; Jin, H.; Kim, J.; Kweon, H. and et al. Dietary β-glucan regulates the levels of inflammatory factors, inflammatory cytokines, and immunoglobulins in interleukin-10 knockout mice. J. Medicinal Food 2011, 14, 5–468. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Meng, L.-H.; Wang, B.-G. Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms. Mar. Drugs 2020, 18, 12–614. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000–2018. Mar. Drugs 2019, 17, 636. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Jiao, F.; Wu, W.; Jiao, W.; Li, L.; Sun, F.; Wang, S.; Yang, F.; Lin, H. Preussins with inhibition of IL-6 expression from Aspergillus flocculosus 16D-1, a fungus isolated from the marine sponge Phakellia fusca. J. Nat. Prod. 2018, 81, 2275–2281. [Google Scholar] [CrossRef]
- Liu, M.; Sun, W.; Wang, J.; He, Y.; Zhang, J.; Li, F.; Qi, C.; Zhu, H.; Xue, Y.; Hu, Z.; et al. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. Chem. 2018, 80, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, W.; Deng, M.; Zhou, Q.; Wang, J. Liu, J.; Chen, C. Qi, C.; Luo, Z.; Xue, Y. Asperversiamides, linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor. J. Org. Chem. 2018, 83,. 8483–8492. [CrossRef]
- Wu, Z.; Li, D.; Zeng, F.; Tong, Q.; Zheng, Y.; Liu, J.; Zhou, Q.; Li, X.; Chen, C.; Lai, Y. Brasilane sesquiterpenoids and dihydrobenzofuran derivatives from Aspergillus terreus [CFCC 81836]. Phytochemistry 2018, 156, 159–166. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Tang, J.; Li, X. Eremophilane sesquiterpenes from a deep marine-derived fungus, Aspergillus sp. SCSIOW2, cultivated in the presence of epigenetic modifying agents. 2016, 21, 473. Molecules 2016, 21, 473. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Lin, X.; Wang, J.; Liu, Y.; Tao, H.; Zhou, H. Asperpyrone-type bis-naphtho-gamma-pyrones with COX-2–inhibitory activities from marine-derived fungus Aspergillus niger. Molecules 2016, 21, 941. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Qin, X. Lin, X.; Kaliyaperumal, K.; Zhou, X.; Liu, J.; Ju, Z.; Tu, Z.; Liu, Y. Sydoxanthone C and acremolin B produced by deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. J. Antibiot. 2015; 68, 703–706. [Google Scholar] [CrossRef]
- Liu, J.; Gu, B.; Yang, L.; Lin, H. New Anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front. Chem. 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Sohn, J.; Kim, Y.-C.; Oh, H. Viridicatol from marine-derived fungal strain Penicillium sp. SF-5295 exerts anti-inflammatory effects through inhibiting NF-κB signaling pathway on lipopolysaccharide-induced RAW264. Nat. Prod. Sci. 2015, 21, 240–247. [Google Scholar] [CrossRef]
- Du, L.; Yang, X.; Zhu, T.; Wang, F.; Xiao, X.; Park, H.; Gu, Q. Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem. Pharm. Bull. 2009, 57, 873–876. [Google Scholar] [CrossRef]
- Dong-Cheol, K.; Hee-Suk, L.; Wonmin, K.; Dong-Sung, L.; Jae, S.; Juong, Y.; Youn-Chul, K.; Hyuncheol, O. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995): Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia. Molecules 2014, 19, 18073. [Google Scholar] [CrossRef] [PubMed]
- Afiyatullov, S.; Leshchenko, E.; Sobolevskaya, M.; Antonov, A.; Denisenko, V.; Popov, R.; Khudyakova, Y.; Kirichuk, N.; Kuz’Mich, A.; Pislyagin, E. New thomimarine E from marine isolate of the fungus Penicillium thomii. Chem. Nat. Compd. 2017, 53, 290–294. [Google Scholar] [CrossRef]
- Özkaya, F.; Ebrahim, W.; Klopotowski, M.; Liu, Z.; Janiak, C.; Proksch, P. Isolation and X-ray structure analysis of citreohybridonol from marine-derived Penicillium atrovenetum. Nat. Prod. Res. 2017, 32, 840–843. [Google Scholar] [CrossRef]
- Ha, T.; Kim, D.-C.; Sohn, J. Yim, J.; Oh, H. Anti-inflammatory and protein tyrosine phosphatase 1b inhibitory metabolites from the antarctic marine-derived fungal strain Penicillium glabrum SF-7123. Mar. Drugs 2020, 18, 247. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, I.; Lezcano, F.; Duarte, C.; Garrido- Suárez, B.; Guilarte, E.; Pérez, M.; Guerra. In vivo anti-inflammatory activity of M116, one extract obtained from the marine bacterium Bacillus amyloliquefaciens. J. Pharm. Pharmacog Res. 2023, 11, 4–651. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, B.; Abd El-Kareem, H. F.; Alzamami, A.; Fahmy, C. A.; Elesawy, B. H.; Mostafa Mahmoud, M.; . Ghareeb, A.; El Askary, A.; Abo Nahas, H. H.; Attallah, N. G. M.; et al. Novel exopolysaccharide from marine Bacillus subtilis with broad potential biological activities: insights into antioxidant, anti-inflammatory, cytotoxicity, and anti-alzheimer activity. Metabolites 2022, 12, 715. [Google Scholar] [CrossRef] [PubMed]
- Kurian, N.; Nair, H.; Bhat, S. Evaluation of anti-inflammatory property of melanin from marine Bacillus spp. BTCZ31. Asian J. Phar Clin. Res. 2015, 8, 251–255. [Google Scholar]
- Huang, H. and Chang, T. Antioxidative properties and inhibitory effect of Bifidobacterium adolescentis. World J. Microbiol. Biotechnol. 2012, 28, 2903–2912. [Google Scholar] [CrossRef] [PubMed]
- Srilekha, V.; Krishna, G.; Seshasrinivas, V.; Singaracharya, M. Evaluation of wound healing and anti-inflammatory activity of a marine yellow pigmented bacterium, Micrococcus sp. Indian. J. Geo Mar. Sci. 2018, 47, 12–2454. [Google Scholar]
- Srilekha, V.; Krishna, G.; Seshasrinivas, V.; Charya, M. Antibacterial and anti-inflammatory activities of marine Brevibacterium sp. Res. Pharmac Sci. 2017, 12, 283–289. [Google Scholar] [CrossRef]
- Nakashima, T.; Kurachi, M.; Kato, Y.; Yamaguchi, K.; Oda, T. Characterization of bacterium isolated from the sediment at coastal area of omurabay in Japan and several biological activities of pigment produced by this isolate. Microbiol. Immunol. 2005, 49, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kang, M.-C.; Li, Y.; Kim, E.-A.; Kang, S. Asperflavin, an anti-inflammatory compound produced by a marine-derived fungus, Eurotium amstelodami. Molecules 2017, 22, 11–1823. [Google Scholar] [CrossRef] [PubMed]
- Kang, J. and Weylandt, K. Modulation of inflammatory cytokines by omega-3 fatty acids. Lipids Health Dis. [CrossRef]
- Tsvetanova, F. and Yankov, D. Bioactive compounds from red microalgae with therapeutic and nutritional value. Microorganisms 2022, 10, 2290. [Google Scholar] [CrossRef]
- Tsvetanova, F.; Boyadzhieva, S.; Coelho, J.; Yankov, D.; Stateva, R. Sustainable transformation of two algal species of different genera to high-value chemicals and bioproducts. Molecules 2024, 29, 156. [Google Scholar] [CrossRef]
- Chugh, M.; Kumar, L.; Shah, M.; Bharadvaja, N. Algal bioremediation of heavy metals: an insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- Elrazak, A.; Ward, A.; Glassey, J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess. Biosyst. Eng. 2013, 36, 1641–1652. [Google Scholar] [CrossRef]
- Bianchi, A.; Olazábal, L.; Torre, A. Antarctic microorganisms as a source of the omega-3 polyunsaturated fatty acids. World. J. Microbiol. Biotechnol. 2014, 30, 1869–1878. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res. 2014, 169, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Heo, C.-S.; Anh, C.; Yoon, Y.; Kang, J. Streptoglycerides E–H, unsaturated polyketides from the marine-derived bacterium Streptomyces specialis and their anti-inflammatory activity. Mar. Drugs 2022, 20, 44. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
