Submitted:
01 February 2024
Posted:
02 February 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Biomedical Modelling
Cancer Modelling
Brain and Spinal Cord Models of Illnesses
Use of Virtual reality to Mimic Heart Disease
GFP Tagged Cas9 Lentivirus Cells Infection
Immuno-deficient Animal model
| Disease | CRISPR approach |
|---|---|
| Cancer | Hematopoietic stem and progenitor cells from a mouse without MLL3 |
| Cancer | An in vivo liver model was used to make a -catenin activating point mutation happen again, and Pten and p53 were knocked out. |
| Cancer | The t(11;22) and t(8;21) translocations are replicable in human HEK293, mesenchymal, and hematopoietic cells. |
| Cancer | An in vivo lung model using the NIH/3T3 cell line for studying chromosome inversion and p21p23 induction |
| Cancer | In a Kras(G12D)-driven lung cancer model, many tumor suppressor genes are inactivated. |
| Cancer | Treatment of a patient-derived colon cancer cell line by reversing a mutation in a protein kinase C (PKC) |
| Cancer | Restoration of PKC function in a patient-derived colon cancer cell line |
| Cancer | Translocation t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma is replicated in mice myoblast cells. |
| Cancer | Loss-of-function screening at high throughput for detecting drivers of lung metastasis and growth in non-small-cell lung cancer |
| Cancer | Loss-of-function screening at high throughput for identifying regulators of NSCLC progression and metastasis to the lungs |
| Cancer | High-throughput screening for loss-of-function mutations in non-small-cell lung cancer |
| Cancer | high-throughput loss-of-function screening for preventing the spread of non-small-cell lung cancer to the lungs |
| Cancer | Pancreatic Lkb1 deletion in an in vivo model. |
| Cancer | Knockdown of TP53 in an in vitro model of oesophageal adenocarcinoma |
| Cancer | Somatic multiplex mutagenesis as a tool for high-throughput mouse gene function investigation |
| Cancer | In vitro model of exon 14 deletion utilizing the HEK293 cell line |
| Cancer | Systematic knockdown of the TP53 gene was performed on HCT116 colorectal and H460 lung cancer cells in an in vitro model. |
| Cancer | Deletion of JunB in a cultured model of head and neck squamous cell carcinoma |
| Cancer | Knocking down NoxO1 in a human colon cancer cell culture model |
| Cancer | Method for reprogramming human T cells using a PD-1 knockout model |
| Cancer | Knocking off PYCR1 in a mouse model of invasive breast cancer |
| Neurological | DMD exon 45-55 deletion in human iPSCs |
| Neurological | Duchenne muscular dystrophy (DMD) exon 23 deletion was achieved in an MDX mice model of the disease by delivering AAV9 intraperitoneally, intramuscularly, or retroorbitally. |
| Neurological | DMD exon 23 deletion mouse model for Duchenne muscular dystrophy |
| Neurological | DMD exon 23 deletion is seen in the tibialis anterior muscles of a mouse model of Duchenne muscular dystrophy. |
| Neurological | Pmm2 knockout in a Drosophila embryonic stem cell model |
| Neurological | Fluorescent labeling of iPSC-derived GABAergic neurons |
| Neurological | Tenm1-deficient (knockout) mice |
| Cadiovascular | Pcsk9 deletion using adeno-associated virus in a living mouse liver model |
| Cadiovascular | Cardiac-specific Cas9 transgenic mice and Myh6 knockout cells are generated after AAV9 delivery in cardiomyocytes. |
| Infectious | The suppression of HBV viral gene expression and replication by the selective targeting and cleavage of conserved regions of the HBV genome. |
Conclusion
Authors’ contributions and materials
Ethical Approval and Consent to participate
Funding
Animal rights
Consent for publication
Availability of data
Acknowledgments
Competing interests
References
- Akhtar, M.; Jamal, T.; Khan, M.; Khan, S.R.; Haider, S.; Jalil, F. CRISPR Cas System: An efficient tool for cancer modelling. J Pak Med Assoc. 2021, 71, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Ansari, I.; Chaturvedi, A.; Chitkara, D.; Singh, S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol. 2022, 83, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, G.; Gohil, N.; Khambhati, K.; Mani, I.; Maurya, R.; Karapurkar, J.K.; Gohil, J.; Chu, D.T.; Vu-Thi, H.; Alzahrani, K.J.; Show, P.L.; Rawal, R.M.; Ramakrishna, S.; Singh, V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release. 2022, 343, 703–723. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Fan, S.; Wen, C.; Du, X. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Brief Funct Genomics. 2020, 19, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Sarmah, D.; Kaur, H.; Chaudhary, A.; Vadak, N.; Borah, A.; Shah, S.; Wang, X.; Bhattacharya, P. Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cell Mol Neurobiol. 2023, 43, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Denes, C.E.; Cole, A.J.; Aksoy, Y.A.; Li, G.; Neely, G.G.; Hesselson, D. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. Int J Mol Sci. 2021, 22, 8571, PMCID: PMC8395304. [Google Scholar] [CrossRef] [PubMed]
- Erkut, E.; Yokota, T. CRISPR Therapeutics for Duchenne Muscular Dystrophy. Int J Mol Sci. 2022, 23, 1832, PMCID: PMC8836469. [Google Scholar] [CrossRef] [PubMed]
- Foy, S.P.; Jacoby, K.; Bota, D.A.; Hunter, T.; Pan, Z.; Stawiski, E.; Ma, Y.; Lu, W.; Peng, S.; Wang, C.L.; Yuen, B.; Dalmas, O.; Heeringa, K.; Sennino, B.; Conroy, A.; Bethune, M.T.; Mende, I.; White, W.; Kukreja, M.; Gunturu, S.; Humphrey, E.; Hussaini, A.; An, D.; Litterman, A.J.; Quach, B.B.; Ng, A.H.C.; Lu, Y.; Smith, C.; Campbell, K.M.; Anaya, D.; Skrdlant, L.; Huang, E.Y.; Mendoza, V.; Mathur, J.; Dengler, L.; Purandare, B.; Moot, R.; Yi, M.C.; Funke, R.; Sibley, A.; Stallings-Schmitt, T.; Oh, D.Y.; Chmielowski, B.; Abedi, M.; Yuan, Y.; Sosman, J.A.; Lee, S.M.; Schoenfeld, A.J.; Baltimore, D.; Heath, J.R.; Franzusoff, A.; Ribas, A.; Rao, A.V.; Mandl, S.J. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature. 2023, 615, 687–696, PMCID: PMC9768791. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; Phillips, J.; Xu, Y.; Amaral, A.; Boyd, A.P.; Cehelsky, J.E.; McKee, M.D.; Schiermeier, A.; Harari, O.; Murphy, A.; Kyratsous, C.A.; Zambrowicz, B.; Soltys, R.; Gutstein, D.E.; Leonard, J.; Sepp-Lorenzino, L.; Lebwohl, D. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Rasul, M.F.; Abdullah, S.R.; Hidayat, H.J.; Faraj, G.S.H.; Ali, F.A.; Salihi, A.; Baniahmad, A.; Ghafouri-Fard, S.; Rahman, M.; Glassy, M.C.; Branicki, W.; Taheri, M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023, 10, 32, PMCID: PMC10351202. [Google Scholar] [CrossRef]
- Kaboli, S.; Babazada, H. CRISPR Mediated Genome Engineering and its Application in Industry. Curr Issues Mol Biol. 2018, 26, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Katti, A.; Diaz, B.J.; Caragine, C.M.; Sanjana, N.E.; Dow, L.E. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022, 22, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Kiani, L. New CRISPR-based strategies for Alzheimer disease. Nat Rev Neurol. 2023, 19, 507. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, T.M.; Kopera, H.C.; Saunders, T.L. Principles of Genetic Engineering. Genes 2020, 11, 291, PMCID: PMC7140808. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, Y.; Liu, J.; Chen, J.; Chen, W.; Zhao, S.; Wu, Z.; Wu, N. Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation. J Cell Biochem. 2017, 118, 3061–3071. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shi, M.; Ren, Y.; Xu, H.; Weng, S.; Ning, W.; Ge, X.; Liu, L.; Guo, C.; Duo, M.; Li, L.; Li, J.; Han, X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer. 2023, 22, 35, PMCID: PMC9933290.. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Shen, X.; Sun, X.; Yan, Y.; Wang, J.; Yuan, Q. CRISPR-based metabolic engineering in non-model microorganisms. Curr Opin Biotechnol. 2022, 75, 102698. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Pujol, G.; Ugarteburu, O.; Segur-Bailach, E.; Moliner, S.; Jurado, S.; Garrabou, G.; Guitart-Mampel, M.; García-Villoria, J.; Artuch, R.; Fons, C.; Ribes, A.; Tort, F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis. 2023, 46, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Kelsh, R.N.; JRichardson, R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech. 2023, 16, dmm049874, PMCID: PMC10003097. [Google Scholar] [CrossRef]
- Song, X.; Liu, C.; Wang, N.; Huang, H.; He, S.; Gong, C.; Wei, Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021, 168, 158–180. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Kaushal, K.; Chandrasekaran, A.P.; Sarodaya, N.; Das, S.; Park, C.H.; Hong, S.H.; Kim, K.S.; Ramakrishna, S. CRISPR/Cas9-based genome-wide screening for deubiquitinase subfamily identifies USP1 regulating MAST1-driven cisplatin-resistance in cancer cells. Theranostics. 2022, 12, 5949–5970, PMCID: PMC9373805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B. CRISPR/Cas gene therapy. J Cell Physiol. 2021, 236, 2459–2481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, G.; Yu, X.; Wei, T.; Farbiak, L.; Johnson, L.T.; Taylor, A.M.; Xu, J.; Hong, Y.; Zhu, H.; Siegwart, D.J. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat Nanotechnol. 2022, 17, 777–787, PMCID: PMC9931497. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
