Submitted:
24 January 2024
Posted:
25 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
3. Material and methods
4.1. Identification and susceptibility testing
4.2. Ethical approval
5. Conclusion:
Author Contributions
Funding
Ethical approval and Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel). 2019, 8, 122. [CrossRef] [PubMed]
- Brink, AJ. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr Opin Infect Dis. 2019, 32, 609–16 Epub 2019/10/01. [Google Scholar] [CrossRef] [PubMed]
- Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020, 19, 1 Epub 2020/01/11. [CrossRef]
- Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017, 16, 18 Epub 2017/03/31. [CrossRef]
- Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998, 11, 589–603 Epub 1998/10/10 PubMed PMID: 9767057; PubMed Central PMCID: PMC88898.
- Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020, 18, 344–59 Epub 2020/02/15. [CrossRef] [PubMed]
- De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020, 33. Epub 20200513. [CrossRef]
- Li L, Yu T, Ma Y, Yang Z, Wang W, Song X, et al. The Genetic Structures of an Extensively Drug Resistant (XDR) Klebsiella pneumoniae and Its Plasmids. Front Cell Infect Microbiol. 2018;8:446. Epub 2019/01/22. [CrossRef]
- Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect. 2019, 25, 943–50 Epub 2019/04/21. [CrossRef] [PubMed]
- Longo LGA, de Sousa VS, Kraychete GB, Justo-da-Silva LH, Rocha JA, Superti SV, et al. Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Int J Antimicrob Agents. 2019, 54, 579–86 Epub 2019/09/04. [CrossRef] [PubMed]
- Sieswerda E, van den Brand M, van den Berg RB, Sträter J, Schouls L, van Dijk K, et al. Successful rescue treatment of sepsis due to a pandrug-resistant, NDM-producing Klebsiella pneumoniae using aztreonam powder for nebulizer solution as intravenous therapy in combination with ceftazidime/avibactam. J Antimicrob Chemother. 2020, 75, 773–5 Epub 2019/12/04. [CrossRef]
- Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y, Chong TM, et al. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Sci Rep. 2015;5:15082. Epub 2015/10/20. [CrossRef]
- Xu J, Zhao Z, Ge Y, He F. Rapid Emergence of a Pandrug-Resistant Klebsiella pneumoniae ST11 Isolate in an Inpatient in a Teaching Hospital in China After Treatment with Multiple Broad-Spectrum Antibiotics. Infect Drug Resist. 2020;13:799-804. Epub 2020/03/27. [CrossRef]
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing.. 30th Edition ed. Wayne, PA, USA2020 , 2020. 21 January.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012, 18, 268–81 Epub 2011/07/29. [CrossRef] [PubMed]
- Taggar G, Attiq Rheman M, Boerlin P, Diarra MS. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics (Basel). 2020;9(10). Epub 2020/10/18. [CrossRef]
- Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med. 2017, 43, 1464–75 Epub 20170721. [CrossRef] [PubMed]
- Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front Cell Infect Microbiol. 2017;7:483. Epub 20171121. [CrossRef]
- Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med. 2002, 136, 834–44 Epub 2002/06/05. [CrossRef] [PubMed]
- Boonyasiri A, Jauneikaite E, Brinkac LM, Greco C, Lerdlamyong K, Tangkoskul T, et al. Genomic and clinical characterisation of multidrug-resistant carbapenemase-producing ST231 and ST16 Klebsiella pneumoniae isolates colonising patients at Siriraj hospital, Bangkok, Thailand from 2015 to 2017. BMC Infect Dis. 2021, 21, 142. [CrossRef]
- Abid FB, Tsui CKM, Doi Y, Deshmukh A, McElheny CL, Bachman WC, et al. Molecular characterization of clinical carbapenem-resistant Enterobacterales from Qatar. Eur J Clin Microbiol Infect Dis. 2021, 40, 1779–85 Epub 2021/02/23. [CrossRef]
- Bush K, Bradford PA. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev. 2020;33(2). Epub 20200226. [CrossRef]
- Zowawi HM, Balkhy HH, Walsh TR, Paterson DL.. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev. 2013, 26, 361–80 Epub 2013/07/05. [CrossRef]
- Sid Ahmed MA, Bansal D, Acharya A, Elmi AA, Hamid JM, Sid Ahmed AM, et al. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob Resist Infect Control. 2016;5:4. Epub 2016/02/13. [CrossRef]
- Zowawi HM, Sartor AL, Balkhy HH, Walsh TR, Al Johani SM, AlJindan RY, et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother. 2014, 58, 3085–90 Epub 20140317. [CrossRef]
- Alqahtani M, Tickler IA, Al Deesi Z, AlFouzan W, Al Jabri A, Al Jindan R, et al. Molecular detection of carbapenem resistance genes in rectal swabs from patients in Gulf Cooperation Council hospitals. J Hosp Infect. 2021;112:96-103. Epub 20210409. [CrossRef] [PubMed]
- Harada S, Suzuki M, Sasaki T, Sakurai A, Inaba M, Takuya H, et al. Transmission of NDM-5-Producing and OXA-48-Producing Escherichia coli Sequence Type 648 by International Visitors without Previous Medical Exposure. Microbiol Spectr. 2021, 9, e0182721 Epub 2021/12/24. [CrossRef]
- Zou H, Jia X, Liu H, Li S, Wu X, Huang S. Emergence of NDM-5-Producing Escherichia coli in a Teaching Hospital in Chongqing, China: IncF-Type Plasmids May Contribute to the Prevalence of blaNDM–5. Frontiers in Microbiology. 2020;11. [CrossRef]
- McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Microbiol Spectr. 2018;6(2). [CrossRef] [PubMed]
- Silva JMD, Menezes J, Marques C, Pomba CF. Companion Animals-An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics (Basel). 2022;11(4). Epub 2022/04/24. [CrossRef]
- van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin Infect Dis. 2016, 63, 234–41 Epub 2016/04/22. [CrossRef]
- Guo Y, Han R, Jiang B, Ding L, Yang F, Zheng B, et al. In Vitro Activity of New β-Lactam-β-Lactamase Inhibitor Combinations and Comparators against Clinical Isolates of Gram-Negative Bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019. Microbiol Spectr. 2022, 10, e0185422 Epub 20220712. [CrossRef]
- Smith JR, Rybak JM, Claeys KC. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy. 2020, 40, 343–56. [CrossRef]
- Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis. 2021, 72, 1109–16 Epub 2021/04/09. [CrossRef] [PubMed]
- Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019;32(4).
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin Infect Dis. 2019;69(Suppl 7):S565-s75. [CrossRef]
- Zhanel GG, Cheung D, Adam H, Zelenitsky S, Golden A, Schweizer F, et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs. 2016, 76, 567–88. [CrossRef]
- Gallagher, JC. Omadacycline: A Modernized Tetracycline. Clin Infect Dis. 2019;69(Supplement_1):S1-S5. [CrossRef]
- Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019, 45, 131–61 Epub 2019/05/28. [CrossRef]
- Nirwan PK, Chatterjee N, Panwar R, Dudeja M, Jaggi N. Mutations in two component system (PhoPQ and PmrAB) in colistin resistant Klebsiella pneumoniae from North Indian tertiary care hospital. J Antibiot (Tokyo). 2021, 74, 450–7 Epub 2021/04/07. [CrossRef] [PubMed]
- Teo JW, Kurup A, Lin RT, Hsien KT. Emergence of clinical Klebsiella pneumoniae producing OXA-232 carbapenemase in Singapore. New Microbes New Infect. 2013, 1, 13–5 Epub 2014/10/31. [CrossRef]
- Tsai Y-K, Fung C-P, Lin J-C, Chen J-H, Chang F-Y, Chen T-L, et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrobial agents and chemotherapy. 2011, 55, 1485–93 Epub 2011/01/31. [CrossRef] [PubMed]
- Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015, 13, 42–51. [CrossRef]
| Characteristics | PA1 (ST383) | PA2 (ST231) | PA3 (ST231) |
|---|---|---|---|
| Age | 66 | 51 | 72 |
| Gender | Male | Female | Male |
| Location | Critical Care Unit | Critical Care Unit | Critical Care Unit |
| Isolation site | Urine tract | Lower respiratory tract | Lower respiratory tract |
| Common associated underlying conditions | |||
| Extensive health care contact a | No | Yes | Yes |
| History of antibiotic exposure within 90 days prior to hospital admission | Yes | Yes | Yes |
| Invasive devices b | Yes | Yes | No |
| Diabetes mellitus | Yes | Yes | No |
| History of MDR infection or colonization within prior 90 days | No | Yes | Yes |
| Co-infection with other microorganisms c | Yes | Yes | No |
| Heart failure | Yes | No | No |
| Chronic lung disease | No | No | Yes |
| Post-transplantation | No | Yes | Yes |
| Chronic liver disease | No | Yes | No |
| Acquisition | Hospital | Hospital | Hospital |
| Disease evaluation | Colonization | Colonization | Sepsis |
| Antibiotic treatment | |||
| Meropenem d | No | No | Yes |
| Tigecyclinee | No | No | Yes |
| Colistin nebulizer | No | No | Yes |
| Antimicrobial class | Antimicrobial drug | Isolate number | |||||
|---|---|---|---|---|---|---|---|
| KP1 | KP2 | KP3 | |||||
| Tested by BD Phoenix | |||||||
| Penicillins | Ampicillin | >16 | R | >16 | R | >16 | R |
| Cephalosporins | Cefazolin | − | R | − | R | − | R |
| Cefepime | >16 | R | >16 | R | >16 | R | |
| Cefoxitin | >16 | R | >16 | R | >16 | R | |
| Ceftazidime | >16 | R | >16 | R | >16 | R | |
| Ceftriaxone | >32 | R | >32 | R | >32 | R | |
| Cefuroxime | >16 | R | >16 | R | >16 | R | |
| Cephalothin | >16 | R | >16 | R | >16 | R | |
| Monobactam | Aztreonam | >16 | R | >16 | R | >16 | R |
| Carbapenems | Ertapenem | >4 | R | >4 | R | >4 | R |
| Imipenem | >8 | R | >8 | R | >8 | R | |
| Meropenem | >8 | R | >8 | R | >8 | R | |
| β-lactam-β-lactamase inhibitors | Amoxicillin/clavulanate | >16/8 | R | >16/8 | R | >16/8 | R |
| Piperacillin/tazobactam | >64/4 | R | >64/4 | R | >64/4 | R | |
| Aminoglycosides | Amikacin | >32 | R | >32 | R | >32 | R |
| Gentamicin | >8 | R | >8 | R | >8 | R | |
| Fluoroquinolones | Ciprofloxacin | >2 | R | >2 | R | >2 | R |
| Levofloxacin | >4 | R | >4 | R | >4 | R | |
| Nitrofurantoin | >64 | R | >64 | R | >64 | R | |
| Folate-pathway inhibitors | Trimethoprim/sulfamethoxazole | >4/76 | R | >4/76 | R | >4/76 | R |
| Glycylcyclines | Tigecycline | 4 | R | 2 | I | 2 | I |
| Additional tested antimicrobials using MIC Test Strip | |||||||
| Fosfomycin | Fosfomycin | 48 | R | 48 | R | 256 | R |
| Cephalosporins | Cefiderocol | 0.38 | S | 0.38 | S | 0.094 | S |
| Aminoglycosides | Plazomicin | 256 | R | 256 | R | 256 | R |
| Tetracycline | Omadacycline | 32 | R | 3 | S | 3 | S |
| Eravacycline | 32 | R | 0.75 | S | 1.5 | S | |
| Doxycycline | 32 | R | 2 | S | 32 | R | |
| New β-lactam-β-lactamase inhibitors | Ceftazidime/avibactam | 256 | R | 0.75 | S | 1 | S |
| Imipenem/relebactam | 32 | R | 2 | I | 2 | I | |
| Ceftolozane/tazobactam | 256 | R | 256 | R | 16 | R | |
| Meropenem/vaborbactam | 32 | R | 12 | I | 8 | I | |
| Tested by using Broth Microdilution Method | |||||||
| Polymyxin | Colistin* | 16 | R | 16 | R | 8 | R |
| Isolate number (sequence type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | |
|---|---|---|---|---|
| Resistance gene | Gene family | Gene presence (% identity) | ||
| AAC(6′)-Ib | AAC(3), AAC(6′) | Yes (100) | Yes (100) | Yes (100) |
| aadA | Amimonglycoside 3″-nucleotidyltransferases; ANT(3″) | VIM, Deletion b of E231 (99.23) | − | − |
| aadA2 | ANT(3″) | − | Yes (100) | Yes (100) |
| APH(3′)-Ia | Aminoglycoside 3′-phosphotransferases; APH(3′) | L19M, R27K, N48D, A77E (98.52) | − | − |
| APH(3″)-Ib | APH(3″) | L116S (99.63) | − | − |
| APH (3′)-VI | APH (3′) | Yes (100) | − | − |
| APH (6)-Id | APH (6) | Q259E (99.64) | − | − |
| CTX-M-14 | Class A β-lactamase | Yes (100) | − | − |
| CTX-M-15 | Class A β-lactamase | Yes (100) | Yes (100) | Yes (100) |
| SHV-1 | Class A β-lactamase | Yes (100) | − | Yes (100) |
| TEM-1 | Class A β-lactamase | Yes (100) | Yes (100) | Yes (100) |
| NDM-5 | Class B β-lactamase | Yes (100) | − | − |
| OXA-232 | Class D β-lactamase | − | Yes (100) | Yes (100) |
| OXA-48 | Class D β-lactamase | Yes (100) | − | − |
| arr-2 | Rifampin ADP-ribosyl transferase (Arr) | Yes (100) | Yes (100) | Yes (100) |
| BRP(MBL) | Bleomycin resistant protein | − | − | − |
| catI | Chloramphenicol acetyltransferase (CAT) | − | Yes (100) | Yes (100) |
| FosA6 | Fosfomycin thiol transferase | Q130P, Q139E (98.56) | A86V, I91V, Q130P (97.84) | A86V, I91V, Q130P (97.84) |
| mphA | Macrolide phosphotransferase (MPH) | Yes (100) | Yes (100) | Yes (100) |
| mphE | Macrolide phosphotransferase (MPH) | Yes (100) | − | − |
| Disc diffusion test | ESBL | detected | detected | detected |
| Isolate number (sequence type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | |
|---|---|---|---|---|
| Resistance gene | Drug class | Gene presence (% identity) | ||
| Antibiotic target alteration | ||||
| 16S rRNA methyltransferase (armA), (G1405) | aminoglycoside | Yes (92.74) | − | − |
| Erm 23S ribosomal RNA methyltransferase (ErmB) | lincosamide, macrolide, streptogramin | Yes (97.96) | Yes (97.96) | Yes (97.96) |
| EF-Tu mutants | Pulvomycin | Yes (97.97) | Yes (98.06) | Yes (98.06) |
| gyrA | nybomycin, fluoroquinolone | Yes (95.67) | Yes (95.67) | Yes (92.23) |
| marR mutant | cephalosporin, fluoroquinolone, penam, phenicol, glycylcycline, tetracycline, rifamycin, triclosan | Yes (84.03) | Yes (84.03) | Yes (84.03) |
| parC | fluoroquinolone | Yes (94.41) | Yes (94.41) | Yes (94.41) |
| UhpT with mutation | fosfomycin | Yes (95.03) | Yes (95.25) | Yes (95.25) |
| PBP3 | β-lactam | Yes (52.37) | Yes (52.37) | Yes (52.37) |
| 16S rRNA methyltransferase (rmtF), (G1405) | aminoglycoside | Yes (98.36) | Yes (100) | Yes (100) |
| Antibiotic target protection | ||||
| ABC-F ATP-binding cassette ribosomal protection protein (msrE) | macrolide antibiotic, streptogramin | Yes (100) | − | − |
| QqnrS2 | fluoroquinolone | Yes (100) | − | Yes (100) |
| ABC-F ATP-binding cassette ribosomal protection protein (vgaC) | streptogramin, pleuromutilin | Yes (100) | Yes (91.89) | Yes (91.78; 83.78) * |
| Antibiotic target replacement | ||||
| trimethoprim resistant dihydrofolate reductase (dfr); dfrA12 | diaminopyrimidine | Yes (100) | Yes (100) | Yes (100) |
| dfrA5 | diaminopyrimidine | Yes (100) | − | − |
| Sulfonamide resistant (sul1) | sulfonamide, sulfone | Yes (100) | Yes (100) | Yes (100) |
| Sulfonamide resistant (sul2) | sulfonamide, sulfone | Yes (100) | − | − |
| Reduced permeability to antibiotic | ||||
| Klebsiella pneumoniae porin with reduced permeability (OmpK37) | β-lactams | Yes (99.47) | Yes (94.01) | Yes (94.01) |
| General Bacterial Porin with reduced permeability (marA) | β-lactam, fluoroquinolone, glycylcycline, triclosan, phenicol, tetracycline, rifamycin | Yes (92.74) | Yes (92.74) | Yes (92.74) |
| Isolate number (sequence type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | ||
|---|---|---|---|---|---|
| Gene family | Drug class | Present or absent | |||
| Efflux pump complexes | |||||
| msbA | ABCa | nitroimidazole | + | + | + |
| emrB | MFSb | fluoroquinolone | + | + | + |
| QepA4 | MFS | quinolone and fluoroquinolone antibiotics | + | + | − |
| tet(A) | MFS | tetracycline, glycylcycline | + | + | − |
| tet(C) | MFS | tetracycline | + | − | − |
| tetR | MFS | tetracycline | + | + | − |
| adeF | RNDc | fluoroquinolone, tetracycline | + | + | + |
| baeR | RND | aminoglycoside | + | + | + |
| oqxA | RND | fluoroquinolone, nitrofuran, tetracycline, glycylcycline | + | + | + |
| Efflux pump regulators | |||||
| CRP | RND | macrolide, fluoroquinolone, penam | + | + | + |
| emrR | MFS | fluoroquinolone | + | + | + |
| H-NS | MFS, RND | cephamycin, cephalosporin, fluoroquinolone, tetracycline, penam | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
