Submitted:
17 January 2024
Posted:
18 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Alpha-crystallin B chain (CRYAB)
2.1. Wild Type CRYAB
2.2. CRYAB 109 Mutations
2.3. CRYAB 120 Mutations
2.4. CRYAB 123 Mutations
3. CRYAB Mouse Models
3.1. CRYAB R120G Mouse Models
3.2. CRYAB R123W Mouse Models
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richter, K.; Haslbeck, M.; Buchner, J. The Heat Shock Response: Life on the Verge of Death. Molecular Cell 2010, 40, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Wistow, G. The human crystallin gene families. Human Genomics 2012, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Vicart, P.; Caron, A.; Guicheney, P.; Li, Z.; Prévost, M.C.; Faure, A.; Chateau, D.; Chapon, F.; Tomé, F.; Dupret, J.M.; Paulin, D.; Fardeau, M. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nature Genetics 1998, 20, 92–95. [Google Scholar] [CrossRef]
- Graw, J. Genetics of crystallins: Cataract and beyond. Experimental Eye Research 2009, 88, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Bennardini, F.; Wrzosek, A.; Chiesi, M. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circulation Research 1992, 71, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Nicholl, I.D.; Quinlan, R.A. Chaperone activity of alpha-crystallins modulates intermediate filament assembly. The EMBO Journal 1994, 13, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Spector, A. Alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. European Journal of Biochemistry 1996, 242, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Kumarapeli AR, K.; Su, H.; Huang, W.; Tang, M.; Zheng, H.; Horak, K.M.; Li, M.; Wang, X. Alpha B-crystallin suppresses pressure overload cardiac hypertrophy. Circulation Research 2008, 103, 1473–1482. [Google Scholar] [CrossRef]
- Tannous, P.; Zhu, H.; Johnstone, J.L.; Shelton, J.M.; Rajasekaran, N.S.; Benjamin, I.J.; Nguyen, L.; Gerard, R.D.; Levine, B.; Rothermel, B.A.; Hill, J.A. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 9745–9750. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Pattison, J.S.; Osinska, H.; James, J.; Gulick, J.; McLendon, P.M.; Hill, J.A.; Sadoshima, J.; Robbins, J. Enhanced autophagy ameliorates cardiac proteinopathy. The Journal of Clinical Investigation 2013, 123, 5284–5297. [Google Scholar] [CrossRef]
- Mitra, A.; Basak, T.; Datta, K.; Naskar, S.; Sengupta, S.; Sarkar, S. Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death & Disease 2013, 4, e582. [Google Scholar] [CrossRef]
- Hosseini Jafari, M.; Shahsavani, M.B.; Hoshino, M.; Hong, J.; Saboury, A.A.; Moosavi-Movahedi, A.A.; Yousefi, R. Unveiling the structural and functional consequences of the p.D109G pathogenic mutation in human αB-Crystallin responsible for restrictive cardiomyopathy and skeletal myopathy. International Journal of Biological Macromolecules 1279, 254 Pt 3, 127933. [Google Scholar] [CrossRef]
- McLendon, P.M.; Robbins, J. Proteotoxicity and cardiac dysfunction. Circulation Research 2015, 116, 1863–1882. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Klevitsky, R.; Huang, W.; Glasford, J.; Li, F.; Robbins, J. AlphaB-crystallin modulates protein aggregation of abnormal desmin. Circulation Research 2003, 93, 998–1005. [Google Scholar] [CrossRef]
- Dill, K.A.; Ozkan, S.B.; Shell, M.S.; Weikl, T.R. The protein folding problem. Annual Review of Biophysics 2008, 37, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Okamoto, K.; Nakayama, H.; Isobe, T.; Kato, K. Phosphorylation of alphaB-crystallin in response to various types of stress. The Journal of Biological Chemistry 1997, 272, 29934–29941. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yu, H.; Liu, J.; Cheng, L. αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway. Molecular Biology Reports 2013, 40, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani, M.; Yousefi, R.; Krivandin, A.; Muranov, K.; Kurganov, B.; Moosavi-Movahedi, A.A. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: The biochemical pathomechanism underlying cataract and myopathy development. International Journal of Biological Macromolecules 2020, 146, 1142–1160. [Google Scholar] [CrossRef]
- Brodehl, A.; Gaertner-Rommel, A.; Klauke, B.; Grewe, S.A.; Schirmer, I.; Peterschröder, A.; Faber, L.; Vorgerd, M.; Gummert, J.; Anselmetti, D.; Schulz, U.; Paluszkiewicz, L.; Milting, H. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Human Mutation 2017, 38, 947–952. [Google Scholar] [CrossRef]
- Fichna, J.P.; Potulska-Chromik, A.; Miszta, P.; Redowicz, M.J.; Kaminska, A.M.; Zekanowski, C.; Filipek, S. A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects αB-crystallin structure. BBA Clinical 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Sacconi, S.; Féasson, L.; Antoine, J.C.; Pécheux, C.; Bernard, R.; Cobo, A.M.; Casarin, A.; Salviati, L.; Desnuelle, C.; Urtizberea, A. A novel CRYAB mutation resulting in multisystemic disease. Neuromuscular Disorders: NMD 2012, 22, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Bagnéris, C.; Bateman, O.A.; Naylor, C.E.; Cronin, N.; Boelens, W.C.; Keep, N.H.; Slingsby, C. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. Journal of Molecular Biology 2009, 392, 1242–1252. [Google Scholar] [CrossRef]
- Laganowsky, A.; Benesch JL, P.; Landau, M.; Ding, L.; Sawaya, M.R.; Cascio, D.; Huang, Q.; Robinson, C.V.; Horwitz, J.; Eisenberg, D. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science: A Publication of the Protein Society 2010, 19, 1031–1043. [Google Scholar] [CrossRef]
- McHaourab, H.S.; Godar, J.A.; Stewart, P.L. Structure and mechanism of protein stability sensors: Chaperone activity of small heat shock proteins. Biochemistry 2009, 48, 3828–3837. [Google Scholar] [CrossRef]
- Woods, C.N.; Ulmer, L.D.; Janowska, M.K.; Stone, N.L.; James, E.I.; Guttman, M.; Bush, M.F.; Klevit, R.E. HSPB5 disease-associated mutations have long-range effects on structure and dynamics through networks of quasi-ordered interactions [Preprint]. Biophysics. 2022. [Google Scholar] [CrossRef]
- Bär, H; Strelkov, S. V.; Sjöberg, G.; Aebi, U.; Herrmann, H. The biology of desmin filaments: How do mutations affect their structure, assembly, and organisation? Journal of Structural Biology 2022, 148, 137–152. [Google Scholar] [CrossRef]
- Wang, X.; Osinska, H.; Klevitsky, R.; Gerdes, A.M.; Nieman, M.; Lorenz, J.; Hewett, T.; Robbins, J. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circulation Research 2004, 2001, 89–84. [Google Scholar] [CrossRef]
- Bova, M.P.; Yaron, O.; Huang, Q.; Ding, L.; Haley, D.A.; Stewart, P.L.; Horwitz, J. Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, 6137–6142. [Google Scholar] [CrossRef]
- Rajasekaran, N.S.; Connell, P.; Christians, E.S.; Yan, L.-J.; Taylor, R.P.; Orosz, A.; Zhang, X.Q.; Stevenson, T.J.; Peshock, R.M.; Leopold, J.A.; Barry, W.H.; Loscalzo, J.; Odelberg, S.J.; Benjamin, I.J. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 2007, 130, 427–439. [Google Scholar] [CrossRef]
- Pattison, J.S.; Robbins, J. Autophagy and proteotoxicity in cardiomyocytes. Autophagy 2011, 7, 1259–1260. [Google Scholar] [CrossRef]
- Maron, B.J.; Rowin, E.J.; Arkun, K.; Rastegar, H.; Larson, A.M.; Maron, M.S.; Chin, M.T. Adult Monozygotic Twins With Hypertrophic Cardiomyopathy and Identical Disease Expression and Clinical Course. The American Journal of Cardiology 2020, 127, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.; Martin, G.L.; Perera, G.; Awata, J.; Larson, A.; Blanton, R.; Chin, M.T. A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction. Frontiers in Cardiovascular Medicine 2023, 10, 1223244. [Google Scholar] [CrossRef]
- Takeuchi, K.; Roehrl MH, A.; Sun, Z.-Y.J.; Wagner, G. Structure of the calcineurin-NFAT complex: Defining a T cell activation switch using solution NMR and crystal coordinates. Structure (London, England: 1993) 2007, 15, 587–597. [Google Scholar] [CrossRef]
- Wilkins, B.J.; Dai, Y.-S.; Bueno, O.F.; Parsons, S.A.; Xu, J.; Plank, D.M.; Jones, F.; Kimball, T.R.; Molkentin, J.D. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation Research 2004, 94, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Andley, U.P.; Hamilton, P.D.; Ravi, N.; Weihl, C.C. A knock-in mouse model for the R120G mutation of αB-crystallin recapitulates human hereditary myopathy and cataracts. PloS One 2011, 6, e17671. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).