Submitted:
16 January 2024
Posted:
18 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Constructing a Bilocal Composite Theory
2.1. Brief Review of the NJL Model
2.2. Construction of Bilocal Compositeness in a Local Scalar Field Theory
2.3. Simplified Normalization
3. The Coloron Model
3.1. Boundstate and -Enhanced Coupling
3.2. Classical Criticality of the Coloron Model
3.3. Yukawa Interaction
3.4. Spontaneous Symmetry Breaking
4. Summary and Conclusions
Acknowledgments
Appendix A. Summary of Notation
though commonly referred to as the “invariant mass” of a pair, is not a scale breaking mass in that it involves fields with a traceless stress tensor.
Appendix B. Bilocal Field Theory
Appendix B.1. Free Fields
Appendix B.2. Bilocalization of Scattering States
Appendix B.3. Kinematics of Scattering States
Appendix B.3.1. Constant Positive
Appendix B.3.2. Constant Negative
Appendix B.4. Removal of Relative Time and Generic Potential
References
- H. Yukawa, Phys. Rev. 77, 219-226 (1950); ibid, Phys. Rev. 80, 1047-1052 (1950); Phys. Rev. 91, 415 (1953); Yukawa introduced an imaginary relative time; we abandon this in favor of relative time constraints [2].
- P.A.M. Dirac, Can. J. Math. 2, 129 (1950); P.A.M. Dirac,“ Lectures on Quantum Mechanics” (Yeshiva University, New York, 1964).
- For application of [2] to removal of relative time see also: K. Kamimura, Prog. Phys. 58 (1977) 1947; D. Dominici, J. Gomis and G. Longhi, Nuovo Cimento B48 (1978)257; ibid, 1, Nuovo Cimento B48(1978)152-166; A. Kihlberg, R. Marnelius and N. Mukunda, Phys. Rev. D 23, 2201 (1981); H. W. Crater and P. Van Alstine, Annals Phys. 148, 57-94 (1983); H. Crater, B. Liu and P. Van Alstine, [arXiv:hep-ph/0306291 [hep-ph]]; For a tutorial of Dirac’s constraint theory see: https://en.wikipedia.org/wiki/Two_body_Dirac_equations, and https://en.wikipedia.org/wiki/Dirac_bracket and references therein. The barycentric frame is ghost-free for gauge and scalar interactions.
- Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345-358 (1961), and Phys. Rev. 124, 246-254 (1961),.
- C. T. Hill, Phys. Lett. B 266, 419-424 (1991); ibid, Phys. Lett. B 345, 483-489 (1995).
- J. Bijnens, C. Bruno and E. de Rafael, Nucl. Phys. B 390, 501-541 (1993).
- E. H. Simmons, Phys. Rev. D 55, 1678-1683 (1997); R. Sekhar Chivukula, P. Ittisamai and E. H. Simmons, Phys. Rev. D 91, no.5, 055021 (2015); Y. Bai and B. A. Dobrescu, JHEP 04, 114 (2018).
- For a review see: C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235-402 (2003) [erratum: Phys. Rept. 390, 553-554 (2004)].
- L. N. Cooper, Phys. Rev. 104, 1189-1190 (1956); J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175-1204 (1957).
- K. G. Wilson, Phys. Rev. D 3, 1818 (1971).
- W. A. Bardeen, C. T. Hill and M. Lindner, Phys. Rev. D 41 (1990) 1647.
- W. A. Bardeen and C. T. Hill, Adv. Ser. Direct. High Energy Phys. 10, 649 (1992); C. T. Hill, Mod. Phys. Lett. A, 5, 2675-2682 (1990).
- W. A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409-425 (1994); W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003).
- J. P. Edwards, et al. , “The Yukawa potential: ground state energy and critical screening,”Progress of Theoretical and Experimental Physics, Volume 2017, Issue 8, August (2017), 083A01, https://doi.org/10.1093/ptep/ptx107. M. Napsuciale and S. Rodriguez, Phys. Lett. B 816, 136218 (2021) doi:10.1016/j.physletb.2021.136218 [arXiv:2012.12969 [hep-ph]].
- C. T. Hill, “Naturally Self-Tuned Low Mass Composite Scalars,” [arXiv:2201.04478 [hep-ph]].
- V. A. Miransky, M. Tanabashi and K. Yamawaki, Mod. Phys. Lett. A 4, 1043 (1989); ibid, Phys. Lett. B 221, 177-183 (1989).
- H. Georgi, Phys. Rev. Lett. 98, 221601 (2007).
- W. A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409-425 (1994); W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003).
- J. D. Bjorken and S. D. Drell, “Relativistic quantum fields,” McGraw-Hill College; 1st edition (January 1, 1965).
- R. Floreanini and R. Jackiw, Phys. Rev. D 37, 2206 (1988); T. L. Curtright “Schrodinger’s cataplex,” [arXiv:quant-ph/0011101 [quant-ph]]; T. L. Curtright and G. I. Ghandour, [arXiv:hep-th/9503080 [hep-th]].
- J. M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10, 2428-2445 (1974).
- E. Schrödinger, Naturwiss. 14, 664-666 (1926). [CrossRef]
- L.D. Landau and E.M. Lifshitz, “Quantum Mechanics,” 2nd edition, pgs. 113 - 116 (Pergamon Press, London, 1958, 2nd ed. 1965).
- Y. Nambu, Phys. Rev. D 7, 2405-2412 (1973). [CrossRef]
- I thank Bill Bardeen for critical comments on this and other issues.
- K. G. Wilson and W. Zimmermann, Commun. Math. Phys. 24, 87-106 (1972). [CrossRef]
- This will be developed elsewhere.
- B. Bellazzini, C. Csaki, J. Hubisz, J. Serra and J. Terning, JHEP 11, 003 (2012); G. Isidori, A. V. Manohar and M. Trott, Phys. Lett. B 728, 131-135 (2014); A. Banerjee, S. Dasgupta and T. S. Ray, Phys. Rev. D 104, no.9, 095021 (2021); P. Bittar and G. Burdman, [arXiv:2204.07094 [hep-ph]].
- S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888-1910 (1973).
- C. T. Hill, Phys. Rev. D 89, no.7, 073003 (2014).
- C. G. Callan, Jr., S. R. Coleman and R. Jackiw, Annals Phys. 59, 42-73 (1970).
- P. G. Ferreira, C. T. Hill and G. G. Ross, Phys. Rev. D 95, no.4, 043507 (2017); ibid. Phys. Rev. D 98, no.11, 116012 (2018); C. T. Hill, “Inertial Symmetry Breaking,” [arXiv:1803.06994 [hep-th]].
- Mie, Gustav, "Zur kinetischen Theorie der einatomigen Körper". Annalen der Physik (in German). 316 (8): 657–697 (1903). For recent work and refs. therein see: I Okun, et.al.. Int’l Journal of Recant Advances in Physics, (IJRAP) , Vol. 2, No, 2, (2013).
- B. Pendleton and G. G. Ross, Phys. Lett. 98B, 291 (1981). C. T. Hill, Phys. Rev. D 24, 691 (1981).
- C. T. Hill, P. A. N. Machado, A. E. Thomsen and J. Turner, Phys. Rev. D 100, no. 1, 015015 (2019). ibid.,, Phys. Rev. D 100, no. 1, 015051 (2019).
- C. T. Hill, “The Next Higgs Boson(s) and a Higgs-Yukawa Universality,” arXiv:1911.10223 [hep-ph].
- C. T. Hill, [arXiv:2002.11547 [hep-ph]].
- R. J. Crewther, Universe 6, no.7, 96 (2020) [arXiv:2003.11259 [hep-ph]]. [arXiv:2003.11259 [hep-ph]]. [CrossRef]
- J. D. Bjorken and S. D. Drell, “Relativistic Quantum Mechanics,” McGraw-Hill Book Company, (1965).
| 1 | Yukawa preferred to write things in terms of which has the advantage of a unit Jacobian, with . We find that the radius, r, is more convenient in loop calculations and derivatives are symmetrical, vs. , but requires the Jacobian. See Appendix A for a summary of notation. |
| 2 | These factorized solutions form a complete set of basis functions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).