Submitted:
03 March 2024
Posted:
04 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Extraction of Bixin
Preparation of Bixin Composites
Characterization
Ultraviolet-Visible Spectroscopy
HPLC Analyses
Fingermark Deposition
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BARROS, H.L.; TAVARES, L.; STEFANI, V. Dye-doped starch microparticles as a novel fluorescent agent for the visualization of latent fingermarks on porous and non-porous substrates. Forensic Chemistry 2020, 20. [Google Scholar] [CrossRef]
- KHARE, V.; SINGLA, A. A review on the advancements in chemical examination of composition of latent fingerprint residues. Egyptian Journal of Forensic Sciences 2022, 12. [Google Scholar] [CrossRef]
- ROBSON, R.; GINIGE, T.; MANSOUR, S.; KHAN, I.; ASSI, S. Analysis of fingermark constituents: A systematic review of quantitative studies. Chemical Papers 2022, 76, 4645–4667. [Google Scholar] [CrossRef]
- LI, L.; LI, Q.; CHU, J.; XI, P.; WANG, C.; LIU, R.; WANG, X.; CHENG, B. Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Applied Surface Science 2022, 581. [Google Scholar] [CrossRef]
- ANSARI, A.A.; ALDAJANI, K.M.; ALHAZAA, A.N.; ALBRITHEN, H.A. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews 2022, 462. [Google Scholar] [CrossRef]
- BARROS, H.L.; STEFANI, V. Micro-structured fluorescent powders for detecting latent fingerprints on different types of surfaces. Journal of Photochemistry and Photobiology A: Chemistry 2019, 368, 137–146. [Google Scholar] [CrossRef]
- VADIVEL, R.; NIRMALA, M.; ANBUKUMARAN, K. Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. Forensic Chemistry 2021, 24. [Google Scholar] [CrossRef]
- GARG, R.K.; KUMARI, H.; KAUR, R. A new technique for visualization of latent fingerprints on various surfaces using powder from turmeric: A rhizomatous herbaceous plant (Curcuma longa). Egyptian Journal of Forensic Sciences 2011, 1, 53–57. [Google Scholar] [CrossRef]
- THAKUR, P.; GARG, R.K. New developing reagent for latent fingermark visualization: Fuller’s earth (Multani Mitti). Egyptian Journal of Forensic Sciences 2016, 6, 449–458. [Google Scholar] [CrossRef]
- PASSOS, L.F.; BERNEIRA, L.M.; POLETTI, T.; MARIOTTI, K.C.; CARREÑO, N.L.V.; HARTWIG, C.A.; PEREIRA, C.M.P. Evaluation and characterization of algal biomass applied to the development of fingermarks on glass surfaces. Australian Journal of Forensic Sciences 2021, 53, 337–346. [Google Scholar] [CrossRef]
- FERREIRA, R.G.; OKUMA, A.A.; COSTA, L.M. Evaluation of alternative powders for Forensic Papilloscopy. Revista Brasileira de Criminalística 2023, 12, 129–136. [Google Scholar] [CrossRef]
- MEZZOMO, N.; FERREIRA, S.R. Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of chemistry 2016, 2016, 1–16. [Google Scholar] [CrossRef]
- MELÉNDEZ-MARTÍNEZ, A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular nutrition & food research 2019, 63. [Google Scholar] [CrossRef]
- ENAYATI, A.; REZAEI, A.; FALSAFI, S.R.; ROSTAMABADI, H.; MALEKJANI, N.; AKHAVAN-MAHDAVI, S.; KHARAMI, M.S.; JAFARI, S.M. Bixin-loaded colloidal nanodelivery systems, techniques and applications. Food Chemistry 2023, 412. [Google Scholar] [CrossRef] [PubMed]
- SHADISVAARAN, S.; CHIN, K.Y.; MOHD-SAID, S.; LEONG, X.F. Therapeutic potential of bixin on inflammation: A mini review. Frontiers in Nutrition 2023, 10, 01–08. [Google Scholar] [CrossRef]
- CFR - Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=73.30&SearchTerm=annatto. (accessed on 1 February 2024).
- ASHRAF, A.; IJAZ, M.U.; MUZAMMIL, S.; NAZIR, M.M.; ZAFAR, S.; ZIHAD, S.M.N.K.; UDDIN, S.J.; HASNAIN, M.S.; NAYAK, A.K. The role of bixin as antioxidant, anti-inflammatory, anticancer, and skin protecting natural product extracted from Bixa orellana L. Fitoterapia 2023, 169. [Google Scholar] [CrossRef]
- MOREIRA, P.R.; MAIOLI, M.A.; MEDEIROS, H.C.D.; GUELFI, M.; PEREIRA, F.T.V.; MINGATTO, F.E. Protective effect of bixin on carbon tetrachloride-induced hepatotoxicity in rats. Biological Research 2014, 47, 1–7. [Google Scholar] [CrossRef] [PubMed]
- HANDAYANI, I.; HARYANTI, P.; SULISTYO, S.B. Color and antibacterial activity of annatto extracts at various pH of distilled. Food Research 2021, 5, 247–253. [Google Scholar] [CrossRef] [PubMed]
- SANTOS, G.C.; MENDONÇA, L.M.; ANTONUCCI, G.A.; DOS SANTOS, A.C.; ANTUNES, L.M.G.; BIANCHI, M.L.P. Protective effect of bixin on cisplatin-induced genotoxicity in PC12 cells. Food and Chemical Toxicology 2012, 50, 335–340. [Google Scholar] [CrossRef]
- PACHECO, S.D.G.; GASPARIN, A.T.; JESUS, C.H.A.; SOTOMAIOR, B.B.; VENTURA, A.C.S.B.; REDIVO, D.D.B.; CABRINI, D.A.; DIAS, J.F.G.; MIGUEL, M.D.; MIGUEL, O.G.; CUNHA, J.M. Antinociceptive and Anti-Inflammatory Effects of Bixin, a Carotenoid Extracted from the Seeds of Bixa orellana. Planta Medica 2019, 85, 1216–1224. [Google Scholar] [CrossRef]
- LI, J.; YANG, Y.; WEI, S.; CHEN, L.; XUE, L.; TIAN, H.; TAO, S. Bixin Protects Against Kidney Interstitial Fibrosis Through Promoting STAT6 Degradation. Frontiers in Cell and Developmental Biology 2020, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- NOPPE, H.; ABUIN MARTINEZ, S.; VERHEYDEN, K.; VAN LOCO, J.; COMPANYÓ BELTRAN, R.; DE BRABANDER, H.F. Determination of bixin and norbixin in meat using liquid chromatography and photodiode array detection. Food Additives and Contaminants 2009, 26, 17–24. [Google Scholar] [CrossRef]
- ZIA-UL-HAQ, M.; DEWANJEE, S.; RIAZ, M. AUTHOR 1, A.; Carotenoids: Structure and Function in the Human Body. Springer: Springer Nature Switzerland AG, 2021. [Google Scholar] [CrossRef]
- CURI-BORDA, C.K.; TANNAIRA, V.; GENTILE, N.; ALVARADO, J.-A.; BERGENSTAHL, B. Colloids and Surfaces A : Physicochemical and Engineering Aspects Model for measuring light stability of photolabile substances in powder beds using spray dried bixin microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 627. [Google Scholar] [CrossRef]
- JÚNIOR, R.G.O.; BONNET, A.; BRACONNIER, E.; GROULT, H.; PRUNIER, G.; BEAUGEARD, L.; GROUGNET, R.; ALMEIDA, J.R.G.S.; FERRAZ, C.A.A.; PICOT, L. Bixin, an apocarotenoid isolated from Bixa orellana L., sensitizes human melanoma cells to dacarbazine-induced apoptosis through ROS-mediated cytotoxicity. Food and Chemical Toxicology 2019, 125, 549–561. [Google Scholar] [CrossRef]
- LIANG, W.; BAI, J.; LI, Z.; MENG, Y.; LIU, K.; LI, L. Crystal growth, structure and thermal properties of anhydrous zinc carbonate (ZnCO3). Journal of Alloys and Compounds 2022, 898. [Google Scholar] [CrossRef]
- KAPOOR, S.; GURVINDER, S.S.; SANJIV, K. Visualization of Latent Fingermarks using Rhodamine B: A New Method. International Journal of Forensic Science & Pathology (IJFP) 2015, 3, 199–201. [Google Scholar] [CrossRef]
- PATTARITH, K.; BENCHAWATTANANON, R. Study on the Novel Photoluminescence Powder Synthesized from Zinc Carbonate Nanoparticles Associated with Fluorescein Dye for its Latent Fingerprint Detection. New Innovations in Chemistry and Biochemistry 2021, 1, 14–25. [Google Scholar] [CrossRef]
- BUMBRAH, G.S. Small particle reagent (SPR) method for detection of latent fingermarks: A review. Egyptian Journal of Forensic Sciences 2016, 6, 328–332. [Google Scholar] [CrossRef]
- ROHATGI, R.; SODHI, G.S.; KAPOOR, A.K. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces. Egyptian Journal of Forensic Sciences 2015, 5, 162–165. [Google Scholar] [CrossRef]
- DHALL, J.K.; KAPOOR, A.K. Development of latent prints exposed to destructive crime scene conditions using wet powder suspensions. Egyptian Journal of Forensic Sciences 2016, 6, 396–404. [Google Scholar] [CrossRef]
- MIRANDA-TREVINO, J.C.; COLES, C.A. Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science 2003, 23, 133–139. [Google Scholar] [CrossRef]
- YANG, H.; TONG, D.; DONG, Y.; REN, L.; FANG, K.; ZHOU, C.; YU, W. Kaolinite: A natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Applied Clay Science 2020, 188. [Google Scholar] [CrossRef]
- BAUER, A.; VELDE, B.; BERGER, G. Kaolinite transformation in high molar KOH solutions. Applied Geochemistry 1998, 13, 619–629. [Google Scholar] [CrossRef]
- SU, L.; ZENG, X.; HE, H.; TAO, Q.; KOMARNENI, S. Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Applied Clay Science 2017, 148, 103–108. [Google Scholar] [CrossRef]
- MIGUEL, K.B.; CARDOSO, V.L.; REIS, M.H.M. Concentration of Pigments and Health-Promoting Bioactive Compounds from Annatto Seeds by Ultrafiltration. Waste and Biomass Valorization 2024, 15, 127–137. [Google Scholar] [CrossRef]
- CHISTÉ, R.C.; YAMASHITA, F.; GOZZO, F.C.; MERCADANTE, A.Z. Simultaneous extraction and analysis by high performance liquid chromatography coupled to diode array and mass spectrometric detectors of bixin and phenolic compounds from annatto seeds. Journal of Chromatography A 2011, 1218, 57–63. [Google Scholar] [CrossRef] [PubMed]
- PACHECO, B.S.; SILVA, C.C.; DA ROSA, B.N.; MARIOTTI, K.C.; NICOLODI, C.; POLETTI, T.; SEGATTO, N.V.; COLLARES, T.; SEIXAS, F.K.; PANIZ, O.; CARREÑO, N.L.V. AND PEREIRA, C.M.P. Monofunctional curcumin analogues: Evaluation of green and safe developers of latent fingerprints. Chemical Papers 2021, 75, 3119–3129. [Google Scholar] [CrossRef]
- SAINI, R.K.; PRASAD, P.; LOKESH, V.; SHANG, X.; SHIN, J.; KEUM, Y.S.; LEE, J.H. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—A review of recent advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- CALOGERO, G.; BARTOLOTTA, A.; DI MARCO, G.; DI CARLO, A.; BONACCORSO, F. Vegetable-based dye-sensitized solar cells. Chemical Society Reviews 2015, 44, 3244–3294. [Google Scholar] [CrossRef]
- PEROTTI, G.F.; SILVA, F.F.; DE COUTO, R.A.; LIMA, F.C.; PETRILLI, H.M.; LEROUX, F.; FERREIRA, A.M.C.; CONSTANTINO, V.R. Intercalation of apocarotenoids from annatto (Bixa orellana L.) into layered double hydroxides. Journal of the Brazilian Chemical Society 2020, 31, 2211–2223. [Google Scholar] [CrossRef]
- SCOTTER, M. The chemistry and analysis of annatto food colouring: A review. Food Additives and Contaminants 2009, 26, 1123–1145. [Google Scholar] [CrossRef]
- ALCARAZ-FOSSOUL, J.; PATRIS C., M.; MUNTANER A., B.; FEIXAT, C.B.; GENÉ, B.M. Determination of latent fingerprint degradation patterns—a real fieldwork study. Int J Legal Med. 2013, 127, 857–870. [Google Scholar] [CrossRef] [PubMed]
- ANGELONI, M.D.A.; MARANA, A.N. Reconhecimento Automático de Impressões Digitais Baseado em Características Biométricas de Terceiro Nível. Researchgate 2015. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
