Submitted:
11 January 2024
Posted:
12 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Optical Current Sensors

3. Uncertainty Sources
3.1. Temperature
3.2. Vibration and impact
3.3. Stability
3.4. Linear Birefringence
3.5. Other contributions
4. Uncertainty Analysis
5. Conclusions
References
- Pong, P. W. T.; Annaswamy, A. M.; Kroposki, B.; Zhang, Y.; Rajagopal, R.; Zussman, G.; Poor, H. V. Cyber-enabled grids: Shaping future energy systems. Advances in Applied Energy 2021, 1, 100003. [Google Scholar] [CrossRef]
- Larruskain, M.; Valverde, V.; Torres, E.; Buigues, G.; Santos-Mugica, M. Protection Systems for Multi-Terminal HVDC Grids. Renewable Energy and Power Quality Journal 2018, 1, 310–315. [Google Scholar] [CrossRef]
- Lenner, M.; Frank, A.; Yang, L.; Roininen, T. M.; Bohnert, K. Long-Term Reliability of Fiber-Optic Current Sensors. IEEE Sensors Journal 2020, 20, 823–832. [Google Scholar] [CrossRef]
- Schon, K. High Voltage Measurement Techniques, Fundamentals, Measuring Instruments, and Measuring Methods, 1st ed.; Springer International Publishing: Basel, Switzerland, 2019. [Google Scholar]
- Wu, J.; Zhang, X. Recent Progress of All Fiber Optic Current Transformers. In Proceedings of the 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020. [Google Scholar]
- Laurano, C.; Toscani, S.; Zanoni, M. A Simple Method for Compensating Harmonic Distortion in Current Transformers: Experimental Validation. Sensors 2021, 21, 2907. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I. Review of Fiber Optic Diagnostic Techniques for Power Transformers. Energies 2020, 13, 1789. [Google Scholar] [CrossRef]
- FOCS - Fiber Optic Current Sensors Enabling smart grids and digital substations. Available online: https://library.e.abb.com/public/a0c2264f26b94c748f7ef2d54bd0bea2/ABB_FOCS%20Kit%20Flyer_20190723.pdf?x-sign=LYr+kJPJwQ5xVj5qzJbKZJh4FzKJcbujknH4FAtts1Vn3ZBMi2r3CYgbxrCrjws8 (accessed on 1 December 2023).
- Rahmatian, F.; Ortega, A. Applications of Optical Current and Voltage Sensors in High-Voltage Systems. Proceedings of IEEE/PES Transmission & Distribution Conference and Exposition, Latin America, Caracas, Venezuela, 15–18 August 2006; 18 August 2006. [Google Scholar] [CrossRef]
- Rose, A. H.; Hudson, M. C.; Hadley, E.; Perkins, P. Optical Inline-Sagnac Current Sensor, Part II: Performance and Applications. IEEE Transactions on Power Delivery 2022, 6, 6–5401. [Google Scholar] [CrossRef]
- Azad, S. P.; Leterme, W.; Van Hertem, D. A DC grid primary protection algorithm based on current measurements. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015. [Google Scholar] [CrossRef]
- Lei, C.; Zhizhong, G.; Yue, C.; Guizhong, W. Measurement of inrush current in transformer based on optical current transducer. J. Phys.: Conf. Ser. 2019, 1187, 022004. [Google Scholar] [CrossRef]
- Ivanov, N.; Vorobev, P.; Bialek, J.; Kanafeev, R.; Yanin, M. Fiber Optic Current Transformers for Transformer Differential Protection during Inrush Current: a Field Study. Proceedings of IEEE Madrid PowerTech, Madrid, Spain, 28 June-02 July 2021. [Google Scholar] [CrossRef]
- Bohnert, K.; Gabus, P.; Nehring, J.; Brandle, H. Temperature and vibration insensitive fiber-optic current sensor. Journal of Lightwave Technology 2002, 20, 267–276. [Google Scholar] [CrossRef]
- Temkina, V.; Medvedev, A.; Mayzel, A.; Sivolenko, E.; Poletaeva, E.; Dudnik, I. Experimental Study of Temperature Impact on Fiber Optic Current Sensor Elements. Internet of Things, Smart Spaces, and Next Generation Networks and Systems 2022, 13158. [Google Scholar] [CrossRef]
- Oppegård, A.; Katoulaei, M. K.; Oleinikova, I. Complete FEM-based model of a bulk-glass optical current transformer. Proceedings of International Conference on Smart Energy Systems and Technologies (SEST), Eindhoven, Netherlands, 5–7 September 2022. [Google Scholar] [CrossRef]
- Silva, R. M.; Martins, H.; Nascimento, I.; Baptista, J. M.; Ribeiro, A. L.; Santos, J. L.; Jorge, P.; Frazão, O. Optical Current Sensors for High Power Systems: A Review. Appl. Sci. 2012, 3, 602–628. [Google Scholar] [CrossRef]
- Short, S. X.; Tantaswadi, P.; Carvalho, R. T.; Russell, B. D.; Blake, J. An experimental study of acoustic vibration effects in optical fiber current sensors. IEEE Transactions on Power Delivery 1996, 11, 4–1702. [Google Scholar] [CrossRef]
- Tantaswadi, P.; Tangtrongbenchasil, C. Numerical analysis of localized vibration effects and its compensation technique on reciprocal fiber-optic polarimetric current sensor. Proceedings of IEEE International Conference on Industrial Technology, Bangkok, Thailand, 11–14 December 2002. [Google Scholar] [CrossRef]
- Leung, F. Y. C.; Chiu, W. C. K.; Demokan, M. S. Fiber-optic current sensor developed for power system measurement. Proceedings of International Conference on Advances in Power System Control, Operation and Management, APSCOM-91., Hong Kong, 5–8 November 1991. [Google Scholar]
- Morello, R.; Mukhopadhyay, S. C.; Liu, Z.; Slomovitz, D.; Samantaray, S. R. Advances on Sensing Technologies for Smart Cities and Power Grids: A Review. IEEE Sensors Journal 2017, 17, 7596–7610. [Google Scholar] [CrossRef]
- Tzelepis, D. et al. Voltage and Current Measuring Technologies for High Voltage Direct Current Supergrids: A Technology Review Identifying the Options for Protection, Fault Location and Automation Applications. IEEE Access 2020, 8, 203398–203428. [CrossRef]
- Samimi, M. H.; Akmal, A. A. S.; Mohseni, H.; Jadidian, J. Open-Core Optical Current Transducer: Modeling and Experiment. IEEE Trans Power Delivery 2016, 31, 5–2028. [Google Scholar] [CrossRef]
- Shao, J.; Liu, W.; Liu, C.; Xu, D. A passive optical fiber current sensor based on YIG. In Proceedings of the 1st Asia-Pacific Optical Fiber Sensors Conference, Chengdu, China, 7–9 November 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, H.; Guan, Y. Study on Long-Term Operation Stability of Fiber Optical Current Transformer Based on Faraday Effect. Proceedings of International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 19–20 December 2015. [Google Scholar] [CrossRef]
- Xu, Z.; Yue, C.; Yan, X.; Fan, J.; Pang, F. Multi-Scale Anomaly Detection in Fiber Optic Current Transformers. Proceedings of IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023. [Google Scholar] [CrossRef]
- Müller, G. M.; Gu, X.; Yang, L.; Frank, A.; Bohnert, K. Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber. Opt. Express 2016, 24, 10–11164. [Google Scholar] [CrossRef]
- Liu, C.; Wang, D.; Li, C.; Su, K. Li, D. Yu, D.; Wang, L.; Si, L.; Jin, J. Fiber optic current sensor temperature compensation through RBF neural network. In Proceedings of the Applied Optics and Photonics China, Beijing, China, 30 November–2 December 2020. [CrossRef]
- Petricevic, S.J.; Mihailovic, P.M. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement. Sensors 2016, 16, 1627. [Google Scholar] [CrossRef]
- Müller, G. M.; Frank, A.; Yang, L.; Gu, X.; Bohnert, K. Temperature Compensation of Interferometric and Polarimetric Fiber-Optic Current Sensors with Spun Highly Birefringent Fiber. Journal of Lightwave Technology 2019, 37, 18–4507. [Google Scholar] [CrossRef]
- Hoffmann, H. J. A survey of isotropic and anisotropic modifications of the refractive index. J. Phys. IV France 1992, 02, C2-21–C2-30. [Google Scholar] [CrossRef]
- Müller, G. M.; Quan, W.; Lenner, M.; Yang, L.; Frank, A.; Bohnert, K. Fiber-optic current sensor with self-compensation of source wavelength changes. Opt. Lett. 2016, 41, 2867–2870. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, L.; Yang, M.; Yang, J.; Shu, X. Research on the mean-wavelength drift mechanism of SLD light source in FOG. J. Phys.: Conf. Ser. 2019, 1300, 012047. [Google Scholar] [CrossRef]
- Williams, P. A.; Rose, A. H.; Day, G. W.; Milner, T. E.; Deeter, M. N. Temperature dependence of the Verdet constant in several diamagnetic glasses. Appl. Opt. 1991, 30, 1176–1178. [Google Scholar] [CrossRef]
- Schott Optical glass - datasheets. Available online: https://refractiveindex.info/download/data/2017/schott_2017-01-20.pdf (accessed on 18 November 2023).
- Temkina, V.; Medvedev, A.; Mayzel, A.; Mokeev, A. Compensation of Fiber Quarter-Wave Plate Temperature Deviation in Fiber Optic Current Sensor. Proceedings of IEEE International Conference on Electrical Engineering and Photonics, St. Petersburg, Russia, 17–18 October 2019. [Google Scholar] [CrossRef]
- Samimi, M. H.; Bahrami, S.; Akmal, A. A. S.; Mohseni, H. Effect of Nonideal Linear Polarizers, Stray Magnetic Field, and Vibration on the Accuracy of Open-Core Optical Current Transducers. IEEE Sensors Journal 2014, 14, 10–3508. [Google Scholar] [CrossRef]
- He, X.; Wang, G.; Gao, W.; Wang, Y.; Gao, H. The effect analysis of impact on a fiber optic current sensor. Optik 2021, 238, 166724. [Google Scholar] [CrossRef]
- Samimi, M. H.; Akmal, A. A. S.; Mohseni, H. Optical Current Transducers and Error Sources in Them: A Review. IEEE Sensors Journal 2015, 9, 9–4728. [Google Scholar] [CrossRef]
- Sawale, B. A. Effect of induced linear birefringence on Faraday current sensor using Ultra-low birefringence Optical Fiber. In Proceeding of International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal, India, 14–16 December 2016. [Google Scholar] [CrossRef]
- Madaschi, A.; Brunero, M.; Ferrario, M.; Martelli, P.; Boffi, P.; Martinelli, M. Experimental Evaluation of the Birefringence Effect on Faraday-Based Fiber-Optic Current Sensors. IEEE Sensors Letters 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Hotate, K.; Konishi, Y. Formulas describing error induced by fiber linear-birefringence in fiber-optic current sensors. Proceedings of 15th Optical Fiber Sensors Conference Technical Digest, Portland, USA, 10 May 2002. [Google Scholar] [CrossRef]
- Song, C.; Zhizhong, G.; Guoqing, Z.; Wenbin, Y.; Yan, S.; Shixin, J. The Analysis on Temperature Characteristic of Fiber Optic Current Sensor Ratio Error. In Proceedings of the Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015. [Google Scholar] [CrossRef]
- Zhang, H. Temperature and Vibration Robustness of Reflecting All-Fiber Current Sensor Using Common Single-Mode Fiber. Journal of Lightwave Technology 2014, 32, 4311–4317. [Google Scholar] [CrossRef]
- Sima, W.; Zeng, L.; Yang, M.; Yuan, T.; Sun, P. Improving the Temperature and Vibration Robustness of Fiber Optic Current Transformer Using Fiber Polarization Rotator. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Tantaswadi, P.; Tangtrongbenchasil, C.; Maheshwari, S. Study of current measurement error due to vibration in reciprocal fiber-optic polarimetric current sensor. Proceedings of 4th IEEE International Conference on Power Electronics and Drive Systems, Denpasar, Indonesia, 25 October 2001. [Google Scholar] [CrossRef]
- Hogan, R. How to Determine Resolution Uncertainty. Cal Lab Magazine 2017, 24, 1–20. [Google Scholar]
- Phillips, S. D.; Toman, B.; Estler, W. T. Uncertainty Due to Finite Resolution Measurements. Journal of Research of the National Institute of Standards and Technology 2008, 113, 3–143. [Google Scholar] [CrossRef]
- De Bièvre, P. Measurement uncertainty is not synonym of measurement repeatability or measurement reproducibility. Accred Qual Assur 2008, 13, 61–62. [Google Scholar] [CrossRef]
- Alvarez-Prieto, M.; Jiménez-Chacón, J.; Montero-Curbelo, Á. Do we need to consider metrological meanings of different measurement uncertainty estimations? Accred Qual Assur 2009, 14, 623–634. [Google Scholar] [CrossRef]
- Evaluation of measurement data — Guide to the expression of uncertainty in measurement - JCGM 100:2008 - GUM 1995 with minor corrections. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 19 December 2023).
- Cohen, E. R. Error and Uncertainty in Physical Measurements. In Modeling Complex Data for Creating Information. Data and Knowledge in a Changing World; Dubois, J. E., Gershon, N., Eds.; Springer: Berlin/Heidelberg, Germany. [CrossRef]
- Farrance, I.; Frenkel, R. Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships. The Clinical Biochemist Reviews 2012, 33, 49–75. [Google Scholar] [PubMed]

| Uncertainty source | Type |
|---|---|
| Light source wavelength short-term stability | A |
| Correction due to light source wavelength long-term stability | B |
| Light source wavelength variation due to temperature fluctuations | A |
| Correction of the light source wavelength drift due to using the sensor at a temperature far from that at which it was calibrated | B |
| Verdet constant variation due to temperature fluctuations | A |
| Correction of the Verdet constant drift due to using the sensor at a temperature far from that at which it was calibrated | B |
| Vibration | A |
| Correction due to the drift since the last photodetector calibration | B |
| Photodetector short-term stability | A |
| Photodetector performance variation due to temperature fluctuations | A |
| Correction of the photodetector performance drift due to using the sensor at a temperature far from that at which it was calibrated | B |
| Correction of the drift since the last A/D card calibration | B |
| A/D card short-term stability | A |
| A/D card performance variation due to temperature fluctuations | B |
| Correction of the A/D card performance drift due to using the sensor at a temperature far from that at which it was calibrated | B |
| Finite resolution in indicating the measured current to the user | B |
| Repeatability of current measurements | A |
| Correction due to birefringence | B |
| Calibration of the OCS 1 | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
