Submitted:
28 December 2023
Posted:
11 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Regional Geology
3. Ore deposit geology
3.1. Structures
3.2. Rocks
3.3. Orebodies
3.4. Mineralogy assemblage and paragenetic sequence
3.4.1. Sedimentary period


3.4.2. Hydrothermal mineralization period
4. Samples and analytical methods
4.1. In-situ S isotope analysis
4.2. In-situ Pb isotope analysis
4.3. Rb–Sr isotope analyses
4.4. Sm-Nd isotope analyses
5. Results
5.1. In-situ S isotopic compositions
5.2. In-situ Pb isotopic compositions
5.3. Rb-Sr isochron age
5.4. Sm-Nd isochron age
| Sample No. | Mineral | Stage | Sm(×10-6) | Nd(×10-6) | 147Sm/144Nd | 143Nd/144Nd |
| D22 | Dolomite | I | 0.1605 | 3.527 | 0.1351 | 0.511943±9 |
| D28-4 | Ankerite | I | 0.6537 | 2.678 | 0.7195 | 0.512739±7 |
| D29-1 | Dolomite | I | 0.4058 | 4.634 | 0.2586 | 0.512081±8 |
| D45-31 | Dolomite | I | 0.1325 | 5.336 | 0.0731 | 0.511851±8 |
| D45-32 | Dolomite | I | 0.3536 | 5.781 | 0.1803 | 0.511982±7 |
| D48 | Dolomite | I | 0.2953 | 4.013 | 0.2175 | 0.512024±9 |
| D55 | Dolomite | II | 0.4831 | 3.907 | 0.3656 | 0.512229±14 |
| D58 | Calcite | II | 0.5029 | 2.694 | 0.5498 | 0.512501±8 |
| D58 | Dolomite | II | 0.1847 | 5.325 | 0.1023 | 0.511875±9 |
6. Discussion
6.1. Sources of sulfur and metals
6.1.1. Source of sulfur
6.1.2. Source of lead
6.2. Timing of the ore formation
6.3. Ore genesis
7. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Z.A.; Lu, C.; Zong Cl Yuan, H.L.; Chen, K.Y.; Dai, M.N. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry 2017, 421, 255–262. [Google Scholar] [CrossRef]
- Broadbent, G.C.; Myers, R.E.; Wright, J.V. Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century deposit, northwest Queensland, Australia. Economic Geology, 1998; 93, 1294. [Google Scholar]
- Carr, G.R.; Dean, J.A.; Suppel, D.W.; Heithersay, P.S. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Economic Geology 1995, 90, 1467–1505. [Google Scholar] [CrossRef]
- Chen, K.Y.; Yuan, H.L.; Bao, ZA. Accurate precise in situ determination of lead isotope ratios in, N.I.S.T.; USGS; MPI-DING; CGSG reference glasses using femtosecond laser ablation, M.C.-I.C.P.-M.S. Geostand Geoanal Res 2014, 38, 5–21. [Google Scholar]
- Chen, S.C.; Wang, Y.T.; Yu, J.J.; Hu, Q.Q.; Zhang, J.; Wang, R.T.; Gao, W.H.; Wang, C.A. Petrogenesis of Triassic granitoids in the Fengxian–Taibai ore cluster, Western Qinling Orogen, central China: Implications for tectonic evolution and polymetallic mineralization. Ore Geology Reviews 2020, 123, 103577. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Hitoshi, S.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Ding, T.; Valkiers, S.; Kipphardt, H.; De Bievre, P.; Taylor, P.; Gonfiantini, R.; Krouse, R. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica Et Cosmochimica Acta. 2001, 65, 2433–2437. [Google Scholar] [CrossRef]
- Fang, W.X. Geochemical anomaly pattern and metallogenic model of the Bafangshan polymetallic deposit, Shaanxi. Geological exploration for non-ferrous metals 1997, 6, 167–171, (in Chinese with English abstract). [Google Scholar]
- Fang, W.X. Reserch on mineral geochemistry of Qiandongshan Lead-Zinc deposit, a large-sized deposit in Fengxian County, Shaanxi. Acta Mineralogica Sinica 1999, 19, 198–205, (in Chinese with English abstract). [Google Scholar]
- Fang, W.X. Characteristics of sedimentary facies of hydrothermal for the giant Qiantongshan Lead-zinc ore deposit, Feng County, Shanxi Province. Acta Sedimentologica Sinica 1999, 17, 44–50, (in Chinese with English abstract). [Google Scholar]
- Feng, J.Z.; Wang, D.B.; Wang, X.M.; Shao, S.C.; Ma, Z.G.; Zhang, X.G. Geology and Metallogenesis of the Baguamiao Giant Gold Deposit in Fengxian, Shaanxi Province. Acta Geologica Sinica 2003, 77, 387–398, (in Chinese with English abstract). [Google Scholar]
- Fry, B.; Gest, H.; Hayes, JM. Sulfur isotope effects associated with protonation of, H.S.-; volatilization of, H.2.S. Chemical Geology, Isotope Geoscience section 1986, 58, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Fryer, B.J.; Taylor, R.P. Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan. Geology 1984, 12, 479–482. [Google Scholar] [CrossRef]
- Fu, J.L.; Hu, Z.C.; Zhang, W. In Situ Sulfur Isotopes, (.δ.3.4.S.; δ33S) Analyses in Sulfides Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation, M.C.-I.C.P.-M.S. Analytica Chimica Acta 2016, 911, 14–26. [Google Scholar] [PubMed]
- Halliday, A.N.; Shepherd, T.F.; Dickin, A.P.; Chesley, J.T. Sm-Nd evidence for the age and origin of a Mississippi Valley-type ore deposit. Nature 1990, 344, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Holser, W.T.; Kaplan, I.R. Isotope geochemistry of sedimentary sulfates Chemical Geology 1966, 1.; 93-135 (in:, D.W. Kirkland and R. Evans. 1973. Marine Evaporites: Origin, Diagenesis, and Geochemistry. Dowden, Hutchinson and Ross, Stroudsburg, 374-398).
- Hu, Q.Q.; Wang, Y.T.; Mao, J.W.; Liu, X.L.; Chen, S.C.; Wei, R.; Zhang, J.; Wang, R.T.; Wang, C.A.; Dai, J.Z.; Wen, S.W.; Chen, M.S. Genesis of the Bafangshan-Erlihe Zn-Pb-Cu deposit in the Fengxian-Taibai ore cluster, west Qinling, China: Evidence from ore geology and ore-forming fluids. Ore Geology Reviews 2020, 126, 103734. [Google Scholar] [CrossRef]
- Hu, Q.Q.; Wang, Y.T.; Mao, J.W.; Wei, R.; Liu, S.Y.; Ye, D.J.; Yuan, Q.H.; Dou, P. Timing of the formation of the Changba–Lijiagou Pb–Zn ore deposit, Gansu Province, China: Evidence from Rb–Sr isotopic dating of sulfides. Journal of Asian Earth Sciences 2015, 103, 350–359. [Google Scholar] [CrossRef]
- Hu, Q.Q. The Mineralization Features, Mechanism and Metallogenic Regularity of the Fengtai Pb-Zn Polymetallic Ore Cluster in West Qinling, China. Beijing: Chinese Academy of Geological Sciences 2015, 1-147.
- Huang, Z.Y.; Lu, R.A. Zoning characteristics and index of primary geochemical anomalies in Qiandongshan Pb-Zn deposit Shaanxi Province, China. Geology and Prospecting 2003, 39, 39–44, (in Chinese with English abstract). [Google Scholar]
- Jørgensen, B.B. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta 1979, . 43, 363–374. [Google Scholar] [CrossRef]
- Kiyosu, Y.; Krouse, H.R. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochemical Journal 1990, 24, 21–27. [Google Scholar] [CrossRef]
- Leach, D.L.; Sangster, D.; Kelley, K.; Large, R.R.; Garven, G.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology 2005, 100, 561–607. [Google Scholar]
- Leach, D.L.; Marsh, E.; Emsbo, P.; Rombach, C.; Kelley, K.D.; Reynolds, J.; Anthony, M. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska. Economic Geology 2004, 99, 1449–1480. [Google Scholar] [CrossRef]
- Li, J.H. Analysis on ore-controlling factors and prospecting potential of the Baguamiao-type gold deposits in Fengtai area, Shaanxi. Mineral resources and geology 2008, 22, 62–64, (in Chinese with English abstract). [Google Scholar]
- Li, Q.; Wang, B.Q.; Ma, Z.G. Wang, X.H. Space-time Relationship of Gold Deposit to Lead-Zinc Deposit in Fengtai Ore Field in South Qinling. Journal of Earth Sciences and Environment (in Chinese with English abstract). 2007, 29, 15–21. [Google Scholar]
- Li, W.B.; Huang, Z.L.; Xu, D.R.; Cheng, J.; Xu, C.; Guan, T. Rb-Sr Isotopic method on Zinc-Lead ore deposits: a review. Geotectonica et Metallogenia 2002, 26, 436–441, (in Chinese with English abstract). [Google Scholar]
- Li, H. Sulfides typomorphism and genesis of the Qiandongshan Pb-Zn deposit in Feng Country. Geology and Prospecting 1986, 22, 36–41. (in Chinese). [Google Scholar]
- Li, J.Z.; He, D.R.; Wu, J.M. The Qinling-type Lead and Zinc ore deposit. Acta Geologica Sinica 1992, 66, 257–268. [Google Scholar]
- Liu, J.M.; Zhao, S.R.; Shen, J.; Jiang, N.; Huo, W.G. Review on direct isotopic dating of hydrothermal ore-forming processes. Progress in geophysics 1998, 13, 46–55, (in Chinese with English abstract). [Google Scholar]
- Lu, R.S.; Wei, H.M. Characteristics and Genesis of the Silicalites in Hot-Water Sedianentary Lead-Zinc Deposits in the Qinling Mountains. Acta Petrologica Et Mineralogica 1992, 11, 14–21, (in Chinese with English abstract). [Google Scholar]
- Ludwig, K. R. User's Manual for Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 2008, 4, 1–74. [Google Scholar]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Magnall, J.M.; Gleeson, S.A.; Paradis, S. The importance of silicous radiolarian-bearing mudstones in the formation of sediment- hosted Zn-Pb±Ba mineralization in the Selwyn basin, Yukon, Canada. Economic Geology 2015, 110, 2139–2146. [Google Scholar] [CrossRef]
- Mao, J.W. Geology, distribution and classification of gold deposits in the Western Qinling Belt, Central China. Bulletin of Mineralogy, Petrology and Goechemistry 2001, 20, 11–13. [Google Scholar] [CrossRef]
- Mao, J.W.; Qiu, Y.M.; Goldfarb, R.J.; Zhang, Z.C.; Ren, F.S. Geology, distribution, and classification of gold deposits in the Western Qinling belt, Central China. Mineral. Depos 2002, 37, 352–377. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhou, Z.H.; Feng, C.Y.; Wang, Y.T.; Zhang, C.Q.; Peng, H.J.; Yu, M. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geol. China 2012, 39, 1437–1471, (in Chinese with English abstract). [Google Scholar]
- Moore, D.W.; Young, L.E.; Modene, J.S.; Plahuta, J.T. Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska. Economic Geology 1986, 81, 1696–1727. [Google Scholar] [CrossRef]
- Muchez, P.; Heijlen, W.; Banks, D.; Blundell, D.; Boni, M.; Grandia, F. Extensional tectonics and the timing and formiation of basin-hosted deposit in Europe. Ore Geology Review 2005, 27, 241–267. [Google Scholar] [CrossRef]
- Nakai, S.; Halliday, A.N.; Kesler, S.E.; Jones, H.D.; Kyle, J.R.; Lane, T.E. Rb-Sr dating of sphalerites from Mississippi Valley (MVT) ore deposits. Geochimica et Cosmochimica Acta 1993, 57, 417–427. [Google Scholar] [CrossRef]
- Nakai, S.; Halliday, A.N.; Kesler, S.E.; Jones, H.D. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature 1990, 346, 354–357. [Google Scholar] [CrossRef]
- Nie, F.J.; Bjorlykke, A.B.; Nilsen, K.S. The origin of the Proterozoic Bidjovagge gold-copper deposit, Finnmark, Northern Norway, as deduced from rare earth element and Nd isotope evidences on calcites. Resource Geology 1999, 49, 13–25. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H. Biogeochemistry of sulfur and the mechanisms of sulfide–sulfate mineralization in Archean oceans. In: Schidlowski, M.; Golubic, S.; Kimberley, M.M.; Mckirdy, D.M.; Trudinger, P.A. (Eds.), Early organic evolution: implications for mineral and energy resources. Springer, Berlin, 1992, 378–397.
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, 1979, 509–567.
- Pass, H.E.; Cooken, D.R.; Davidson, G.; Maas, R.; Dipple, G.; Rees, C.; Ferreira, L.; Tayler, C.; Deyell, C.L. Isotope geochemistry of the northeast zone, Mount Polley alkali Cu-Au-Ag porphyry deposit, British Columbia: A case for carbonate assimilation. Economic Geology 2014, 109, 859–890. [Google Scholar] [CrossRef]
- Pettke, T.; Diamond, L.W. Rb-Sr dating of sphalerite based fluid inclusion-host mineral isochrones: A certification of why it works. Economic Geology 1996, 91, 951–956. [Google Scholar] [CrossRef]
- Qi, S.J.; Li, Y. The types and ore-controlling factors of Lead-Zinc deposits in the Devonian metallogenic belt of Qinling Mountain. Geological Publishing House, 1993, 1 – 178 (in Chinese with English abstract).
- Qin, J.F.; Lai, S.C.; Grapes, R.; Diwu, C.R.; Ju, Y.J.; Li, Y.F. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust. Lithos 2010, 120, 347–367. [Google Scholar] [CrossRef]
- Qin, J.F.; Lai, S.C.; Li, Y.F. Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogenic belt, central China: zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotopic constraints. International Geology Review 2008, 50, 1080–1104. [Google Scholar] [CrossRef]
- Qin, J.F.; Lai, S.C.; Wang, J.; Li, Y.F. Zircon LA–ICP MS U–Pb age, Sr–Nd–Pb isotopic compositions and geochemistry of the Triassic Wulong granodiorite (South Qinling, Central China) and their petrogenesis significance. Acta Geogica Sinica 2008, 82, 425–437. [Google Scholar]
- Qin, J.F.; Lai, S.C.; Wang, J.; Li, Y.F. The high–Mg# adakite–like tonalites from Xichahe, South Qinling: its petrogenesis and geological implication. International Geology Review 2007, 49, 1145–1158. [Google Scholar]
- Ren, P.; Liang, T.; Liu, K.L.; Niu, L.; Lu, L.; Zhang, W.J. Geochemistry of Sulfur and Lead Isotopic Compositions of Sedex Lead-zinc Deposits in Fengtai Mineral Cluster Region of Qinling Mountains. Northwestern Geology 2014, 47, 137–149, (in Chinese with English abstract). [Google Scholar]
- Shi, Y.H.; Wang, Y.; Chen, B.L.; Tan, R.W.; Gao, Y.; Shen, J.H. Characteristics of silicon-calcium surface ore-controlling in Fengtai ore-concentration areas, West Qinling Mountains: Examples from Qiandongshan Pb-Zn deposit. Geology in China 2022, 49, 226–240, (in Chinese with English abstract). [Google Scholar]
- Slack, J.F.; Dumoulin, J.A.; Schmidt, J.M.; Young, L.E.; Rombach, C.S. Paleozoic sedimentary rocks in the Red Dog Zn-Pb-Ag district and vicinity, western Brooks Range, Alaska: Provenance, deposition, and metallogenic significance. Economic Geology 2004, 99, 1385–1414. [Google Scholar] [CrossRef]
- Sun, W.D.; Li, S.G.; Ya, D.C.; Li, Y.J. Zircon U-Pb dating of granitoids from South Qinling, Central China and their geological significance. Geochimica 2000, 29, 209–216, (in Chinese with English abstract). [Google Scholar]
- Tang, M.J. Metallogenic model of Qiandongshan Lead-Zinc Mine and analysis on prospecting potential in Fengtai Ore Field. Nonferrous Metals (Mining Section) 2013, 65, 23–28, (in Chinese with English abstract). [Google Scholar]
- Wang, D.S.; Wang, R.T.; Dai, J.Z.; Wang, C.A.; Li, J.H.; Chen, L.X. "Dual ore-controlling factors" characteristics of metallic seposits in the Qinling Orogenic Belt. Acta Geologica Sinica 2009, 83, 1719–1729, (in Chinese with English abstract). [Google Scholar]
- Wang, J.L.; He, B.C.; Li, J.Z.; He, D.R. Qinling-type Lead-Zinc ore deposits in China. Geological Publishing House, 1996, 116 – 145 (in Chinese with English abstract).
- Wang, R.T. Wang, T.; Gao, Z.J.; Chen, E.H. Liu, L.X. The main metal deposits metallogenic series and exploration direction in Feng-Tai Ore Cluster Region, Shaanxi Province. Western Geology (in Chinese with English abstract). 2007, 40, 77–84. [Google Scholar]
- Wang, R.T.; Li, F.L.; Chen, E.H.; Dai, J.Z.; Wang, C.A.; Xu, X.F. Geochemical characteristics and prediction of the Bafangshan-Erlihe large Lead-Zinc ore deposit, Feng country, Shaanxi province, China. Acta Petrologica Sinica 2011, 27, 779–793, (in Chinese with English abstract). [Google Scholar]
- Wang, X.; Tang, R.Y.; Li, S.; Li, Y.X.; Yang, M.J.; Wang, D.S.; Guo, J.; Liu, P.; Liu, R.D.; Li, W.Q. Qinling orogeny and metallogenesis. Metallurgical Industry Press, 1996, 187 – 230 (in Chinese with English abstract).
- Wang, Y.T.; Hu, Q.Q.; Wang, R.T.; Gao, W.H.; Chen, S.C.; Wei, R.; Wang, C.A.; Wen, B.; Wen, S.W.; Tang, M.J. A new metallogenic model and its significance in search for Zn-Pb deposits in Fengtai (Fengxian-Taibai) polymetallic ore concentration area, Shannxi Province. Mineral Deposits 2020, 39, 587–606, (in Chinese with English abstract). [Google Scholar]
- Wang, Y.T.; Hu, Q.Q.; Zhang, C.Q.; Wang, R.T.; Dai, J.Z.; Li, J.H.; Wang, C.A.; Li, X.; 2011. Geological evidence for epigenetic mineralization of the Bafangshan-Erlihe Pb-Zn-Cu deposit in the Fengxian-Taibai metallogenic zone, western Qinling belt, Central China. Let’s Talk Ore Deposits, Proceedings of 11th SGA Biennial Meeting, 2011 Antofagasta, Chile, 743 – 744.
- Wang, Y.T.; Liu, X.L.; Hu, Q.Q.; Zhang, J.; Chen, S.C.; Wang, R.T.; Dai, J.Z.; Gao, W.H.; Wen, S.W.; Chen, M.S.; Zhang, G.L. Rb-Sr isotopic Dating of Vein-like Sphalerites from the Chaima Au Deposit in Fengxian-Taibai Ore-concentration Area,Shaanxi Province and Its Geological Significance. Northwestern Geology 2018, 51, 121–132, (in Chinese with English abstract). [Google Scholar]
- Wang, Y.T.; Mao, J.W.; Hu, Q.Q.; Wei, R.; Chen, S.C. Characteristics and Metallogeny of Triassic polymetallic mineralization in Xicheng and Fengtai ore cluster zones, west Qinling, China and their implications for prospecting targets. Journal of Earth Sciences and Environment 2021, 43, 409–435, (in Chinese with English abstract). [Google Scholar]
- Wang, Y.T.; Mao, J.W.; Zhang, J.; Wang, R.T.; Chen, G.M.; Hu, Q.Q.; Chen, S.C.; Liu, X.L. Geochronological constraints on the Baguamiao gold deposit, West Qinling orogen, central China: Implications for ore genesis and geodynamic setting. Ore Geology Reviews 2020, 122, 103508. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, R.T.; Dai, J.Z.; Li, J.H.; Wang, C.A.; Tian, M.M.; Wen, B. The strike-slip duplex and its significance for mineralization in the Fengxian-Taibai ore area, western Qinling, central China. Acta Mineralogica Sinica 2009, 29, 188–189. (in Chinese). [Google Scholar]
- Wang, Y.T.; Wang, R.T.; Hu, Q.Q.; Liu, S.Y.; Wei, R.; Li, J.H.; Yuan, Q.H.; Liu, X.L.; Dai, J.Z.; Wen, S.W.; Wang, S.Y. Comparison of Pb–Zn mineralization between the Fengxian–Taibai and the Xihe–Chengxian ore clusters in the western Qinling. Acta Mineralogica Sinica 2013, 33, 52–54. (in Chinese). [Google Scholar]
- Wang, Y.X.; Yang, J.D.; Chen, J.; Zhang, K.J.; Rao, W.B. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7Ma: Implications for the East Asian winter monsoon and source area of loess. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 249, 351–361. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 1996, 60, 4167–4179. [Google Scholar] [CrossRef]
- Wu, W.T.; Yang, S.W.; Wang, S.L.; Wu, X.D.; Chen, E.H.; Zhang, X.G. Analysis of the Ore Controlling Factors and Prospecting Ideas of the Dongtongzi Lead and Zinc Mine. Gansu Metallurgy 2015, 37, 65–70, (in Chinese with English abstract). [Google Scholar]
- Wu, X.D.; Song, S.K.; Gao, W.H.; Yang, S.W.; Zhang, X.G. Geological Characteristics and Prospecting Direction of Lead-Zinc Mine in Shaanxi Qiandongshan-Dongtangzi. Gansu Metallurgy. 2016, 38, 87–94, (in Chinese with English abstract). [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Li, X.M.; Ma, Z.P.; Xu, X.Y. Petrogenesis of the Yaolinghe group, Wudang group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Norwest Geology 2008, 41, 1–29, (in Chinese with English abstract). [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. Petrogenesis of the Bikou Group volcanic rocks. Earth Science Frontiers 2007, 14, 84–101. [Google Scholar]
- Xu, J.F.; Castillo, P.R.; Li, X.H.; Yu, X.Y.; Zhang, B.R.; Han, Y.W. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters 2002, 198, 323–337. [Google Scholar] [CrossRef]
- Yang, B. Tan, Y.T. Analysis of metallogenic regularity and prospecting potential of non-metallic minerals in Shaanxi Province. China Non-Metallic Minerals Industry (in Chinese). 2018, 132, 7–10. [Google Scholar]
- Yang, X.K. Comments on the genesis of the Qiandongshan Pb-Zn deposit in Fengtai area, Qinling. Northwest Geology 1991, 4, 52–55. (in Chinese). [Google Scholar]
- Yuan, H.L.; Yin, C.; Chen, K.Y.; Bao, Z.A.; Zong, C.; Dai, M.N.; Lai, S.C.; Wang, R.; Jiang, S.Y. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Science China Earth Sciences 2015, 58, 1713–1721. [Google Scholar] [CrossRef]
- Zartman, R.E.; Haines, S.M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—a case for bi-directional transport. Geochimica et Cosmochimica Acta 1981, 52, 1327–1339. [Google Scholar] [CrossRef]
- Zhang F, Liu SW, Li QG, Wang ZQ, Han YG, Yang K and Wu FH. LA-ICP-MS zircon U-Pb geochronology and geological significance of Xiba Granitoids from Qinling,Central China. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese with English abstract). 2009, 45, 833–840.
- Zhang, C.Q.; Li, X.H.; Yu, J.J.; Mao, J.W.; Chen, F.K.; Li, H.M. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances. Geological Review 2008, 54, 532–538, (in Chinese with English abstract). [Google Scholar]
- Zhang, F.; Liu, S.W.; Li, Q.G.; Sun, Y.L.; Wang, Z.Q.; Yan, Q.R.; Yan, Zhen. Re-Os and U-Pb Geochronology of the Erlihe Pb-Zn Deposit, Qinling orogenic belt, Central China, and constraints on is deposit genesis. Acta Geologica Sinica (English Edition) 2011, 85, 673–682. [CrossRef]
- Zhang, F.X. Characteristics and geological significance of the strawberry-like sulfide mineral in the lead-zinc deposit of Qiandongshan and Yinmusi in Shaanxi province. Geology and Prospecting 1986, 22, 40–42. [Google Scholar]
- Zhang, F.X.; Wang, J.F. The submarine volcanic-exhalative-sedimentary origin of Lead-Zinc deposits in the Fengtai ore field, Shaanxi. Geological Review 1988, 34, 157–168, (in Chinese with English abstract). [Google Scholar]
- Zhang, G.L.; Tian, T.; Wang, R.T.; Gao, W.H.; Chang, Z.D. S, Pb isotopic composition of the Dongtangzi Pb−Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore−forming materials. Geology in China 2020, 47, 472–484, (in Chinese with English abstract). [Google Scholar]
- Zhang, G.L.; Wang, R.T.; Tian, T.; Ding, K.; Gao, W.H.; Guo, W.W. Geological-geochemical Characteristics and Genesis of Dongtangzi Pb-Zn Deposit in Fengxian-Taibai Ore Concentration Area of Shaanxi,China. Journal of Earth Sciences and Environment 2018, 40, 520–534, (in Chinese with English abstract). [Google Scholar]
- Zhang, G.W.; Cheng, S.Y.; Guo, A.L.; Dong, Y.P.; Lai, S.C.; Yao, A.P. Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie— with a discussion of the assembly of the main part of the continent of China. Geol. Bull. China 2004, 23, 846–852, (in Chinese with English Abstract). [Google Scholar]
- Zhang, H.F.; Jin, L.L.; Zhang, L.; Harris, N. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: constraints on basement nature and tectonic affinity. Science in China (Series D) 2007, 50, 184–196. [Google Scholar] [CrossRef]
- Zhang, H.F.; Xiao, L.; Zhang, L. Geochemical and Pb–Sr–Nd isotopic compositions of Indosinian granitoids from the Bikou block, northwest of the Yangtze plate: constraints on petrogenesis, nature of deep crust and geodynamics. Science in China (Series D) 2007, 50, 972–983. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, L.; Harris, N.; Jin, L.L. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Graze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology 2006, 152, 75–88. [Google Scholar] [CrossRef]
- Zhang, R.B.; Liu, J.M.; Ye, J.; Chen, F.K. Chalcopyrite Rb-Sr isochron age dating and it's ore-forming significance in Shouwangfen copper deposit, Hebei province. Acta Petrologica Sinica 2008, 24, 1353–1358, (in Chinese with English abstract). [Google Scholar]
- Zheng, W.Z.; Cao, Z.Q.; Wei, Z.; Liu, Z.M.; Xu, S.K.; Deng, X.L. The characteristics, genesis and prospecting significance of "salt-soluble breccia" of Lower Middle Triassic in southern Shaanxi Province. Geology of Chemical Minerals 1988, 2, 37–43. (in Chinese). [Google Scholar]
- Zheng, Y.F.; Chen, J.F. Steady Isotope Geochemistry. Beijing: Science Publishing House 2000, 1-64 (in Chinese).
- Zhu, Z.Y.; Cook, N.J.; Yang, T.; Ciobanu, C.L.; Zhao, K.D.; Jiang, S.Y. Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: Potential analytical problems, improvements and implications. Minerals 2016, 6, 14. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Jiang, S.Y.; Ciobanu, C.L.; Yang, T.; Cook, N.J. Sulfur isotope fractionation in pyrite during laser ablation: Implications for laser ablation multiple collector inductively coupled plasma mass spectrometry mapping. Chemical Geology 2017, 450, 223–234. [Google Scholar] [CrossRef]










| No. | Sample | Position | Stage | Type | Description |
| 1 | D216.3-1 | 960 m elevation, north south of the No.2 ore body | I | Siliceous rock | Siliceous rock with pyrite of the sedimentary mineralization period, intersected by the hydrothermal Stage I quartz-pyrite-galena veins |
| 2 | D22 | 1010 m elevation, south wing of the No.2 ore body | I | Disseminated ore | Lamellar carbonaceous altered rock, with disseminated medium-fine grained sphalerite |
| 3 | D28-4 | 960 m elevation, south wing of the No.2 ore body | I | Banded ore | Fine-grained quartz-ankerite-pyrite veins are zebra striated in carbonaceous altered rocks |
| 4 | D29-1 | 960 m elevation, south wing of the No.2 ore body | I | Vein type ore | Quartz-dolomite-sphalerite- pyrite-galena veins developed in carbonaceous limestone |
| 5 | D45 | 960 m elevation, south wing of the No.2 ore body | I | Massive, brecciated ore | Medium-coarse grained massive sphalerite- pyrite-dolomite aggregate, locally cementing breccias of carbonaceous altered rock |
| 6 | D48 | 860 m elevation, saddle part of the No.2 ore body | I | Disseminated ore | Fine-grained sphalerite, galena, pyrite and dolomite are densely disseminated in altered rocks |
| 7 | DTZ-2-2 | 1060 m elevation, saddle part of the No.2 ore body | I | Mineralized carbonaceous limestone | Quartz-calcite veins are interspersed with carbonaceous limestone, with black aphanitic sphalerite developed at the edges |
| 8 | DTZ-1 | 1060 m elevation, south wing of the No.2 ore body | I | Mineralized carbonaceous phyllite | The carbonaceous phyllite contains lumpy, disseminated sphalerite, galena and pyrite |
| 9 | DTZ-3-4 | 1060 m elevation, north wing of the No.2 ore body | I | Massive ore | Fine-grained black brown lumpy sphalerite, with less quartz, pyrite and galena |
| 10 | D41 | 860 m elevation, south wing of the No.2 ore body | I | Disseminated ore | Fine-grained sphalerite and ankerite are densely disseminated in grayish-black carbonaceous altered rocks |
| 11 | D213.2 | 960 m elevation, north wing of the No.2 ore body | I | Mineralized siliceous rock | Gray - black siliceous rock with disseminated fine - grained pyrite |
| 12 | D51-1 | 795 m elevation, south wing of the No.2 ore body | I | Disseminated ore | Fine-grained sphalerite, galena, pyrite and dolomite are densely disseminated in altered rocks |
| 13 | D61-1 | 910 m elevation, saddle part of the No.2 ore body | I | Disseminated ore | Medium - fine - grained dense disseminated sphalerite, pyrite and arsenopyrite are developed in silicified carbonaceous limestone |
| 14 | D229-1 | 960 m elevation, south wing of the No.2 ore body | I | Banded ore | Banded ankerite-sphalerite- pyrite-galena veins developed in altered carbonaceous limestone |
| 15 | D36 | 910 m elevation, south wing of the No.2 ore body | Granite porphyry dike | NWW-trending granite porphyry dike, nearly parallel to the ore body, with scattered pyrite | |
| 16 | D55 | 960 m elevation, south wing of the No.1 ore body | II | Disseminated ore | Quartz-dolomite stockwork developed in the limestone, with fine-grained arsenopyrite and pyrite aggregate developed at the contact area |
| 17 | D58 | 960 m elevation, south wing of the No.1 ore body | II | Disseminated ore | Silicified limestone with disseminated pyrite, interspersed by quartz-dolomite stockwork |
| 18 | D107-3 | 795 m elevation, south wing of the No.2 ore body | II | Massive ore | The massive medium-fine grained pyrite-sphalerite-arsenopyrite-ankerite aggregates, interspersed by the Stage III coarse-grained calcite and galena veins |
| 19 | D109 | 795 m elevation, south wing of the No.2 ore body | II | Massive ore | Pyrite-rich massive ore, micro-fine grained pyrite aggregates, cementing carbonaceous altered breccia |
| 20 | D205.2 | 795 m elevation, south wing of the No.2 ore body | II | Vein type ore | Veinlets composed of quartz, calcite, pyrite, sphalerite, and galena, crosscutting the altered rocks |
| 21 | D26 | 960 m elevation, saddle part of the No.2 ore body | III | Vein type ore | The medium-fine grained lumpy sphalerite, galena and calcite vein developed in the altered carbonatite |
| 22 | D230 | 960 m elevation, south wing of the No.2 ore body | III | Disseminated ore | Veinlet-disseminated ore, mineralized siliceous rock crosscutting by quartz-calcite-pyrite veins |
| 23 | D37-2 | 910 m elevation, north wing of the No.1 ore body | III | Gold bearing ore | The altered marl, with disseminated pyrite, interspersed with quartz-dolomite-pyrite vein |
| 24 | D223.3 | 795 m elevation, south wing of the No.2 ore body | III | Gold bearing ore | Dense disseminated pyrite is developed in the altered rock, with quartz-calcite aggregates |
| Sample/Point No. | Stage | Mineral | δ34S (‰) |
| D216.3/1 | Sedimentary period | Pyrite | 16.9 |
| D216.3/2 | Pyrite | 15.8 | |
| D216.3/5 | Pyrite | 19.9 | |
| D216.3/6 | Pyrite | 21.4 | |
| D216.3/3 | Hydrothermal I | Sphalerite | 7.3 |
| D216.3/4 | Sphalerite | 8.7 | |
| D41/1 | Sphalerite | 9.1 | |
| D41/2 | Pyrite | 8.6 | |
| D41/3 | Sphalerite | 9.3 | |
| D41/4 | Sphalerite | 9.4 | |
| D41/5 | Sphalerite | 8.8 | |
| D51/1 | Pyrite | 8 | |
| D51/2 | Galena | 2.7 | |
| D51/3 | Sphalerite | 7.3 | |
| D51/4 | Sphalerite | 7 | |
| D51/5 | Sphalerite | 8 | |
| D51/6 | Galena | 1.4 | |
| D51/7 | Galena | 2.7 | |
| D51/8 | Pyrite | 7.1 | |
| D51/9 | Sphalerite | 7.1 | |
| D61/1 | Pyrite | 5.3 | |
| D61/2 | Sphalerite | 8.6 | |
| D61/3 | Galena | 1.1 | |
| D61/4 | Sphalerite | 8.8 | |
| D61/5 | Sphalerite | 8.9 | |
| D213.2/1 | Sphalerite | 8.3 | |
| D213.2/2 | Sphalerite | 8.8 | |
| D36.1/1 | Granite porphyry dike | Pyrite | 2.1 |
| D36.1/2 | Pyrite | 4.3 | |
| D36.1/3 | Pyrite | 3.7 | |
| D36.1/4 | Pyrite | 2.5 | |
| D205.2/1 | Hydrothermal II | Pyrite | 7.4 |
| D205.2/2 | Chalcopyrite | 6.4 | |
| D205.2/3 | Pyrite | 7.3 | |
| D205.2/4 | Chalcopyrite | 6.5 | |
| D26/1 | Hydrothermal III | Sphalerite | 9.9 |
| D26/2 | Galena | 4.4 | |
| D26/3 | Sphalerite | 9.5 | |
| D26/4 | Galena | 4.8 | |
| D26/5 | Sphalerite | 9.9 | |
| D26/6 | Pyrite | 10.2 | |
| D26/7 | Sphalerite | 9.3 | |
| D26/8 | Galena | 4.6 | |
| D223.3/1 | Pyrite | 8.9 | |
| D223.3/2 | Pyrite | 3.8 | |
| D223.3/3 | Pyrite | 5 | |
| D223.3/4 | Pyrite | 4.4 | |
| D223.3/5 | Pyrite | 8.7 | |
| D223.3/6 | Pyrite | 7.2 | |
| D223.3/7 | Pyrite | 8.3 |
| Sample/Point No. | Stage | Mineral | 208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb |
| D36/1 | Granite porphyry dike | Pyrite | 38.189 ± 0.010 | 15.595 ± 0.004 | 18.091 ± 0.011 |
| D36/2 | Pyrite | 38.241 ± 0.009 | 15.61 ± 0.004 | 18.101 ± 0.003 | |
| D36/3 | Pyrite | 38.169 ± 0.005 | 15.585 ± 0.002 | 18.092 ± 0.002 | |
| D51/2 | Hydrothermal I | Pyrite | 38.448 ± 0.005 | 15.663 ± 0.002 | 18.076 ± 0.003 |
| D51/3 | Pyrite | 38.286 ± 0.004 | 15.652 ± 0.001 | 18.078 ± 0.002 | |
| D51/4 | Pyrite | 38.324 ± 0.004 | 15.65 ± 0.002 | 18.074 ± 0.002 | |
| D51/1 | Sphalerite | 38.764 ± 0.026 | 15.662 ± 0.005 | 18.075 ± 0.001 | |
| D51/1 | Galena | 38.336 ± 0.008 | 15.661 ± 0.003 | 18.084 ± 0.001 | |
| D51/2 | Galena | 38.319 ± 0.007 | 15.654 ± 0.003 | 18.105 ± 0.002 | |
| D51/3 | Galena | 38.234 ± 0.006 | 15.647 ± 0.002 | 18.096 ± 0.002 | |
| D51/4 | Galena | 38.234 ± 0.009 | 15.646 ± 0.003 | 18.086 ± 0.002 | |
| D61/1 | Galena | 38.217 ± 0.004 | 15.643 ± 0.002 | 18.107 ± 0.005 | |
| D61/2 | Galena | 38.222 ± 0.007 | 15.642 ± 0.002 | 18.102 ± 0.003 | |
| D61/3 | Galena | 38.218 ± 0.005 | 15.641 ± 0.002 | 18.096 ± 0.002 | |
| D61/4 | Galena | 38.293 ± 0.001 | 15.647 ± 0.001 | 18.087 ± 0.002 | |
| D61/5 | Galena | 38.291 ± 0.004 | 15.645 ± 0.001 | 18.090 ± 0.003 | |
| D205-2/1 | Hydrothermal II | Pyrite | 38.307 ± 0.024 | 15.652 ± 0.009 | 18.074 ± 0.002 |
| D205-2/2 | Pyrite | 38.324 ± 0.006 | 15.659 ± 0.002 | 18.074 ± 0.002 | |
| D205-2/3 | Pyrite | 38.314 ± 0.005 | 15.655 ± 0.002 | 18.073 ± 0.002 | |
| D205-2/4 | Pyrite | 38.321 ± 0.005 | 15.659 ± 0.002 | 18.082 ± 0.001 | |
| D205-2/5 | Pyrite | 38.301 ± 0.007 | 15.65 ± 0.003 | 18.080 ± 0.001 | |
| D26/1 | Hydrothermal III | Galena | 38.301 ± 0.007 | 15.646 ± 0.003 | 18.097 ± 0.002 |
| D26/2 | Galena | 38.306 ± 0.005 | 15.649 ± 0.024 | 18.086 ± 0.003 | |
| D26/3 | Galena | 38.299 ± 0.006 | 15.646 ± 0.002 | 18.091 ± 0.004 | |
| D26/4 | Galena | 38.293 ± 0.003 | 15.645 ± 0.001 | 18.265 ± 0.005 | |
| D26/5 | Galena | 38.310 ± 0.003 | 15.654 ± 0.001 | 18.078 ± 0.002 |
| Sample No. | Mineral | Stage | Rb (μg/g) | Sr (μg/g) | 87Rb/86Sr | 87Sr/86Sr | 2σ |
| DTZ-2-2 | Spalerite | I | 0.4932 | 2.7590 | 0.5278 | 0.712041 | 0.000008 |
| DTZ-1 | Pyrite | I | 1.2070 | 5.2180 | 0.6794 | 0.712506 | 0.000008 |
| DTZ-1 | Galena | I | 0.2347 | 0.3742 | 1.8150 | 0.715902 | 0.000009 |
| DTZ-1 | Spalerite | I | 0.7834 | 1.6930 | 1.3620 | 0.714581 | 0.000010 |
| DTZ-3-4 | Galena | I | 0.3728 | 0.3105 | 3.5470 | 0.721159 | 0.000008 |
| DTZ-3-4 | Spalerite | I | 0.9346 | 0.3957 | 6.9710 | 0.731475 | 0.000009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
