Submitted:
09 January 2024
Posted:
09 January 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Results and Discussions
PET-CT in primary cancer diagnosis
PET-CT in Breast Cancer Staging
PET-CT and Lymph Node metastases
PET-CT and Distant metastases
PET-CT and Prognosis
PET-CT and treatment response
PET-CT and Disease Recurrence
Impact of indeterminate lesions on PET-CT
PET-CT and cost effectiveness
PET-CT and future prospects
Conclusion
References
- Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1) 7–30. [CrossRef]
- Groheux, D. FDG-PET/CT for Primary Staging and Detection of Recurrence of Breast Cancer. Sem Nucl Med.2022; 52(5) 508–519. [CrossRef]
- Cancer Research UK (2023). Breast cancer survival statistics. Available at: https://web.archive.org/web/20220207071809/https://www.cancerresearchuk.org/health- professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/survival (Accessed:30th September 2023).
- James, J., Teo, M., Ramachandran, V., Law, M., Stoney, D. and Cheng, M. Performance of CT scan of abdomen and pelvis in detecting asymptomatic synchronous metastasis in breast cancer. Int J Surg.2017; 46 164–169. [CrossRef]
- National Cancer Registry. Breast Cancer Incidence, Mortality, Treatment and Survival in Ireland: 1994–2009. [Internet]. [cited 2023 Mar 19]. Available from: http://www.ncri.ie/publications/statistical-reports/breast-cancer.
- Lyratzopoulos G, Abel GA, Barbiere JM, Brown CH, Rous BA, Greenberg DC. Variation in advanced stage at diagnosis of lung and female breast cancer in an English region 2006–2009. Br J Cancer. 2012;106(6):1068–75. [CrossRef]
- Johnson RH, Chien FL, Bleyer A. Incidence of Breast Cancer With Distant Involvement Among Women in the United States, 1976 to 2009. JAMA. 2013;309(8):800. [CrossRef]
- Costelloe, C.M., Rohren, E.M., Madewell, J.E., Hamaoka, T., Theriault, R.L., Yu, T.-K., Lewis, V.O., Ma, J., Stafford, R.J., Tari, A.M., Hortobagyi, G.N. and Ueno, N.T. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. The Lancet Oncology.2009; 10(6) 606–614. [CrossRef]
- Brennan, M.E. and Houssami, N. Evaluation of the evidence on staging imaging for detection of asymptomatic distant metastases in newly diagnosed breast cancer. The Breast. 2012; 21(2) 112–123. [CrossRef]
- National Institute for Health and Care Excellence (2018). Early and locally advanced breast cancer: diagnosis and management. Available at: https://www.nice.org.uk/guidance/ng101 (Accessed: 20th October 2023).
- National Institute for Health and Care Excellence (2018). Early and locally advanced breast cancer: diagnosis and management. Available at: https://www.nice.org.uk/guidance/ng101 (Accessed: 20th October 2023).
- National Comprehensive Cancer Network (2023) NCCN Guidelines Breast Cancer. Available at: https://www.nccn.org/guidelines/recently-published-guidelines (Accessed: 30th October 2023).
- European Society for Medical Oncology (2023) Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. (Accessed: 30th October 2023).
- Abouzied MM, Fathala A, AlMuhaideb A,Al Qahtani MH. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the evaluation of breast carcinoma: Indications and pitfalls with illustrative case examples. World J Nucl Med 2020;19:187-96. [CrossRef]
- Niikura N, Costelloe CM, Madewell JE, et al. FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 2011;16:1111–1119. [CrossRef]
- Riedl CC, Slobod E, Jochelson M, et al. Retrospective analysis of 18F-FDG PET/CT for staging asymptomatic breast cancer patients younger than 40 years. J Nucl Med 2014;55:1578–1583. [CrossRef]
- Kumar R,Chauhan A,Zhuang H,Chandra P,Schnall M,Alavi A.Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006; 98:267-74.
- Warning K, Hildebrandt MG, Kristensen B, Ewertz M. Utility of 18FDG-PET/CT in breast cancer diagnostics—a systematic review. Dan Med Bull. 2018;58:A4289.
- Grueneisen J, Nagarajah J, Buchbender C, Hoffmann O, Schaarschmidt BM, Poeppel T et al. Positron emission tomography/magnetic resonance imaging for local tumor staging in patients with primary breast cancer: a comparison with positron emission tomography/computed tomography and magnetic resonance imaging. Invest Radiol. (2015) 50:505–13.
- Miyake KK, Nakamoto Y, Kanao S et al (2014) Journal Club: diagnostic value of 18F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. Am J Roentgenol 203:272–279.
- Koo HR, Park JS, Kang KW, Cho N,Chang JM, Bae MS,Kim WH,Lee SH,Kim MY,Kim JY,Seo M,Moon WK. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur Radiol.2014; 24:610–618. [CrossRef]
- Hogan MP, Goldman DA, Dashevsky B, Riedl CC, Gönen M, Osborne JR, Jochelson M, Hudis C, Morrow M, Ulaner GA. Comparison of 18F-FDG PET/CT for Systemic Staging of Newly Diagnosed Invasive Lobular Carcinoma Versus Invasive Ductal Carcinoma. J Nucl Med. 2015 Nov;56(11):1674-80. [CrossRef]
- Lopez JK, Bassett LW. Invasive lobular carcinoma of the breast: spectrum of mammographic US, and MR imaging findings. Radiographics. 2009; 29:165–176.
- Avril N, Menzel M, Dose J, et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001; 42:9–16.
- Bos R, van Der Hoeven JJ, van Der Wall E, et al. Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002; 20:379–387.
- Dashevsky BZ, Goldman DA, Parsons M, Mithat Gönen, Corben AD, Jochelson MS, et al. Appearance of untreated bone metastases from breast cancer on FDG PET/CT: importance of histologic subtype. Eur J Nucl Med Mol Imaging. 2015 May 14;42(11):1666–73. [CrossRef]
- Niikura N, Costelloe CM, Madewell JE, et al. FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 2011;16:1111–1119.
- Riedl CC, Slobod E, Jochelson M, et al. Retrospective analysis of 18F-FDG PET/CT for staging asymptomatic breast cancer patients younger than 40 years. J Nucl Med 2014;55:1578–1583.
- Abouzied M, Tuli M, Alsugair A, Alblushi N, Rifai A. Does bone scan add any incremental value to 18FDG PET/CT in restaging patients with breast carcinoma? Radiology;(Suppl.1),302:November 2007.
- Cook GJ,Houston S, Rubens R,Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18 FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375-9. [CrossRef]
- Nakai T,Okuyama C,Kubota T,Yamada K,Ushijima Y,Taniike K et al.Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 2005;32:1253-8.
- Algafri A,Al-Tweigeri T,Al-Sugair A,Al-Seabee M,Al- Alawi E, Fathala A,et al. The Diagnostic Accuracy of FEG PET Low Dose Non Enhanced CT in Detection of Local Recurrence and Distant Metastases during Follow-up of Breast Cancer Patients: A Comparison to Enhanced CT and Bone Scan. Vienna, Austria: The European Congress of Radiology;2012.
- Peare R, Staff RT, Heys SD (2010) The use of FDG-PET in assessing axillary lymph node status in breast cancer: a systematic review and meta-analysis of the literature. Breast Cancer Res Treat 123:281–290.
- Wahl RL,Siegel BA, Coleman RE, Gatsonis CG, PET Study Group.Prospective multicentre study of axillary nodal staging by positron emission tomography in breast cancer: A report of the staging breast cancer with PET Study Group. J Clin Oncol 2004;22:277-85.
- Gil-Rendo A, Zornoza G, Garcia-Velloso MJ et al (2006) Fluo rodeoxyglucose positron emission tomography with sentinel lymph node biopsy for evaluation of axillary involvement in breast cancer. Br J Surg 93:707–712.
- Zornoza G, Garcia-Velloso MJ, Sola J et al (2004) 18F-FDG PET complemented with sentinel lymph node biopsy in the detection of axillary involvement in breast cancer. Eur J Surg Oncol 30:15–19.
- Schirrmeister H, Kuhn T, Guhlmann A et al (2001) Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 28:351–358.
- Brown, A.H., Shah, S., Groves, A.M., Wan, S. and Malhotra, A. (2021) The Challenge of Staging Breast Cancer With PET/CT in the Era of COVID Vaccination. Clinical nuclear medicine, 46(12) 1006–1010. [CrossRef]
- Kumar R, Zhuang H, Schnall M et al (2006) FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med Commun 27:231–236.
- Lovrics PJ, Chen V, Coates G et al (2004) A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann Surg Oncol 11:846–853.
- Guller U, Nitzsche EU, Schirp U et al (2002) Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-D-glucose: not yet!. Breast Cancer Res Treat 71:171–173.
- Cochet A, Dygai-Cochet I, Riedinger JM et al (2014) 18F-FDG PET/ CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations. Eur J Nucl Med Mol Imaging 41:428–437.
- Yararbas U, Avci NC, Yeniay L, et al. The value of 18F-FDG PET/CT imaging in breast cancer staging. Bosn J Basic Med Sci 2018;18: 72–79. [CrossRef]
- Ko H, Baghdadi Y,Love C,Sparano JA. Clinical Utility of 18F-FDG PET/CT in Staging Localized Breast Cancer Before Initiating Preoperative Systemic Therapy. J Natl Compr Canc Netw 2020;18(9):1240–1246. [CrossRef]
- Seo MJ, Lee JJ, Kim HO et al (2014) Detection of internal mammary lymph node metastasis with 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with stage III breast cancer. Eur J Nucl Med Mol Imaging 41:438–445.
- Hong S, Li J, Wang S (2013) 18FDG PET-CT for diagnosis of distant metastases in breast cancer patients. A meta-analysis. Surg Oncol 22:139–143.
- Hansen JA, Naghavi-Bezhad M,Gerke O,Baun C,Falch K,Duvnjak S,Alavi A,Hoilund-Carlsen PF,Hildebrandt MG. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS One 2021 Nov 18;16(11):e0260066. [CrossRef]
- Evangelista L, Panunzio A, Polverosi R et al (2012) Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomed Pharmacother 66:448–453.
- Rong J,Wang S,Ding Q,Yun M,Zheng Z,Ye S. Comparison of 18 FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol. 2013 Jun;22(2):86-91. [CrossRef]
- Baba S, Isoda T, Maruoka Y et al (2014) Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion weighted MR imaging. J Nucl Med 55:736–742.
- Chang CC, Tu HP, Chen YW, Lin CY, Hou MF (2014) Tumour and lymph node uptakes on dual-phased 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography correlate with prognostic parameters in breast cancer. J Int Med Res 42:1209–1221.
- Diao W,Tian F,Jia Z. The prognostic value of SUVmax measuring on primary lesion and ALN by 18F-FDG PET or PET/CT in patients with breast cancer. Eur J Radiol 2018 Aug:105:1-7. [CrossRef]
- Kitajima K, Higuchi T, Fujimoto Y, Ishikawa E, Yokoyama H, Komoto H, Inao Y, Yamakado K, Miyoshi Y. Relationship between FDG-PET and the immune microenvironment in breast cancer. Eur J Radiol 2023 Jan:158:110661. [CrossRef]
- Groheux D, Giacchetti S, Delord M et al (2015) Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging 42:377–385.
- Han S,Choi JY. Prognostic value of 18F-FDG PET and PET/CT for assessment of treatment response to neoadjuvant chemotherapy in breast cancer: a systematic review and metaanalysis. Breast Cancer Res 2020 Oct 31;22(1):119. [CrossRef]
- Xiao Y, Wang L, Jiang X, She W, He L, Hu G (2016) Diagnostic efficacy of 18F-FDG-PET or PET/CT in breast cancer with suspected recurrence: a systematic review and meta-analysis. Nucl Med Commun 37:1180–1188.
- Hildebrandt MG, Gerke O, Baun C, et al: [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in suspected recurrent breast cancer: a prospective comparative study of dual-time-point FDG-PET/CT, Contrast-Enhanced CT, and bone scintigraphy. J Clin Oncol 2016;34:1889-1897.
- Vogsen M, Jensen JD, Gerke O, et al: Benefits and harms of implementing [18F]FDG-PET/CT for diagnosing recurrent breast cancer: A prospective clinical study. EJNMMI Res 11:93, 2021. [CrossRef]
- Dong Y,Hou H,Wang C,Li J,Yao Q, Amer S,Tian M.The Diagnostic Value of 18F-FDG PET/CT in Association with Serum Tumor Marker Assays in Breast Cancer Recurrence and Metastasis. Biomed Res Int. 2015;2015:489021. [CrossRef]
- Corso G, Gilardi L, Girardi A, et al: How useful are tumor markers in detecting metastases with FDG-PET/CT during breast cancer surveillance? Oncology 2020; 98:714-718.
- Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med Off Publ Soc Nucl Med.2005;46(5):752–7.
- Britt CJ, Maas AM, Kennedy TA, Hartig GK. Incidental findings on FDG PET/CT in head and neck cancer. Otolaryngol Head Neck Surg. 2018;158(3):484–8. [CrossRef]
- Kousgaard SJ, Thorlacius-Ussing O. Incidental colorectal FDG uptake on PET/CT scan and lesions observed during subsequent colonoscopy: a systematic review. Tech Coloproctol. 2017;21(7):521–9. [CrossRef]
- Rohde M, Nielsen AL, Johansen J, Sorensen JA, Nguyen N, Diaz A, et al. Head-to-head comparison of chest X-ray/head and neck MRI, chest CT/head and neck MRI, and (18)F-FDG PET/CT for detection of distant metastases and synchronous cancer in oral, pharyngeal, and laryngeal cancer. J Nucl Med Off Publ Soc Nucl Med. 2017;58(12):1919–24.
- Sponholtz SE, Mogensen O, Hildebrandt MG, Jensen PT. Clinical impact of pre-treatment FDG-PET/CT staging of primary ovarian, fallopian tube, and peritoneal cancers in women. Acta Obstet Gynecol Scand. 2020;99(2):186–95.
- Hyland, C.J., Varghese, F., Yau, C., Beckwith, H., Khoury, K., Varnado, W., Hirst, G.L., Flavell, R.R., Chien, A.J., Yee, D., Isaacs, C.J., Forero-Torres, A., Esserman, L.J. and Melisko, M.E. (2020) Use of 18F-FDG PET/CT as an Initial Staging Procedure for Stage II–III Breast Cancer: A Multicenter Value Analysis. Journal of the National Comprehensive Cancer Network, 18(11) 1510–1517. [CrossRef]
- Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A,Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics 2022; 12, 426.
- Sui, X.; Liu, G.; Hu, P.; Chen, S.; Yu, H.; Wang, Y.; Shi, H. Total-Body PET/Computed Tomography Highlights in Clinical Practice. PET Clin. 2021, 16, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Fan, K.; Li, K.; Cai, W. Dynamic PET imaging with ultra-low-activity of 18F-FDG: Unleashing the potential of total-body PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4138–4141. [Google Scholar] [CrossRef] [PubMed]
- Roop, M.J.; Singh, B.; Singh, H.; Watts, A.; Kohli, P.S.; Mittal, B.R.; Singh, G. Incremental Value of Cocktail 18F-FDG and 18F-NaF PET/CT Over 18F-FDG PET/CT Alone for Characterization of Skeletal Metastases in Breast Cancer. Clin. Nucl. Med. 2017, 42, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Ulaner GA, Hyman DM, Lyashchenko SK, Lewis JS, Carrasquillo JA. 89Zr-Trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer. Clin Nucl Med. 2017; 42:912–7. [CrossRef]
- Haynes, B.; Sarma, A.; Nangia-Makker, P.; Shekhar, M.P. Breast cancer complexity: Implications of intratumoral heterogeneity in clinical management. Cancer Metastasis Rev. 2017, 36, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Cajal, S.R.Y.; Sesé, M.; Capdevila, C.; Aasen, T.; Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical implications of intratumor heterogeneity: Challenges and opportunities. J. Mol. Med. 2020, 98, 161. [Google Scholar] [CrossRef] [PubMed]
- Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E. The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J. Clin. Med. 2022, 11, 1740. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Aktolun, C. Artificial intelligence and radiomics in nuclear medicine: Potentials and challenges. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2731–2736. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Kim, Y.; Kim, B.S. Intratumoral metabolic heterogeneity predicts invasive components in breast ductal carcinoma in situ. Eur. Radiol. 2015, 25, 3648–3658. [Google Scholar] [CrossRef] [PubMed]
- Lemarignier, C.; Martineau, A.; Teixeira, L.; Vercellino, L.; Espié, M.; Merlet, P.; Groheux, D. Correlation between tumour characteristics, SUV measurements, metabolic tumour volume, TLG and textural features assessed with 18F-FDG PET in a large cohort of oestrogen receptor-positive breast cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Park, S.; Bang, J.I.; Kim, E.K.; Lee, H.Y. Metabolic Radiomics for Pretreatment 18F-FDG PET/CT to Characterize Locally Advanced Breast Cancer: Histopathologic Characteristics, Response to Neoadjuvant Chemotherapy, and Prognosis. Sci. Rep. 2017, 7, 1556. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Elie, N.; Blanc-Fournier, C.; Levy, C.; Salomon, T.; Lasnon, C. Hormonal Receptor Immunochemistry Heterogeneity and 18F-FDG Metabolic Heterogeneity: Preliminary Results of Their Relationship and Prognostic Value in Luminal Non-Metastatic Breast Cancers. Front. Oncol. 2021, 10, 599050. [Google Scholar] [CrossRef] [PubMed]
- Molina-Garcia D, Garcia-Vicente AM, Perez-Beteta J, Amo-Salas M, Martinez-Gonzalez A, Tello-Galan MJ, et al. Intratumoral heterogeneity in (18)F-FDG PET/CT by textural analysis in breast cancer as a predictive and prognostic subrogate. Ann Nucl Med. 2018; 32:379–88. [CrossRef]
- Yoon HJ, Kim Y, Chung J, Kim BS. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging. Breast J. 2019; 25:373–80. [CrossRef]
- Park JE, Kim D, Kim HS, Park SY, Kim JY, Cho SJ, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 2020; 30:523–36. [CrossRef]
- Li, P.; Wang, X.; Xu, C.; Liu, C.; Zheng, C.; Fulham, M.J.; Feng, D.; Wang, L.; Song, S.; Huang, G. 18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients. Eur. J. Nucl. Med. Mol.Imaging 2020, 47, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-I. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer. Breast Cancer 2021, 28, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Moreau, N.; Rousseau, C.; Fourcade, C.; Santini, G.; Brennan, A.; Ferrer, L.; Lacombe, M.; Guillerminet, C.; Colombié, M.; Jézéquel, P.; et al. Automatic segmentation of metastatic breast cancer lesions on18f-fdg pet/ct longitudinal acquisitions for treatment response assessment. Cancers 2022, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Franc, B.L.; Harnish, R.J.; Liu, G.; Mitra, D.; Copeland, T.P.; Arasu, V.A.; Kornak, J.; Jones, E.F.; Behr, S.C.; et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. Npj Breast Cancer 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Satoh, Y.; Imokawa, T.; Fujioka, T.; Mori, M.; Yamaga, E.; Takahashi, K.; Takahashi, K.; Kawase, T.; Kubota, K.; Tateishi, U.; et al. Deep learning for image classification in dedicated breast positron emission tomography (dbPET). Ann. Nucl. Med. 2022, 36, 401–410. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
