Submitted:
01 February 2024
Posted:
02 February 2024
You are already at the latest version
Abstract
Keywords:
1. The Hubble-Casimir Effect and its Relation to the CMB luminosity
2. The Casimir pressure is mathematical identical to the CMB pressure
3. Possible interpretation
4. Conclusion
Acknowledgments
Conflicts of Interest
References
- H. B. G. Casimir. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet., 51:793, 1948.
- R. Balian and B. Duplantier. Geometry of the Casimir effect. arXiv page 13, 2004. [CrossRef]
- M. E. McCulloch. Inertia from an asymmetric Casimir effect. EPL, 101:59001, 2013a. [CrossRef]
- M. E. McCulloch. A toy cosmology using a Hubble-Scale Casimir effect. Galaxies, 2:81, 2014. [CrossRef]
- U. Leonhardt. The case for a Casimir cosmology. Philosophical Transactions Of The Royal Society A, 378:20190229, 2020. [CrossRef]
- A. C. L. Santos, C. R. Muniz, and L. T. Oliveira. Casimir effect nearby and through a cosmological wormhole. EPL, 135:19002, 2021. [CrossRef]
- U. Leonhardt. Casimir cosmology. International Journal of Modern Physics A, 37:2241006, 2022. [CrossRef]
- W. Dickmann and J. Dickmann. Modification of inertia resulting from a Hubble-scale Casimir effect contradicts classical inertia. Kinematics and Physics of Celestial Bodies, 39:356, 2023. [CrossRef]
- D. J. Fixsen and et. al. The temperature of the cosmic microwave background at 10 GHz. The Astrophysical Journal, 612:86, 2004. [CrossRef]
- D. J. Fixsen. The temperature of the cosmic microwave background. The Astrophysical Journal, 707:916, 2009. [CrossRef]
- P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux, and S. López. The evolution of the cosmic microwave background temperature. Astronomy and Astrophysics, 526, 2011. [CrossRef]
- S. Dhal, S. Singh, K. Konar, and R. K. Paul. Calculation of cosmic microwave background radiation parameters using cobe/firas dataset. Experimental Astronomy (2023), 612:86, 2023. [CrossRef]
- P. L. Kelly and et. al. Constraints on the Hubble constant from supernova Refsdal’s reappearance. Science, 380:6649, 2023. [CrossRef]
- L. Boltzmann. Ableitung des stefanschen gesetzes, betreffend die abhängigkeit der wärmestrahlung von der temperatur aus der electromagnetischen lichttheori. Annalen der Physik und Chemie, 22:291, 1879.
- Stefan J. Über die beziehung zwischen der wärmestrahlung und der temperatur. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien, 79:391, 1879.
- E. G. Haug and S. Wojnow. The blackbody CMB temperature, luminosity, and their relation to black hole cosmology, compared to Bekenstein-Hawking luminosity. Hal archive, 2024. URL https://hal.science/hal-04369924.
- K. Schwarzschild. über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, page 424, 1916.
- S. Hawking. Black hole explosions. Nature, 248, 1974. [CrossRef]
- R. K. Pathria. The universe as a black hole. Nature, 240:298, 1972. [CrossRef]
- W. M. Stuckey. The observable universe inside a black hole. American Journal of Physics, 62:788, 1994. [CrossRef]
- N. Popławski. The universe in a black hole in Einstein–Cartan gravity. The Astrophysical Journal, 832:96, 2016. [CrossRef]
- E. T. Tatum. A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose in New Ideas Concerning Black Holes and the Universe, Edited by Eugene Tatum. 2019. [CrossRef]
- O. Akhavan. The universe creation by electron quantum black holes. Acta Scientific Applied Physics, 2:34, 2022. URL https://actascientific.com/ASAP/pdf/ASAP-02-0046.pdf.
- C. H. Lineweaver and V. M. Patel. All objects and some questions. American Journal of Physics, 91(819), 2023.
- E. G. Haug and G. Spavieri. New exact solution to Einsteins field equation gives a new cosmological model. Researchgate.org Pre-print, 2023a. [CrossRef]
- S. Wojnow. Alternative cosmology: ΛCDM-like predictions today. HyperScience International Journal, 3:4, 2023. [CrossRef]
- F. Melia and Shevchuk A. S. H. The rh=ct universe. Monthly Notices of the Royal Astronomical Society, 419:2579, 2012. [CrossRef]
- F. Melia. The rh=ct universe without inflation. Astronomy & Astrophysics, 553, 2013. [CrossRef]
- F. Melia. The linear growth of structure in the rh=ct universe. Monthly Notices of the Royal Astronomical Society, 464:1966, 2017. [CrossRef]
- E. T. Tatum and U. V. S. Seshavatharam. How a realistic linear rh=ct model of cosmology could present the illusion of late cosmic acceleration. Journal of Modern Physics, 9:1397, 2018.
- M. V. John. rh=ct and the eternal coasting cosmological model. Monthly Notices of the Royal Astronomical Society, 484, 2019. [CrossRef]
- M. V. John and K. B. Joseph. Generalized chen-wu type cosmological model. Physical Review D, 61:087304, 2000. [CrossRef]
- C. A. Coulomb. Premier mémoire sur l’électricité et le magnétisme. Histoire de Académie Royale des Sciences, pages 569–577, 1785.
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:16, 2015. [CrossRef]
- E. G. Haug and S. Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the planck scale using the Stefan-Boltzman law. Research Square, Pre-print, under consideration by journal, 2023. [CrossRef]
- E. G. Haug and E. T. Tatum. The Hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Hal archive, 2023. URL https://hal.science/hal-04308132.
- E. G. Haug. Planck quantized bending of light leads to the CMB temperature. Hal archive, 2023. URL https://hal.science/hal-04357053.
- H. Reissner. Über die eigengravitation des elektrischen feldes nach der Einsteinschen theorie. Annalen der Physics, 355:106, 1916. [CrossRef]
- G. Nordström. On the energy of the gravitation field in Einstein’s theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 20:1238, 1918.
- R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11:237, 1963. [CrossRef]
- E. T. Newman and A. I. Janis. Note on the kerr spinning-particle metric. Journal of Mathematical Physics, 6:915, 1965. [CrossRef]
- E. Newman, E. Couch, K. Chinnapared, A.; Exton, A. Prakash, and R. Torrence. Metric of a rotating, charged mass. Journal of Mathematical Physics, 6:918, 1965. [CrossRef]
- E. G. Haug and G. Spavieri. Mass-charge metric in curved spacetime. International Journal of Theoretical Physics, 62:248, 2023. [CrossRef]
- A. Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin, 1916.
- A. S. Eddington. Report On The Relativity Theory Of Gravitation. The Physical Society Of London, Fleetway Press, London, 1918.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
