Submitted:
05 January 2024
Posted:
05 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Geometrical motivation
1.2. Fractal measure background
1.3. Geometry in dynamical systems
1.4. Structure of the review
2. Classical perspectives of precipitation fractality
2.1. Monofractal dimension
2.2. Temporal concentration
2.2.1. Classical indices
2.2.2. Multifractal approach
2.3. Other measures
2.3.1. Entropy
2.3.2. Hurst exponent
- calculate the mean,
- create a mean-adjusted series,
- calculate the cumulative deviate series Z,
- compute the range R,
- compute the standard deviation S,
- calculate the rescaled range R(δ) /S(δ) and average over all the partial time series of length δ.
- ✓ A value of H = 0.5 suggests a series is random;
- ✓ If 0 < H < 0.5, it suggests an anti-persistent series where up an upward value is more likely followed by a downward value, and vice versa;
- ✓ If 0.5 < H < 1, it indicates a persistent series where the direction of the next value is more likely to be the same as the current value.
2.3.3. IDF curves
3. New perspectives of precipitation fractality
3.1. Temporal and spatial relationships
3.2. Classification of climatic features
4. Concluding remarks
References
- Agbazo, N.M.; Tall, M.; Sylla, M.B. Nonlinear Trend and Multiscale Variability of Dry Spells in Senegal (1951–2010). Atmosphere 2023, 14, 1359. [Google Scholar] [CrossRef]
- Albert, J.; Gulakaram, V.S.; Vissa, N.K.; Bhaskaran, P.K.; Dash, M.K. Recent Warming Trends in the Arabian Sea: Causative Factors and Physical Mechanisms. Climate 2023, 11, 35. [Google Scholar] [CrossRef]
- Al-Mutairi, M.; Labban, A.; Abdeldym, A.; Basset, H.A. Trend Analysis and Fluctuations of Winter Temperature over Saudi Arabia. Climate 2023, 11, 67. [Google Scholar] [CrossRef]
- Almatroud, A.O.; Khennaoui, A.-A.; Ouannas, A.; Grassi, G.; Al-Sawalha, M.M.; Gasri, A. Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control. Entropy 2020, 22, 1344. [Google Scholar] [CrossRef]
- Amaro I. R., Demey J. R., Macchiavelli R. Aplicación del análisis R/S de Hurst para estudiar las propiedades fractales de la precipitación en Venezuela. Interciencia 2004, 29–11, 617–620.
- Anastassiou, G.A.; Kouloumpou, D. Approximation of Brownian Motion on Simple Graphs. Mathematics 2023, 11, 4329. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tate, N.J. Spatial Scale Problems and Geostatistical Solutions: A Review. Prof. Geogr. 2000, 52, 607–623. [Google Scholar] [CrossRef]
- Bäcker, A.; Haque, M.; Khaymovich, I.M. Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems. Phys. Rev. E 2019, 100, 032117. [Google Scholar] [CrossRef]
- Bai, Z.; Wu, Y.; Ma, D.; Xu, Y.-P. A new fractal-theory-based criterion for hydrological model calibration. Hydrol. Earth Syst. Sci. 2021, 25, 3675–3690. [Google Scholar] [CrossRef]
- Barbulescu A, Serban C, Maftei C. Evaluation of Hurst exponent for precipitation time series. Proceedings of the 14th WSEAS international conference on Computers: part of the 14th WSEAS CSCC multiconference. Volume II Latest Trends on Computers 2007, 2, 590–595.
- Biró, T.S.; Deppman, A. Non-Additive Entropy Formulas: Motivation and Derivations. Entropy 2023, 25, 1203. [Google Scholar] [CrossRef]
- Bhoria, A.; Panwar, A.; Sajid, M. Mandelbrot and Julia Sets of Transcendental Functions Using Picard–Thakur Iteration. Fractal Fract. 2023, 7, 768. [Google Scholar] [CrossRef]
- Bodri, L. Fractal analysis of climatic data: Mean annual temperature records in Hungary. Theor. Appl. Clim. 1994, 49, 53–57. [Google Scholar] [CrossRef]
- Breslin, M.; Belward, J. Fractal dimensions for rainfall time series. Math. Comput. Simul. 1999, 48, 437–446. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Sun, Z.; Zhang, J.; Guan, T.; Jin, J.; Liu, C.; Wang, G.; Bao, Z. Centennial Precipitation Characteristics Change in Haihe River Basin, China. Atmosphere 2022, 13, 1025. [Google Scholar] [CrossRef]
- Cheng, Q.; Russell, H.; Sharpe, D.; Kenny, F.; Qin, P. GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges Moraine. Comput. Geosci. 2001, 27, 513–526. [Google Scholar] [CrossRef]
- Chou, Y. Short-term Rainfall Prediction using a Multifractal Model, Massachusetts Institute of Technology, Master’s Degree Thesis 2003, 53 pp.
- Cordery, I.; Pilgrim, D.H.; A Rowbottom, I. Time Patterns of Rainfall for Estimating Design Floods on a Frequency Basis. Water Sci. Technol. 1984, 16, 155–165. [Google Scholar] [CrossRef]
- D’onofrio, D.; Palazzi, E.; von Hardenberg, J.; Provenzale, A.; Calmanti, S. Stochastic Rainfall Downscaling of Climate Models. J. Hydrometeorol. 2014, 15, 830–843. [Google Scholar] [CrossRef]
- de Lima, M.; Grasman, J. Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J. Hydrol. 1999, 220, 1–11. [Google Scholar] [CrossRef]
- Deidda, R. Rainfall downscaling in a space-time multifractal framework. Water Resour. Res. 2000, 36, 1779–1794. [Google Scholar] [CrossRef]
- Peel, D.A.; DeGrauwe, P.; Dewachter, H.; Embrecht, M. Exchange Rate Theory: Chaotic Models of Foreign Exchange Markets. Economica 1994, 61, 402. [Google Scholar] [CrossRef]
- Diez-Sierra, J.; del Jesus, M. Subdaily Rainfall Estimation through Daily Rainfall Downscaling Using Random Forests in Spain. Water 2019, 11, 125. [Google Scholar] [CrossRef]
- Dunkerley, D. Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrol. Process. 2008, 22, 4415–4435. [Google Scholar] [CrossRef]
- Dunkerley, D. Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site. Hydrol. Process. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Dunkerley, D.L. How do the rain rates of sub-event intervals such as the maximum 5- and 15-min rates (I5 or I30) relate to the properties of the enclosing rainfall event? Hydrol. Process. 2010, 24, 2425–2439. [Google Scholar] [CrossRef]
- Foroutan-Pour, K.; Dutilleul, P.; Smith, D. Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 1999, 105, 195–210. [Google Scholar] [CrossRef]
- Frunzete, M. Quality Evaluation for Reconstructing Chaotic Attractors. Mathematics 2022, 10, 4229. [Google Scholar] [CrossRef]
- Gaitán, E.; Monjo, R.; Pórtoles, J.; Pino-Otín, M.R. Impact of climate change on drought in Aragon (NE Spain). Sci. Total. Environ. 2020, 740, 140094. [Google Scholar] [CrossRef]
- Galiano, L.; Monjo, R.; Royé, D.; Martin-Vide, J. Will the world experience more fractal droughts? Atmos. Res. 2024 ATMOSRES-D-23-01485. (under review). [CrossRef]
- Gao, J.; Xia, Z.-G. Fractals in physical geography. Prog. Phys. Geogr. Earth Environ. 1996, 20, 178–191. [Google Scholar] [CrossRef]
- Gao M., Hou X. Trends and Multifractals Analyses of Precipitation Data from Shandong Peninsula, China, American. Journal of Environmental Sciences 2012, 8, 271–279.
- Gao, C.; Xu, Y.-P.; Zhu, Q.; Bai, Z.; Liu, L. Stochastic generation of daily rainfall events: A single-site rainfall model with Copula-based joint simulation of rainfall characteristics and classification and simulation of rainfall patterns. J. Hydrol. 2018, 564, 41–58. [Google Scholar] [CrossRef]
- García Marín, A.P. Análisis multifractal de series de datos pluviométricos en Andalucía, PhD Thesis, Departamento de Ingeniería Rural, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Córdoba 2007, 162 pp.
- García-Marín, A.P. , Jiménez-Hornero F.J., Ayuso-Muñoz J.L. Universal multifractal description of an hourly rainfall time series from a location in southern Spain, Atmósfera 2008, 21(4): 347-355.
- García-Marín, A.P.; Ayuso-Muñoz, J.L.; Jiménez-Hornero, F.J.; Estévez, J. Selecting the best IDF model by using the multifractal approach. Hydrol. Process. 2013, 27, 433–443. [Google Scholar] [CrossRef]
- Gaume, E.; Mouhous, N.; Andrieu, H. Rainfall stochastic disaggregation models: Calibration and validation of a multiplicative cascade model. Adv. Water Resour. 2007, 30, 1301–1319. [Google Scholar] [CrossRef]
- Ghanmi, H.; Bargaoui, Z.; Mallet, C. Investigation of the fractal dimension of rainfall occurrence in a semi-arid Mediterranean climate. Hydrol. Sci. J. 2013, 58, 483–497. [Google Scholar] [CrossRef]
- Ghanmi, H.; Bargaoui, Z.; Mallet, C. Estimation of intensity-duration-frequency relationships according to the property of scale invariance and regionalization analysis in a Mediterranean coastal area. J. Hydrol. 2016, 541, 38–49. [Google Scholar] [CrossRef]
- Gkelsinis, T.; Karagrigoriou, A. Theoretical Aspects on Measures of Directed Information with Simulations. Mathematics 2020, 8, 587. [Google Scholar] [CrossRef]
- Gobbo, S.; Ghiraldini, A.; Dramis, A.; Ferro, N.D.; Morari, F. Estimation of Hail Damage Using Crop Models and Remote Sensing. Remote. Sens. 2021, 13, 2655. [Google Scholar] [CrossRef]
- Guariglia, E.; Guido, R.C.; Dalalana, G.J.P. From Wavelet Analysis to Fractional Calculus: A Review. Mathematics 2023, 11, 1606. [Google Scholar] [CrossRef]
- Guardiola-Albert, C.; Rivero-Honegger, C.; Monjo, R.; Díez-Herrero, A.; Yagüe, C.; Bodoque, J.M.; Tapiador, F.J. Automated convective and stratiform precipitation estimation in a small mountainous catchment using X-band radar data in Central Spain. J. Hydroinformatics 2017, 19, 315–330. [Google Scholar] [CrossRef]
- Gusev, A.A.; Ponomareva, V.V.; Braitseva, O.A.; Melekestsev, I.V.; Sulerzhitsky, L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Hao, F. Compound Extremes in Hydroclimatology: A Review. Water 2018, 10, 718. [Google Scholar] [CrossRef]
- Hasegawa, H.; Katsuta, N.; Muraki, Y.; Heimhofer, U.; Ichinnorov, N.; Asahi, H.; Ando, H.; Yamamoto, K.; Murayama, M.; Ohta, T.; et al. Decadal–centennial-scale solar-linked climate variations and millennial-scale internal oscillations during the Early Cretaceous. Sci. Rep. 2022, 12, 21894. [Google Scholar] [CrossRef]
- Hershfield, D.M. Estimating the Probable Maximum Precipitation. J. Hydraul. Div. 1961, 87, 99–116. [Google Scholar] [CrossRef]
- Hsui, A.T.; Rust, K.A.; Klein, G.D. A fractal analysis of Quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes. J. Geophys. Res. 1993, 98, 21963–21967. [Google Scholar] [CrossRef]
- Huang, C.-C. Gaussian-distribution-based hyetographs and their relationships with debris flow initiation. J. Hydrol. 2011, 411, 251–265. [Google Scholar] [CrossRef]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Diliberto, I.S.; Mazot, A.; Calderone, L.; Mastrolia, A.; Corrao, M. The Extensive Parameters as a Tool to Monitoring the Volcanic Activity: The Case Study of Vulcano Island (Italy). Remote. Sens. 2022, 14, 1283. [Google Scholar] [CrossRef]
- Jahanmiri, F.; Parker, D.C. An Overview of Fractal Geometry Applied to Urban Planning. Land 2022, 11, 475. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, T.; Pi, J.; Anwar, W. The Retentivity of Four Kinds of Shadowing Properties in Non-Autonomous Discrete Dynamical Systems. Entropy 2022, 24, 397. [Google Scholar] [CrossRef]
- Kai, S.; Yamada, T.; Ikuta, S.; Müller, S.C. Fractal Geometry of Precipitation Patterns. J. Phys. Soc. Jpn. 1989, 58, 3445–3448. [Google Scholar] [CrossRef]
- Kalauzi, A.; Cukic, M.; Millán, H.; Bonafoni, S.; Biondi, R. Comparison of fractal dimension oscillations and trends of rainfall data from Pastaza Province, Ecuador and Veneto, Italy. Atmospheric Res. 2009, 93, 673–679. [Google Scholar] [CrossRef]
- Khan, M.S.; Siddiqui T.A. Estimation of fractal dimension of a noisy time series. Int. J. Computer Appl. 2012, 45, 1–6. [CrossRef]
- Khan, M.; Bhattarai, R.; Chen, L. Elevated Risk of Compound Extreme Precipitation Preceded by Extreme Heat Events in the Upper Midwestern United States. Atmosphere 2023, 14, 1440. [Google Scholar] [CrossRef]
- King, M.R. Fractal analysis of eight glacial cycles from an Antarctic ice core. Chaos, Solitons Fractals 2005, 25, 5–10. [Google Scholar] [CrossRef]
- Kiely, G.; Ivanova, K. Multifractal analysis of hourly precipitation. Phys. Chem. Earth, Part B: Hydrol. Oceans Atmosphere 1999, 24, 781–786. [Google Scholar] [CrossRef]
- Kossieris, P.; Makropoulos, C.; Onof, C.; Koutsoyiannis, D. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures. J. Hydrol. 2018, 556, 980–992. [Google Scholar] [CrossRef]
- Kumari, M., Basistha, A., Bakimchandra, O., Singh, C.K. Comparison of Spatial Interpolation Methods for Mapping Rainfall in Indian Himalayas of Uttarakhand Region. In: Raju, N. (eds) Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. Springer, Cham. 2016. [CrossRef]
- Kutiel, H.; Trigo, R.M. The rainfall regime in Lisbon in the last 150 years. Theor. Appl. Clim. 2014, 118, 387–403. [Google Scholar] [CrossRef]
- Langousis, A.; Veneziano, D.; Furcolo, P.; Lepore, C. Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons Fractals 2009, 39, 1182–1194. [Google Scholar] [CrossRef]
- Lee, B.H. Bootstrap Prediction Intervals of Temporal Disaggregation. Stats 2022, 5, 190–202. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Wang, X.; Zhang, J.; Tay, S.H.X.; Pijcke, G.; Manocha, N.; Ong, M.; Nguyen, M.T.; Babovic, V. Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation. Int. J. Clim. 2018, 38, e1119–e1138. [Google Scholar] [CrossRef]
- Licznar P., Deidda R. A space-time multifractal analysis on radar rainfall sequences from central Poland, EGU General Assembly. Geophysical Research Abstracts 2014, 16, 10485.
- Licznar P., De Michele C., Dzugaj D., Niesobska M. Variability of multifractal parameters in an urban precipitation monitoring network, EGU General Assembly 2014. Geophysical Research Abstracts 2014, 16, 4343.
- Liu, L.; Sun, W.; Liu, J.; Wan, L. Centennial Variation and Mechanism of the Extreme High Temperatures in Summer over China during the Holocene Forced by Total Solar Irradiance. Atmosphere 2023, 14, 1207. [Google Scholar] [CrossRef]
- López Lambraño, A.A. Análisis multifractal y modelación de la precipitación, PhD Thesis, Facultad de Ingeniería, Universidad Autónoma de Querétaro 2012.
- Lovejoy, S.; Mandelbrot, B.B. Fractal properties of rain, and a fractal model. Tellus A: Dyn. Meteorol. Oceanogr. 1985, 37A, 209–232. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Tsonis, A.A. Functional Box-Counting and Multiple Elliptical Dimensions in Rain. Science 1987, 235, 1036–1038. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. Multifractals, cloud radiances and rain. J. Hydrol. 2006, 322, 59–88. [Google Scholar] [CrossRef]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Mandelbrot, B. Intermittent turbulence in self-similar cascades–divergence of high moments and dimension of car-rier. J. Fluid Mech. 1974, 62, 331–358. [Google Scholar] [CrossRef]
- Mandelbrot, B. Les Objects Fractals: Forme, Hasard et Dimension; Flammarion: Paris, France, 1975; Volume 17. [Google Scholar]
- Mandelbrot B.B. Multifractal Measures, especially for the Geophysicist. Pure and Applied Geophysics 1989, 131, 5–42. [CrossRef]
- Mandelbrot, B. B.: A fractal set is one for which the fractal (Hausdorff–Besicovitch) dimension strictly exceeds the topological dimension, Fractals and Chaos, 2004.
- Martín-Vide J. Dimensión fractal de las costas gallega y catalana. Notes de Geografia Física 1992, 20-21, 131–136.
- Martin-Vide, J. Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int. J. Clim. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Masugi, M.; Takuma, T. Multi-fractal analysis of IP-network traffic for assessing time variations in scaling properties. Phys. D: Nonlinear Phenom. 2007, 225, 119–126. [Google Scholar] [CrossRef]
- Mazzarella, A.; Rapetti, F. Scale-invariance laws in the recurrence interval of extreme floods: an application to the upper Po river valley (northern Italy). J. Hydrol. 2004, 288, 264–271. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Cantos, J.O.; Sarricolea, P.; Martín-Vide, J. The temporal fractality of precipitation in mainland Spain and the Balearic Islands and its relation to other precipitation variability indices. Int. J. Clim. 2016, 37, 849–860. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Osborn, T.J.; Sarricolea, P.; Jones, P.D.; Cantos, J.O.; Serrano-Notivoli, R.; Martin-Vide, J. Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications. Clim. Dyn. 2018, 52, 439–456. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P.; Singh, P.K. Revisiting the soilconservation service curve number method. In: Singh, V.,Yadav, S. & Yadava, R. (Eds.)Hydrologic modeling. Water Science and Technology Library 2019, 81, Singapore, Springer. [CrossRef]
- Moncho, R. Climatic study of the exponent “n” in IDF curves: application for the Iberian Peninsula. Tethys, J. Weather. Clim. West. Mediterr. 2009. [CrossRef]
- Moncho, R.; Belda, F.; Caselles, V. Distribución probabilística de los extremos globales de precipitación. Nimbus 2011, 27-28, 119–135. [Google Scholar]
- Monjo, R. Measure of rainfall time structure using the dimensionless n-index. Clim. Res. 2016, 67, 71–86. [Google Scholar] [CrossRef]
- Monjo, R.; Gaitán, E.; Pórtoles, J.; Ribalaygua, J.; Torres, L. Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int. J. Clim. 2015, 36, 757–769. [Google Scholar] [CrossRef]
- Monjo, R.; Martin-Vide, J. Daily precipitation concentration around the world according to several indices. Int. J. Clim. 2016, 36, 3828–3838. [Google Scholar] [CrossRef]
- Monjo, R.; Roye, D.; Martin-Vide, J. Meteorological drought lacunarity around the world and its classification. Earth Syst. Sci. Data 2020, 12, 741–752. [Google Scholar] [CrossRef]
- Monjo, R.; Locatelli, L.; Milligan, J.; Torres, L.; Velasco, M.; Gaitán, E.; Pórtoles, J.; Redolat, D.; Russo, B.; Ribalaygua, J. Estimation of future extreme rainfall in Barcelona (Spain) under monofractal hypothesis. Int. J. Clim. 2023, 43, 4047–4068. [Google Scholar] [CrossRef]
- Morata, A.; Martín, M.L.; Luna, M.Y.; Valero, F. Self-similarity patterns of precipitation in the Iberian Peninsula. Theor. Appl. Clim. 2005, 85, 41–59. [Google Scholar] [CrossRef]
- Moutahir, H.; Bellot, P.; Monjo, R.; Bellot, J.; Garcia, M.; Touhami, I. Likely effects of climate change on groundwater availability in a Mediterranean region of Southeastern Spain. Hydrol. Process. 2016, 31, 161–176. [Google Scholar] [CrossRef]
- Moysis, L.; Tutueva, A.; Volos, C.; Butusov, D.; Munoz-Pacheco, J.M.; Nistazakis, H. A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation. Symmetry 2020, 12, 829. [Google Scholar] [CrossRef]
- Mueller-Thomy, H. Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation. Hydrol. Earth Syst. Sci. 2020, 24, 169–188. [Google Scholar] [CrossRef]
- Na, W.; Yoo, C. Evaluation of Rainfall Temporal Distribution Models with Annual Maximum Rainfall Events in Seoul, Korea. Water 2018, 10, 1468. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Nguyen, V.-T.; Nguyen, H.-L. A Spatio-Temporal Statistical Downscaling Approach to Deriving Extreme Rainfall IDF Relations at Ungauged Sites in the Context of Climate Change. EPiC Series in Engineering 2018, 3, 1539–1546. [Google Scholar]
- Nunes, S.A., Romani L.A.S., Avila A.M.H., Coltri P.P., Traina C., Cordeiro R.L.F., de Sousa E.P.M., Traina A.J.M. Fractal-based Analysis to Identify Trend Changes in Multiple Climate Time Series. J. Inform. Data Manag. 2011, 2, 51–57. [CrossRef]
- Nunes S.A., Romani L.A.S., Avila A.M.H., Coltri P.P., Traina C., Cordeiro R.L.F., de Sousa E.P.M., Traina A.J.M. Analysis of Large Scale Climate Data: How Well Climate Change Models and Data from Real Sensor Networks Agree?, pp. 517-526; in Schwabe D., Almeida V., Glaser H., Baeza-Yates R., Moon S. (Eds): Proceedings of the IW3C2 WWW 2013 Conference, IW3C2 2013, Rio de Janeiro, 1591 pp.
- Olsson, J.; Niemczynowicz, J. Multifractal analysis of daily spatial rainfall distributions. J. Hydrol. 1996, 187, 29–43. [Google Scholar] [CrossRef]
- Omidvarnia, A.; Mesbah, M.; Pedersen, M.; Jackson, G. Range Entropy: A Bridge between Signal Complexity and Self-Similarity. Entropy 2018, 20, 962. [Google Scholar] [CrossRef]
- Rubalcaba, J.J.O. Fractal analysis of climatic data: Annual precipitation records in Spain. Theor. Appl. Clim. 1997, 56, 83–87. [Google Scholar] [CrossRef]
- Pathirana A. Fractal modelling of rainfall: downscaling in time and space for hydrological applications, PhD Thesis, Civil Engineering Department, Tokyo University 2001, 145 pp.
- Pathirana, A.; Herath, S.; Yamada, T. Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrol. Earth Syst. Sci. 2003, 7, 668–679. [Google Scholar] [CrossRef]
- Paulson, K.S. Fractal interpolation of rain rate time series. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Peitgen HO, Saupe D (1988) The Science of Fractal Images. Springer-Verlag, New York.
- Peleg, N.; Fatichi, S.; Paschalis, A.; Molnar, P.; Burlando, P. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J. Adv. Model. Earth Syst. 2017, 9, 1595–1627. [Google Scholar] [CrossRef]
- Pelletier, J.D. Analysis and Modeling of the Natural Variability of Climate. J. Clim. 1997, 10, 1331–1342. [Google Scholar] [CrossRef]
- Pérez, S.P. Pérez S.P., Sierra E.M., Massobrio M.J., Momo F.R. Análisis fractal de la precipitación anual en el este de la Provincia de la Pampa, Argentina. Revista de Climatología 2009, 9, 25–31. [Google Scholar]
- Pimont, F.; Dupuy, J.-L.; Linn, R.R.; Sauer, J.A.; Muñoz-Esparza, D. Pressure-Gradient Forcing Methods for Large-Eddy Simulations of Flows in the Lower Atmospheric Boundary Layer. Atmosphere 2020, 11, 1343. [Google Scholar] [CrossRef]
- Pizarro, R.; Valdés, R.; Abarza, A.; Garcia-Chevesich, P. A simplified storm index method to extrapolate intensity-duration-frequency (IDF) curves for ungauged stations in central Chile. Hydrol. Process. 2014, 29, 641–652. [Google Scholar] [CrossRef]
- Prykarpatski, A.K.; Pukach, P.Y.; Vovk, M.I. Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability. Entropy 2023, 25, 308. [Google Scholar] [CrossRef]
- Rafatnejad, A.; Tavakolifar, H.; Nazif, S. Evaluation of the climate change impact on the extreme rainfall amounts using modified method of fragments for sub-daily rainfall disaggregation. Int. J. Clim. 2021, 42, 908–927. [Google Scholar] [CrossRef]
- Raidl, A. Estimating the fractal dimension,K 2 -entropy, and the predictability of the atmosphere. Czechoslov. J. Phys. 1996, 46, 293–328. [Google Scholar] [CrossRef]
- Rayner, D.; Achberger, C.; Chen, D. A multi-state weather generator for daily precipitation for the Torne River basin, northern Sweden/western Finland. Adv. Clim. Chang. Res. 2016, 7, 70–81. [Google Scholar] [CrossRef]
- Rangarajan, G.; Sant, D.A. A climate predictability index and its applications. Geophys. Res. Lett. 1997, 24, 1239–1242. [Google Scholar] [CrossRef]
- Rangarajan, G.; Sant, D.A. Fractal dimensional analysis of Indian climatic dynamics. Chaos, Solitons Fractals 2004, 19, 285–291. [Google Scholar] [CrossRef]
- Redolat, D.; Monjo, R.; Paradinas, C.; Pórtoles, J.; Gaitán, E.; Prado-Lopez, C.; Ribalaygua, J. Local decadal prediction according to statistical/dynamical approaches. Int. J. Clim. 2020, 40, 5671–5687. [Google Scholar] [CrossRef]
- Redolat, D.; Monjo, R. Statistical predictability of Euro-Mediterranean subseasonal anomalies: The TeWA approach. Weather. Forecast. 2024, -1. [Google Scholar] [CrossRef]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos, Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Rehman, S.; Siddiqi, A. Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics. Chaos, Solitons Fractals 2009, 40, 1081–1090. [Google Scholar] [CrossRef]
- Reiser, H.; Kutiel, H. Rainfall uncertainty in the Mediterranean: Intraseasonal rainfall distribution. Theor. Appl. Clim. 2009, 100, 105–121. [Google Scholar] [CrossRef]
- Rodríguez, R.; Casas, M.C.; Redaño, A. Multifractal analysis of the rainfall time distribution on the metropolitan area of Barcelona (Spain). Meteorol. Atmospheric Phys. 2013, 121, 181–187. [Google Scholar] [CrossRef]
- Rull, V.; Blasco, A.; Calero, M. .; Blaauw, M.; Vegas-Vilarrúbia, T. A Continuous Centennial Late Glacial-Early Holocene (15–10 cal kyr BP) Palynological Record from the Iberian Pyrenees and Regional Comparisons. Plants 2023, 12, 3644. [Google Scholar] [CrossRef]
- Al-Wagdany, A.S. Intensity-duration-frequency curve derivation from different rain gauge records. J. King Saud Univ. - Sci. 2020, 32, 3421–3431. [Google Scholar] [CrossRef]
- Sahay, J.D., Sreenivasan K.R. The search for a low-dimensional characterization of a local climate system. Philosophical Transactions of the Royal Society 1996, 354, 1715–1750. [CrossRef]
- Sangüesa, C.; Pizarro, R.; Ingram, B.; Ibáñez, A.; Rivera, D.; García-Chevesich, P.; Pino, J.; Pérez, F.; Balocchi, F.; Peña, F. Comparing Methods for the Regionalization of Intensity−Duration−Frequency (IDF) Curve Parameters in Sparsely-Gauged and Ungauged Areas of Central Chile. Hydrology 2023, 10, 179. [Google Scholar] [CrossRef]
- Sangüesa, C.; Rivera, D.; Pizarro, R.; García-Chevesich, P.; Ibáñez, A.; Pino, J. Spatial and temporal behavior of annual maximum sub-hourly rainfall intensities from 15-minute to 24-hour durations in central Chile. Aqua-LAC 2021, 13, 143–156. [Google Scholar] [CrossRef]
- Shen, B.-W.; Pielke, R.A.; Zeng, X. One Saddle Point and Two Types of Sensitivities within the Lorenz 1963 and 1969 Models. Atmosphere 2022, 13, 753. [Google Scholar] [CrossRef]
- Schmitt, F.G.; Huang, Y. Stochastic Analysis of Scaling Time Series: from Turbulence Theory to Applications; Cambridge University Press (CUP): Cambridge, United Kingdom, 2015. [Google Scholar]
- Selvi T., Selvaraj S. Fractal dimension analysis of Northeast monsoon of Tamil Nadu. Universal Journal of Environmental Research and Technology 2011, 1, 219–221.
- Muraja, D.O.S.; Klausner, V.; Prestes, A.; Aakala, T.; Macedo, H.G.; da Silva, I.R. Exploring the Centennial-Scale Climate History of Southern Brazil with Ocotea porosa (Nees & Mart.) Barroso Tree-Rings. Atmosphere 2023, 14, 1463. [Google Scholar] [CrossRef]
- Sivakumar, B. A preliminary investigation on the scaling behaviour of rainfall observed in two different climates. Hydrol. Sci. J. 2000, 45, 203–219. [Google Scholar] [CrossRef]
- Sivakumar, B. Fractal analysis of rainfall observed in two different climatic regions. Hydrol. Sci. J. 2000, 45, 727–738. [Google Scholar] [CrossRef]
- Sivakumar, B. Is a chaotic multi-fractal approach for rainfall possible? Hydrol. Process. 2001, 15, 943–955. [Google Scholar] [CrossRef]
- Suárez-Carreño, F.; Rosales-Romero, L.; Salazar, J.; Acosta-Vargas, P.; Mendoza-Cedeño, H.-F.; Verde-Luján, H.E.; Flor-Unda, O. Simulation of Wave Propagation Using Finite Differences in Oil Exploration. Appl. Sci. 2023, 13, 8852. [Google Scholar] [CrossRef]
- Sun, X.; Barros, A.P. An Evaluation of the Statistics of Rainfall Extremes in Rain Gauge Observations, and Satellite-Based and Reanalysis Products Using Universal Multifractals. J. Hydrometeorol. 2010, 11, 388–404. [Google Scholar] [CrossRef]
- Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Rand, D., Young, L.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Tchiguirinskaia I., Schertzer D., Hoang, C.T., Lovejoy S. (2012): Multifractal study of three storms with different dynamics over the Paris region, Weather Radar and Hydrology Symp., Exeter, United Kingdom, IAHS, 421–426.
- Telesca, L.; Lapenna, V.; Scalcione, E.; Summa, D. Searching for time-scaling features in rainfall sequences. Chaos, Solitons Fractals 2007, 32, 35–41. [Google Scholar] [CrossRef]
- Teixeira-Gandra, C.F.A.; Damé, R.d.C.F. Bartlett-Lewis of rectangular pulse modified model: estimate of parameters for simulation of precipitation in sub-hourly duration. 2014, 34, 925–934. [CrossRef]
- Tuček P., Marek L. Paszto V., Janoška Z., Dančák M. (2011): Fractal perspectives of GIScience based on the leaf shape analysis, GeoComputation Conference Proceedings, University College London, pp. 169-176.
- Tusset, A.M.; Fuziki, M.E.K.; Balthazar, J.M.; Andrade, D.I.; Lenzi, G.G. Dynamic Analysis and Control of a Financial System with Chaotic Behavior Including Fractional Order. Fractal Fract. 2023, 7, 535. [Google Scholar] [CrossRef]
- Valdez-Cepeda, R.D.; Hernández-Ramírez, D.; Mendoza, B.; Valdés-Galicia, J.; Maravilla, D. Fractality of monthly extreme minimum temperature. Fractals 2003, 11, 137–144. [Google Scholar] [CrossRef]
- van Hateren, J.H. A fractal climate response function can simulate global average temperature trends of the modern era and the past millennium. Clim. Dyn. 2012, 40, 2651–2670. [Google Scholar] [CrossRef]
- Velhinho, J. Topics of Measure Theory on Infinite Dimensional Spaces. Mathematics 2017, 5, 44. [Google Scholar] [CrossRef]
- Veneziano, D.; Furcolo, P. Multifractality of rainfall and scaling of intensity-duration-frequency curves. Water Resour. Res. 2002, 38, 42–1. [Google Scholar] [CrossRef]
- Veneziano, D.; Langousis, A.; Furcolo, P. Multifractality and rainfall extremes: A review. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Wilcox, C.; Aly, C.; Vischel, T.; Panthou, G.; Blanchet, J.; Quantin, G.; Lebel, T. Stochastorm: A Stochastic Rainfall Simulator for Convective Storms. J. Hydrometeorol. 2021, 22, 387–404. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Liu, D.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Khan, M.I.; Li, T. Application of an improved multifractal detrended fluctuation analysis approach for estimation of the complexity of daily precipitation. Int. J. Clim. 2021, 41, 4653–4671. [Google Scholar] [CrossRef]
- Zhao, Y.; Anwar, W.; Li, R.; Lu, T.; Mo, Z. Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps. Mathematics 2023, 11, 3310. [Google Scholar] [CrossRef]
- Zakinyan, R.; Zakinyan, A.; Ryzhkov, R. Phases of the Isobaric Surface Shapes in the Geostrophic State of the Atmosphere and Connection to the Polar Vortices. Atmosphere 2016, 7, 126. [Google Scholar] [CrossRef]
- Zhou, X. (2004): Fractal and Multifractal Analysis of Runoff Time Series and Stream Networks in Agricultural Watersheds, PhD Thesis, Virginia Polytechnic Institute and State University, 135 pp.
- Zhu, X.-H.; Wang, J. On fractal mechanism of coastline. Chin. Geogr. Sci. 2002, 12, 142–145. [Google Scholar] [CrossRef]



| Name | Description | DSS n-index |
WSL (days) | Examples of areas that experience this climate |
|---|---|---|---|---|
| Hs | Long droughts with short wet spells | > 0.4 | < 3 | Arid and semi-arid regions |
| Hl | Long droughts with long wet spells | ≥ 3 | Tropical and monsoon regions | |
| Ms | Medium droughts with short wet spells | [0.3, 0.4] | < 3 | Transition areas |
| Ml | Medium droughts with long wet spells | ≥ 3 | Oceanic areas | |
| Ls | Short droughts with short wet spells | < 0.3 | < 3 | Frequent extratropical-cyclonic areas |
| Ll | Short droughts with long wet spells | ≥ 3 | Equatorial climate and regular polar jet streams (e.g. southern annular mode) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
