Submitted:
04 January 2024
Posted:
04 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Viruses That Can Cross The Placenta
2.1. DNA Viruses
2.1.1. Porcine Circoviruses (Pcvs)
2.1.2. Porcine Parvovirus (PPV)
2.1.3. Porcine Cytomegalovirus (PCMV)
2.1.4. Porcine Lymphotropic Herpesviruses (PLHV)
| Name | Family | Characteristics | Infectious species | Transmission routes | Clinical signs (Pig) | Sample origin | Detection methods | Clinical signs (Human) | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| PCV1 | Circo-viridae | Single stranded, non-enveloped, circular | Pig, Cow, Dog, Rodent | Unknown | Non-symptomatic | Serum, Superficial inguinal lymph node | DNA-based test (e.g., PCR), Antibody test (e.g., ISH) |
- | [16,25,102,103] |
| PCV2 | Circo-viridae | Single stranded, non-enveloped, circular | Pig, Cow, Dog, Rodent | Respiratory, digestive, and urinary secretion, Direct contact, fomites (Clothes, boots, equipment, etc.), Blood |
Postweaning multisystemic wasting syndrome (PMWS) Porcine dermatitis and nephropathy syndrome (PDNS), Porcine proliferative and necrotizing pneumonia (PNP), Reproductive failure (e.g., abortion, reduced litter size, stillbirth), Diarrhea, Lymph node swelling, Hemorrhage in skin and kidney, Inflammation in skin and kidney, Myocarditis/Vasculitis |
Serum, Urine, Feces, Tracheobronchial swab specimen, Lymphoid organ (e.g., Superficial inguinal lymph nodes), Macrophage, Monocytes, Lung, Endothelia, Epithelia, Abortus | DNA-based test (e.g., PCR, Quantitative PCR), Antibody test (e.g., ISH, ELISA) |
- | [6,16,25,29,46,47,102,103,104,105,106,107] |
| PCV3 | Circo-viridae | Single stranded, non-enveloped , circular | Pig, Cow, Dog, Deer, Mouflon, Tick, Mosquito | Respiratory, digestive, and urinary secretion, Direct contact, fomites (Clothes, boots, equipment, etc.), Blood, Feces, Tear, Milk, Semen |
Porcine dermatitis and nephropathy syndrome (PDNS), Porcine respiratory disease complex (PRDC), Reproductive failure, Enteric disease, Central nervous system sign (e.g., congenital tremor), Multi-systemic inflammation |
Serum, Oral fluid, Swab specimen from respiratory tract and biopsy, Feces, Semen, Colostrum, Heart, Lung, Lymphoid tissue | DNA-based test (e.g., PCR, Quantitative PCR, LAMP), Antibody test (e.g., ISH, IHC, ELISA) |
- | [6,16,26,33,34,50,108,109,110] |
| PPV | Parvo-viridae | Single stranded, non-enveloped | Pig | Fomites (Clothes, boots, equipment, etc.) |
Reproductive failure (e.g., stillbirth, mummification, embryonic death, infertility (SMEDI), abortion, small litters, weak piglet) | Feces, Urine, Tissue, Nasal swab, Semen, Intestine, Lymphoid tissue |
DNA-based test (e.g., PCR, Quantitative PCR, LAMP), Serological test (e.g., HA, HI) Antibody test (e.g., IF, ELISA) |
- | [51,52,54,65,111] |
| PCMV | Herpes-viridae | Double stranded, enveloped | Pig only | Nasal secretion, Ocular secretion, Urine, Cervical fluid, Direct contact, Congenital transmission | Inclusion body rhinitis (IBR), Reproductive failure (e.g., abortion, stillbirth or mummification), Pneumonia, Anemia, Fever | Semen, Nasal swab, Buffy coat, Monocyte, Lymphocyte, Epithelia, Lung lavage, Kidney, Brain, Liver, Bone marrow | DNA-based test (e.g., Quantitative PCR, LAMP), Antibody test (e.g., ISH, IHC, ELISA, WB) |
- | [6,67,68,70,83,84,85,86,87] |
| PLHV | Herpes-viridae | Double stranded, enveloped | Mostly in Pig | Not clear, mainly horizontal and vertical transmission |
Non-symptomatic Post-transplant lymphoproliferative disease (PTLD), Lethargy, Anorexia, High white blood cell count, Lymph node swelling |
Tissue, B lymphocyte, PBMC, Tonsil, Liver, Kidney, Aorta, Salivary gland, Lung, Spleen | DNA-based test (e.g., PCR, Quantitative PCR), Antibody test (e.g., WB, ELISA) |
- | [89,90,91,92,93,95,97,98,99,100,101] |
2.2. RNA viruses
2.2.1. Encephalomyocarditis Virus (EMCV)
2.2.2. Hepatitis E Virus (HEV)
2.2.3. Porcine Reproductive And Respiratory Syndrome Virus (PRRSV)
| Name | Family | Characteristics | Infectious species | Transmission routes | Clinical signs (Pig) | Sample origin | Detection methods | Clinical signs (Human) | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| EMCV | Picorna-viridae | Single stranded, non-enveloped | Pig, Primate, Even-and Odd-toed ungulate, Elephant, Carnivore, Rodent | Rodent-to-pig transmission, Direct contact, Nasal secretion, Feces, Urine |
Encephalitis, Myocarditis, Sudden death, Anorexia, Apathy, Palsy, Paralysis, Dyspnea, Mummification Poor conception rate, Embryo resorption, Stillbirth, Abortion, Neonatal death |
Heart, Liver, Kidney, Spleen tissue from acutely dead animal or abortus | RNA-based test (e.g., Quantitative RT-PCR), Antibody test (e.g., ELISA) |
- | [114,127,161] |
| HEV | Hepe-viridae | Single stranded, positive sense, non-enveloped | Pig, Human, Deer, Ruminant, Rabbit, Horse, Donkey, Mule | Oro-fecal transmission, Direct contact, contaminated food, Blood transfusion (Human to human), Organ transplantation (Human to human) |
Non-symptomatic | Feces, Bile, Blood, Liver, Small intestine, Lymph mode, Colon |
RNA-based test (e.g., RT-PCR, Quantitative RT-PCR), Antibody test (e.g., ISH, IHC, ELISA, WB, EIA for specific IgM) | Fever, Headache, Patigue, Nausea, Vomit, Abdominal pain, Diarrhea, Jaundice | [6,128,135,142,143,144,145,146,147,162,163,164,165] |
| PRRSV | Arteri-viridae |
Betaarterivirus suid 1 Single stranded, positive sense, enveloped |
Pig | Semen, Aerosol transmission, Direct contact, Fomites (Clothes, boots, equipment, etc.), Insects, House flies |
Porcine reproductive and respiratory syndrome (PRRS), Blue ear pig disease, Reproductive failure (e.g., abortion, stillborn, mummification), Anorexia, Fever, Lethargy, Depression, Vomit, Cyanosis, Lymph node swelling, Nephritis, Myometritis, Endometritis | Blood, Saliva, Semen, Feces, Nasal secretion, Milk, Tonsil, Lung, Lymph node, Tissue Sample of acutely fallen ill pig or weak-born piglet | RNA-based test (e.g., RT-PCR, Quantitative RT-PCR), Sequencing, Antibody test (e.g., IHC, ELISA) |
- | [6,148,157,159,160,166] |
3. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cooper, D.K. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent) 2012, 25, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.M.; Singh, A.K.; Corcoran, P.C.; Thomas Iii, M.L.; Clark, T.; Lewis, B.G.; Hoyt, R.F.; Eckhaus, M.; Pierson Iii, R.N.; Belli, A.J.; Wolf, E.; Klymiuk, N.; Phelps, C.; Reimann, K.A.; Ayares, D.; Horvath, K.A. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 2016, 7, 11138. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.M.; Goerlich, C.E.; Singh, A.K.; Zhang, T.; Tatarov, I.; Lewis, B.; Sentz, F.; Hershfeld, A.; Braileanu, G.; Odonkor, P.; Strauss, E.; Williams, B.; Burke, A.; Hittman, J.; Bhutta, A.; Tabatabai, A.; Gupta, A.; Vaught, T.; Sorrells, L.; Kuravi, K.; Dandro, A.; Eyestone, W.; Kaczorowski, D.J.; Ayares, D.; Griffith, B.P. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation 2022, 29, e12744. [Google Scholar] [CrossRef] [PubMed]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; Joseph, S.M.; Ayares, D.; Mohiuddin, M.M. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N Engl J Med 2022, 387, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Mathews, D.V.; Breeden, C.P.; Higginbotham, L.B.; Ladowski, J.; Martens, G.; Stephenson, A.; Farris, A.B.; Strobert, E.A.; Jenkins, J.; Walters, E.M.; Larsen, C.P.; Tector, M.; Tector, A.J.; Adams, A.B. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019, 19, 2174–2185. [Google Scholar] [CrossRef] [PubMed]
- Porrett, P.M.; Orandi, B.J.; Kumar, V.; Houp, J.; Anderson, D.; Cozette Killian, A.; Hauptfeld-Dolejsek, V.; Martin, D.E.; Macedon, S.; Budd, N.; Stegner, K.L.; Dandro, A.; Kokkinaki, M.; Kuravi, K.V.; Reed, R.D.; Fatima, H.; Killian, J.T. Jr.; Baker, G.; Perry, J.; Wright, E.D.; Cheung, M.D.; Erman, E.N.; Kraebber, K.; Gamblin, T.; Guy, L.; George, J.F.; Ayares, D.; Locke, J.E. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant 2022, 22, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Ariyoshi, Y.; Pomposelli, T.; Takeuchi, K.; Ekanayake-Alper, D.K.; Boyd, L.K.; Arn, S.J.; Sahara, H.; Shimizu, A.; Ayares, D.; Lorber, M.I.; Sykes, M.; Sachs, D.H.; Yamada, K. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation 2020, 27, e12552. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.A.; Patel, M.S.; Elias, N.; Navarro-Alvarez, N.; Rosales, I.; Wilkinson, R.A.; Louras, N.J.; Hertl, M.; Fishman, J.A.; Colvin, R.B.; Cosimi, A.B.; Markmann, J.F.; Sachs, D.H.; Vagefi, P.A. Prolonged Survival Following Pig-to-Primate Liver Xenotransplantation Utilizing Exogenous Coagulation Factors and Costimulation Blockade. Am J Transplant 2017, 17, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Kim, J.M.; Kim, J.S.; Min, B.H.; Kim, Y.H.; Kim, H.J.; Jang, J.Y.; Yoon, I.H.; Kang, H.J.; Kim, J.; Hwang, E.S.; Lim, D.G.; Lee, W.W.; Ha, J.; Jung, K.C.; Park, S.H.; Kim, S.J.; Park, C.G. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant 2015, 15, 2837–2850. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Lee, J.J.; Kim, D.H.; Kim, M.K.; Lee, H.J.; Ko, A.Y.; Kang, H.J.; Park, C.; Wee, W.R. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 2015, 15, 628–641. [Google Scholar] [CrossRef]
- Fishman, J.A. Infectious disease risks in xenotransplantation. Am J Transplant 2018, 18, 1857–1864. [Google Scholar] [CrossRef]
- Fishman, J.A. Risks of Infectious Disease in Xenotransplantation. N Engl J Med 2022, 387, 2258–2267. [Google Scholar] [CrossRef]
- Furukawa, S.; Kuroda, Y.; Sugiyama, A. A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 2014, 27, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Robbins, J.R.; Bakardjiev, A.I. Pathogens and the placental fortress. Curr Opin Microbiol 2012, 15, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mengeling, W.L.; Lager, K.M.; Vorwald, A.C. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci 2000, 60-61, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Gelderblom, H.; Vettermann, W.; Koch, M.A. A very small porcine virus with circular single-stranded DNA. Nature 1982, 295, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Rasch, R.; Tochtermann, G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A 1974, 226, 153–167. [Google Scholar] [PubMed]
- Nayar, G.P.; Hamel, A.; Lin, L. Detection and characterization of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. Can Vet J 1997, 38, 385–386. [Google Scholar] [PubMed]
- Ellis, J.; Hassard, L.; Clark, E.; Harding, J.; Allan, G.; Willson, P.; Strokappe, J.; Martin, K.; McNeilly, F.; Meehan, B.; Todd, D.; Haines, D. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J 1998, 39, 44–51. [Google Scholar] [PubMed]
- Allan, G.M.; McNeilly, F.; Kennedy, S.; Daft, B.; Clarke, E.G.; Ellis, J.A.; Haines, D.M.; Meehan, B.M.; Adair, B.M. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 1998, 10, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Kiupel, M.; Stevenson, G.W.; Mittal, S.K.; Clark, E.G.; Haines, D.M. Circovirus-like viral associated disease in weaned pigs in Indiana. Vet Pathol 1998, 35, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Morozov, I.; Sirinarumitr, T.; Sorden, S.D.; Halbur, P.G.; Morgan, M.K.; Yoon, K.J.; Paul, P.S. Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 1998, 36, 2535–2541. [Google Scholar] [CrossRef] [PubMed]
- Palinski, R.; Pineyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J Virol 2017, 91, (1). [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Hu, W.Q.; Li, J.Y.; Liu, T.N.; Zhou, J.Y.; Opriessnig, T.; Xiao, C.T. Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transbound Emerg Dis 2020, 67, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Karuppannan, A.K.; Castro, A.; Xiao, C.T. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020, 286, 198044. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.P.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J 2016, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Allan, G.M.; McNeilly, F.; Cassidy, J.P.; Reilly, G.A.; Adair, B.; Ellis, W.A.; McNulty, M.S. Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol 1995, 44, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Ladekjaer-Mikkelsen, A.S.; Nielsen, J.; Storgaard, T.; Botner, A.; Allan, G.; McNeilly, F. Transplacental infection with PCV-2 associated with reproductive failure in a gilt. Vet Rec 2001, 148, 759–760. [Google Scholar] [PubMed]
- Madson, D.M.; Opriessnig, T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev 2011, 12, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Chae, C. Postweaning multisystemic wasting syndrome: a review of aetiology, diagnosis and pathology. Vet J 2004, 168, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Chae, C. A review of porcine circovirus 2-associated syndromes and diseases. Vet J 2005, 169, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Chae, C. First isolation and genetic characterization of porcine circovirus type 3 using primary porcine kidney cells. Vet Microbiol 2020, 241, 108576. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Grassi, L.; Tucciarone, C.M.; Drigo, M.; Martini, M.; Pasotto, D.; Mondin, A.; Menandro, M.L. A wild circulation: High presence of Porcine circovirus 3 in different mammalian wild hosts and ticks. Transbound Emerg Dis 2019, 66, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Ha, Z.; Li, J.F.; Xie, C.Z.; Li, C.H.; Zhou, H.N.; Zhang, Y.; Hao, P.F.; Nan, F.L.; Zhang, J.Y.; Han, J.C.; Zhang, H.; Zhuang, X.Y.; Guo, Y.C.; Lu, H.J.; Jin, N.Y. First detection and genomic characterization of porcine circovirus 3 in mosquitoes from pig farms in China. Vet Microbiol 2020, 240, 108522. [Google Scholar] [CrossRef] [PubMed]
- Arruda, B.; Pineyro, P.; Derscheid, R.; Hause, B.; Byers, E.; Dion, K.; Long, D.; Sievers, C.; Tangen, J.; Williams, T.; Schwartz, K. PCV3-associated disease in the United States swine herd. Emerg Microbes Infect 2019, 8, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Bera, B.C.; Choudhary, M.; Anand, T.; Virmani, N.; Sundaram, K.; Choudhary, B.; Tripathi, B.N. Detection and genetic characterization of porcine circovirus 3 (PCV3) in pigs in India. Transbound Emerg Dis 2020, 67, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Mai, K.J.; Zhou, L.; Wu, R.T.; Tang, X.Y.; Wu, J.L.; He, L.L.; Lan, T.; Xie, Q.M.; Sun, Y.; Ma, J.Y. Detection and genome sequencing of porcine circovirus 3 in neonatal pigs with congenital tremors in South China. Transbound Emerg Dis 2017, 64, 1650–1654. [Google Scholar] [CrossRef] [PubMed]
- Deim, Z.; Dencso, L.; Erdelyi, I.; Valappil, S.K.; Varga, C.; Posa, A.; Makrai, L.; Rakhely, G. Porcine circovirus type 3 detection in a Hungarian pig farm experiencing reproductive failures. Vet Rec 2019, 185, 84. [Google Scholar] [CrossRef] [PubMed]
- Faccini, S.; Barbieri, I.; Gilioli, A.; Sala, G.; Gibelli, L.R.; Moreno, A.; Sacchi, C.; Rosignoli, C.; Franzini, G.; Nigrelli, A. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound Emerg Dis 2017, 64, 1661–1664. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, J.Y.; Jung, J.Y.; Kim, H.Y.; Park, Y.R.; Lee, K.K.; Lyoo, Y.S.; Yeo, S.G.; Park, C.K. Detection and genetic characterization of porcine circovirus 3 from aborted fetuses and pigs with respiratory disease in Korea. J Vet Sci 2018, 19, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, N.; Zhang, J.; Zhang, S.; Jiang, Y.; Wang, D.; Tan, Q.; Yang, Y.; Wang, N. Molecular detection and sequence analysis of porcine circovirus type 3 in sow sera from farms with prolonged histories of reproductive problems in Hunan, China. Arch Virol 2018, 163, 2841–2847. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.L.; Zhou, X.; Zhang, H.; Hause, B.M.; Lin, T.; Liu, R.; Chen, Q.L.; Wei, W.K.; Lv, D.H.; Wen, X.H.; Li, F.; Wang, D. Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol J 2017, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Kedkovid, R.; Woonwong, Y.; Arunorat, J.; Sirisereewan, C.; Sangpratum, N.; Lumyai, M.; Kesdangsakonwut, S.; Teankum, K.; Jittimanee, S.; Thanawongnuwech, R. Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Vet Microbiol 2018, 215, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Ohshima, Y.; Furuya, Y.; Nagao, A.; Oroku, K.; Tsutsumi, N.; Sasakawa, C.; Sato, T. First detection of porcine circovirus type 3 in Japan. J Vet Med Sci 2018, 80, 1468–1472. [Google Scholar] [CrossRef] [PubMed]
- Kruger, L.; Langin, M.; Reichart, B.; Fiebig, U.; Kristiansen, Y.; Prinz, C.; Kessler, B.; Egerer, S.; Wolf, E.; Abicht, J.M.; Denner, J. Transmission of Porcine Circovirus 3 (PCV3) by Xenotransplantation of Pig Hearts into Baboons. Viruses 2019, 11, (7). [Google Scholar] [CrossRef]
- Allan, G.M.; Ellis, J.A. Porcine circoviruses: a review. J Vet Diagn Invest 2000, 12, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Shibata, I.; Okuda, Y.; Kitajima, K.; Asai, T. Shedding of porcine circovirus into colostrum of sows. J Vet Med B Infect Dis Vet Public Health 2006, 53, 278–280. [Google Scholar] [CrossRef]
- Madson, D.M.; Patterson, A.R.; Ramamoorthy, S.; Pal, N.; Meng, X.J.; Opriessnig, T. Effect of natural or vaccine-induced porcine circovirus type 2 (PCV2) immunity on fetal infection after artificial insemination with PCV2 spiked semen. Theriogenology 2009, 72, 747–754. [Google Scholar] [CrossRef]
- Gerber, P.F.; Garrocho, F.M.; Lana, A.M.; Lobato, Z.I. Serum antibodies and shedding of infectious porcine circovirus 2 into colostrum and milk of vaccinated and unvaccinated naturally infected sows. Vet J 2011, 188, 240–242. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, X.; Shi, J.; Peng, Z.; Gao, M.; Xin, C.; Liu, Y.; Wang, S.; Xu, S.; Han, H.; Yu, J.; Sun, W.; Cong, X.; Li, J.; Wang, J. Rapid specific and visible detection of porcine circovirus type 3 using loop-mediated isothermal amplification (LAMP). Transbound Emerg Dis 2018, 65, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.A.; Hebert, B.; Sullivan, G.M.; Parrish, C.R.; Zadori, Z.; Tijssen, P.; Rossmann, M.G. The structure of porcine parvovirus: comparison with related viruses. J Mol Biol 2002, 315, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Zadori, Z.; Szelei, J.; Tijssen, P. SAT: a late NS protein of porcine parvovirus. J Virol 2005, 79, 13129–13138. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, S.F.; Huck, R. Viruses isolated in association with herd infertility absortions and stillbirths in pigs. Veterinary Record 1967, 81, 196–+. [Google Scholar]
- Streck, A.F.; Truyen, U. Porcine Parvovirus. Curr Issues Mol Biol 2020, 37, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Streck, A.F.; Canal, C.W.; Truyen, U. Molecular epidemiology and evolution of porcine parvoviruses. Infect Genet Evol 2015, 36, 300–306. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Possible risks posed by single-stranded DNA viruses of pigs associated with xenotransplantation. Xenotransplantation 2018, 25, e12453. [Google Scholar] [CrossRef]
- Paul, P.S.; Mengeling, W.L. Evaluation of a modified live-virus vaccine for the prevention of porcine parvovirus-induced reproductive disease in swine. Am J Vet Res 1980, 41, 2007–2011. [Google Scholar] [PubMed]
- Joo, H.S.; Donaldson-Wood, C.R.; Johnson, R.H. Observations on the pathogenesis of porcine parvovirus infection. Arch Virol 1976, 51, 123–129. [Google Scholar] [CrossRef]
- Mengeling, W.L.; Paul, P.S.; Brown, T.T. Transplacental infection and embryonic death following maternal exposure to porcine parvovirus near the time of conception. Arch Virol 1980, 65, 55–62. [Google Scholar] [CrossRef]
- Miao, L.F.; Zhang, C.F.; Chen, C.M.; Cui, S.J. Real-time PCR to detect and analyze virulent PPV loads in artificially challenged sows and their fetuses. Vet Microbiol 2009, 138, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, I.; Olasz, F.; Csagola, A.; Tijssen, P.; Zadori, Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017, 9, (12). [Google Scholar] [CrossRef]
- Boisvert, M.; Fernandes, S.; Tijssen, P. Multiple pathways involved in porcine parvovirus cellular entry and trafficking toward the nucleus. J Virol 2010, 84, 7782–7792. [Google Scholar] [CrossRef]
- Rhode, S.L., 3rd. Replication process of the parvovirus H-1. I. Kinetics in a parasynchronous cell system. J Virol 1973, 11, 856–861. [Google Scholar] [CrossRef]
- Zhao, X.; Xiang, H.; Bai, X.; Fei, N.; Huang, Y.; Song, X.; Zhang, H.; Zhang, L.; Tong, D. Porcine parvovirus infection activates mitochondria-mediated apoptotic signaling pathway by inducing ROS accumulation. Virol J 2016, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Hu, R.; Ni, J.; Liang, J.; He, X.; Du, Y.; Xu, Y.; Zhao, B.; Zhang, Q.; Li, C. Establishment of a porcine parvovirus (PPV) LAMP visual rapid detection method. J Virol Methods 2020, 284, 113924. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Zimmermann, P.; Selbitz, H.J.; Truyen, U. Real-time PCR protocol for the detection of porcine parvovirus in field samples. J Virol Methods 2006, 134, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Grinde, B. Herpesviruses: latency and reactivation - viral strategies and host response. J Oral Microbiol 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zeng, N.; Zhou, L.; Ge, X.; Guo, X.; Yang, H. Genomic organization and molecular characterization of porcine cytomegalovirus. Virology 2014, 460-461, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Goltz, M.; Widen, F.; Banks, M.; Belak, S.; Ehlers, B. Characterization of the DNA polymerase loci of porcine cytomegaloviruses from diverse geographic origins. Virus Genes 2000, 21, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, V.; Iwatsuki-Horimoto, K.; Sugii, S.; Horimoto, T. Identification of the porcine cytomegalovirus major capsid protein gene. J Vet Med Sci 2001, 63, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Widen, F.; Goltz, M.; Wittenbrink, N.; Ehlers, B.; Banks, M.; Belak, S. Identification and sequence analysis of the glycoprotein B gene of porcine cytomegalovirus. Virus Genes 2001, 23, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Done, J.T. An "inclusion-body" rhinitis of pigs. (Preliminary report.). Veterinary Record 1955, 67, 525–527. [Google Scholar]
- Guedes, M.I.; Risdahl, J.M.; Wiseman, B.; Molitor, T.W. Reactivation of porcine cytomegalovirus through allogeneic stimulation. J Clin Microbiol 2004, 42, 1756–1758. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Watt, R.G.; Plowright, W. Cytomegalovirus excretion in gnotobiotic pigs. J Hyg (Lond) 1976, 77, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Watt, R.G.; Plowright, W. Experimental transplacental transmission of porcine cytomegalovirus. J Hyg (Lond) 1977, 78, 243–251. [Google Scholar] [CrossRef]
- Edington, N.; Wrathall, A.E.; Done, J.T. Porcine cytomegalovirus (PCMV) in early gestation. Vet Microbiol 1988, 17, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Plowright, W.; Edington, N.; Watt, R.G. The behaviour of porcine cytomegalovirus in commercial pig herds. J Hyg (Lond) 1976, 76, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Broad, S.; Wrathall, A.E.; Done, J.T. Superinfection with porcine cytomegalovirus initiating transplacental infection. Vet Microbiol 1988, 16, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Fryer, J.F.; Tucker, A.W.; McArdle, P.D.; Hughes, A.E.; Emery, V.C.; Griffiths, P.D. Porcine cytomegalovirus in pigs being bred for xenograft organs: progress towards control. Xenotransplantation 2003, 10, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Egerer, S.; Fiebig, U.; Kessler, B.; Zakhartchenko, V.; Kurome, M.; Reichart, B.; Kupatt, C.; Klymiuk, N.; Wolf, E.; Denner, J.; Bahr, A. Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation 2018, 25, e12449. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.S.; Pors, S.E.; Jensen, H.E.; Bille-Hansen, V.; Bisgaard, M.; Flachs, E.M.; Nielsen, O.L. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J Comp Pathol 2010, 143, 120–131. [Google Scholar] [CrossRef]
- Smith, K.C. Herpesviral abortion in domestic animals. Vet J 1997, 153, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Shirai, J.; Narita, M.; Iijima, Y.; Kawamura, H. A cytomegalovirus isolated from swine testicle cell culture. Nihon Juigaku Zasshi 1985, 47, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Tajima, T.; Hironao, T.; Kajikawa, T.; Kotani, T. Replication of porcine cytomegalovirus in the 19-PFT cell line. J Vet Med Sci 1992, 54, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, M.; Shibahara, T.; Miyazaki, A.; Tajima, T.; Shimizu, S.; Kabali, E.; Takano, Y.; Sasaki, Y.; Kubo, M. In situ hybridization and immunohistochemistry for the detection of porcine cytomegalovirus. J Virol Methods 2012, 179, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Assaf, R.; Bouillant, A.M.; Di Franco, E. Enzyme linked immunosorbent assay (ELISA) for the detection of antibodies to porcine cytomegalovirus. Can J Comp Med 1982, 46, 183–185. [Google Scholar]
- Liu, X.; Zhu, L.; Shi, X.; Xu, Z.; Mei, M.; Xu, W.; Zhou, Y.; Guo, W.; Wang, X. Indirect-blocking ELISA for detecting antibodies against glycoprotein B (gB) of porcine cytomegalovirus (PCMV). J Virol Methods 2012, 186, 30–35. [Google Scholar] [CrossRef]
- Halecker, S.; Hansen, S.; Krabben, L.; Ebner, F.; Kaufer, B.; Denner, J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci Rep 2022, 12, 21545. [Google Scholar] [CrossRef]
- Porto, G.S.; Leme, R.A.; Dall Agnol, A.M.; Souza, T.; Alfieri, A.A.; Alfieri, A.F. Porcine lymphotropic herpesvirus (Gammaherpesvirinae) DNA in free-living wild boars (Sus scrofa Linnaeus, 1758) in Brazil. J Vet Sci 2021, 22, e81. [Google Scholar] [CrossRef]
- Franzo, G.; Drigo, M.; Legnardi, M.; Grassi, L.; Menandro, M.L.; Pasotto, D.; Cecchinato, M.; Tucciarone, C.M. Porcine Gammaherpesviruses in Italian Commercial Swine Population: Frequent but Harmless. Pathogens 2021, 10, (1). [Google Scholar] [CrossRef]
- Ehlers, B.; Ulrich, S.; Goltz, M. Detection of two novel porcine herpesviruses with high similarity to gammaherpesviruses. J Gen Virol 1999, 80 ( Pt 4) Pt 4, 971–978. [Google Scholar] [CrossRef]
- Chmielewicz, B.; Goltz, M.; Franz, T.; Bauer, C.; Brema, S.; Ellerbrok, H.; Beckmann, S.; Rziha, H.J.; Lahrmann, K.H.; Romero, C.; Ehlers, B. A novel porcine gammaherpesvirus. Virology 2003, 308, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses 2021, 13, (6). [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, M.M.; Schulz, T.F. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006, (Pt 5) Pt 5, 1047–1074. [Google Scholar] [CrossRef]
- Mueller, N.J.; Kuwaki, K.; Knosalla, C.; Dor, F.J.; Gollackner, B.; Wilkinson, R.A.; Arn, S.; Sachs, D.H.; Cooper, D.K.; Fishman, J.A. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation 2005, 12, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.A.; Fuchimoto, Y.; Gleit, Z.L.; Ericsson, T.; Griesemer, A.; Scheier-Dolberg, R.; Melendy, E.; Kitamura, H.; Fishman, J.A.; Ferry, J.A.; Harris, N.L.; Patience, C.; Sachs, D.H. Posttransplantation lymphoproliferative disease in miniature swine after allogeneic hematopoietic cell transplantation: similarity to human PTLD and association with a porcine gammaherpesvirus. Blood 2001, 97, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Goltz, M.; Ericsson, T.; Patience, C.; Huang, C.A.; Noack, S.; Sachs, D.H.; Ehlers, B. Sequence analysis of the genome of porcine lymphotropic herpesvirus 1 and gene expression during posttransplant lymphoproliferative disease of pigs. Virology 2002, 294, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Plotzki, E.; Keller, M.; Ehlers, B.; Denner, J. Immunological methods for the detection of porcine lymphotropic herpesviruses (PLHV). J Virol Methods 2016, 233, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.W.; McNeilly, F.; Meehan, B.; Galbraith, D.; McArdle, P.D.; Allan, G.; Patience, C. Methods for the exclusion of circoviruses and gammaherpesviruses from pigs. Xenotransplantation 2003, 10, 343–348. [Google Scholar] [CrossRef]
- Chmielewicz, B.; Goltz, M.; Lahrmann, K.H.; Ehlers, B. Approaching virus safety in xenotransplantation: a search for unrecognized herpesviruses in pigs. Xenotransplantation 2003, 10, 349–356. [Google Scholar] [CrossRef]
- Brema, S.; Lindner, I.; Goltz, M.; Ehlers, B. Development of a recombinant antigen-based ELISA for the sero-detection of porcine lymphotropic herpesviruses. Xenotransplantation 2008, 15, 357–364. [Google Scholar] [CrossRef]
- Calsamiglia, M.; Segales, J.; Quintana, J.; Rosell, C.; Domingo, M. Detection of porcine circovirus types 1 and 2 in serum and tissue samples of pigs with and without postweaning multisystemic wasting syndrome. J Clin Microbiol 2002, 40, 1848–1850. [Google Scholar] [CrossRef]
- Tan, C.Y.; Lin, C.N.; Ooi, P.T. What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound Emerg Dis 2021, 68, 2915–2935. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.; Opriessnig, T.; Meng, X.J.; Pelzer, K.; Buechner-Maxwell, V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med 2009, 23, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J. Porcine circovirus: a historical perspective. Vet Pathol 2014, 51, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Sarli, G.; Morandi, F.; Panarese, S.; Bacci, B.; Ferrara, D.; Bianco, C.; Fusaro, L.; Bacci, M.L.; Galeati, G.; Dottori, M.; Bonilauri, P.; Lelli, D.; Leotti, G.; Vila, T.; Joisel, F.; Allan, G.; Benazzi, C.; Ostanello, F. Reproduction in porcine circovirus type 2 (PCV2) seropositive gilts inseminated with PCV2b spiked semen. Acta Vet Scand 2012, 54, 51. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.; Opriessnig, T.; Grasland, B.; Jestin, A. Epidemiology and transmission of porcine circovirus type 2 (PCV2). Virus Res 2012, 164, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Klaumann, F.; Correa-Fiz, F.; Franzo, G.; Sibila, M.; Nunez, J.I.; Segales, J. Current Knowledge on Porcine circovirus 3 (PCV-3): A Novel Virus With a Yet Unknown Impact on the Swine Industry. Front Vet Sci 2018, 5, 315. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; Fong, Y.M.; Hesse, D.G.; Tracey, K.J.; Hintz, R.L.; Lowry, S.F.; Gertner, J.M. Intravenous refeeding blocks growth hormone (GH)-provoked rises in serum free fatty acids and blunting of somatotroph response to GH-releasing hormone in normal men. J Clin Endocrinol Metab 1989, 69, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.R.; Kim, H.R.; Kim, S.H.; Lee, K.K.; Lyoo, Y.S.; Yeo, S.G.; Park, C.K. Loop-mediated isothermal amplification assay for the rapid and visual detection of novel porcine circovirus 3. J Virol Methods 2018, 253, 26–30. [Google Scholar] [CrossRef]
- Ellis, J.A.; Bratanich, A.; Clark, E.G.; Allan, G.; Meehan, B.; Haines, D.M.; Harding, J.; West, K.H.; Krakowka, S.; Konoby, C.; Hassard, L.; Martin, K.; McNeilly, F. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Invest 2000, 12, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Helwig, F.C.; Schmidt, C.H. A Filter-Passing Agent Producing Interstitial Myocarditis in Anthropoid Apes and Small Animals. Science 1945, 102, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Murnane, T.G.; Craighead, J.E.; Mondragon, H.; Shelokov, A. Fatal disease of swine due to encephalomyocarditis virus. Science 1960, 131, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Vriend, G.; Kamer, G.; Minor, I.; Arnold, E.; Rossmann, M.G.; Boege, U.; Scraba, D.G.; Duke, G.M.; Palmenberg, A.C. The atomic structure of Mengo virus at 3.0 A resolution. Science 1987, 235, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Carocci, M.; Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 2012, 3, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Psalla, D.; Psychas, V.; Spyrou, V.; Billinis, C.; Papaioannou, N.; Vlemmas, I. Pathogenesis of experimental encephalomyocarditis: a histopathological, immunohistochemical and virological study in rats. J Comp Pathol 2006, 134, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Littlejohns, I.R.; Acland, H.M. Encephalomyocarditis virus infection of pigs. 2. Experimental disease. Aust Vet J 1975, 51, 416–422. [Google Scholar] [CrossRef]
- Spyrou, V.; Maurice, H.; Billinis, C.; Papanastassopoulou, M.; Psalla, D.; Nielen, M.; Koenen, F.; Papadopoulos, O. Transmission and pathogenicity of encephalomyocarditis virus (EMCV) among rats. Vet Res 2004, 35, 113–122. [Google Scholar] [CrossRef]
- Kluivers, M.; Maurice, H.; Vyt, P.; Koenen, F.; Nielen, M. Transmission of encephalomyocarditis virus in pigs estimated from field data in Belgium by means of R0. Vet Res 2006, 37, 757–766. [Google Scholar] [CrossRef]
- Adachi, M.; Amsterdam, D.; Brooks, S.E.; Volk, B.W. Ultrastructural alterations of tissue cultures from human fetal brain infected with the E variant of EMC virus. Acta Neuropathol 1975, 32, 133–142. [Google Scholar] [CrossRef]
- Wellmann, K.F.; Amsterdam, D.; Volk, B.W. EMC virus and cultured human fetal pancreatic cells. Ultrastructural observations. Arch Pathol 1975, 99, 424–429. [Google Scholar]
- Oberste, M.S.; Gotuzzo, E.; Blair, P.; Nix, W.A.; Ksiazek, T.G.; Comer, J.A.; Rollin, P.; Goldsmith, C.S.; Olson, J.; Kochel, T.J. Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis 2009, 15, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, N.; Billinis, C.; Psychas, V.; Papadopoulos, O.; Vlemmas, I. Pathogenesis of encephalomyocarditis virus (EMCV) infection in piglets during the viraemia phase: a histopathological, immunohistochemical and virological study. J Comp Pathol 2003, 129, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Psychas, V.; Papaioannou, N.; Billinis, C.; Paschaleri-Papadopoulou, E.; Leontides, S.; Papadopoulos, O.; Tsangaris, T.; Vlemmas, J. Evaluation of ultrastructural changes associated with encephalomyocarditis virus in the myocardium of experimentally infected piglets. Am J Vet Res 2001, 62, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Vlemmas, J.; Billinis, C.; Psychas, V.; Papaioannou, N.; Paschaleri-Papadopoulou, E.; Leontides, S.; Papadopoulos, O. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigen in the heart of experimentally infected piglets. J Comp Pathol 2000, 122, 235–240. [Google Scholar] [CrossRef]
- Koenen, F.; Vanderhallen, H. Comparative study of the pathogenic properties of a Belgian and a Greek encephalomyocarditis virus (EMCV) isolate for sows in gestation. Zentralbl Veterinarmed B 1997, 44, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, S.; Han, Q.; Wang, K.; Liu, L.; Xu, X.; Yuan, W.; Wang, J. Rapid detection of porcine encephalomyocarditis virus (EMCV) by isothermal reverse transcription recombinase polymerase amplification assays. J Virol Methods 2022, 306, 114544. [Google Scholar] [CrossRef]
- Thiry, D.; Mauroy, A.; Pavio, N.; Purdy, M.A.; Rose, N.; Thiry, E.; de Oliveira-Filho, E.F. Hepatitis E Virus and Related Viruses in Animals. Transbound Emerg Dis 2017, 64, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Fawaz, R.; Jonas, M.M. 75 - Acute and Chronic Hepatitis. In Pediatric Gastrointestinal and Liver Disease (Fourth Edition); Wyllie, R., Hyams, J.S, Eds.; W.B. Saunders: Saint Louis, 2011; pp. 811–828.e5. [Google Scholar]
- Perez-Gracia, M.T.; Garcia, M.; Suay, B.; Mateos-Lindemann, M.L. Current Knowledge on Hepatitis E. J Clin Transl Hepatol 2015, 3, 117–126. [Google Scholar] [PubMed]
- Pavio, N.; Meng, X.J.; Renou, C. Zoonotic hepatitis E: animal reservoirs and emerging risks. Vet Res 2010, 41, 46. [Google Scholar] [CrossRef]
- Sooryanarain, H.; Meng, X.J. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res 2020, 284, 197985. [Google Scholar] [CrossRef]
- Yugo, D.M.; Meng, X.J. Hepatitis E virus: foodborne, waterborne and zoonotic transmission. Int J Environ Res Public Health 2013, 10, 4507–4533. [Google Scholar] [CrossRef] [PubMed]
- Bouwknegt, M.; Rutjes, S.A.; Reusken, C.B.; Stockhofe-Zurwieden, N.; Frankena, K.; de Jong, M.C.; de Roda Husman, A.M.; Poel, W.H. The course of hepatitis E virus infection in pigs after contact-infection and intravenous inoculation. BMC Vet Res 2009, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- de Deus, N.; Seminati, C.; Pina, S.; Mateu, E.; Martin, M.; Segales, J. Detection of hepatitis E virus in liver, mesenteric lymph node, serum, bile and faeces of naturally infected pigs affected by different pathological conditions. Vet Microbiol 2007, 119, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.J.; Purcell, R.H.; Halbur, P.G.; Lehman, J.R.; Webb, D.M.; Tsareva, T.S.; Haynes, J.S.; Thacker, B.J.; Emerson, S.U. A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci U S A 1997, 94, 9860–9865. [Google Scholar] [CrossRef] [PubMed]
- van der Poel, W.H.; Verschoor, F.; van der Heide, R.; Herrera, M.I.; Vivo, A.; Kooreman, M.; de Roda Husman, A.M. Hepatitis E virus sequences in swine related to sequences in humans, The Netherlands. Emerg Infect Dis 2001, 7, 970–976. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. Electronic address, e. e. e.; European Association for the Study of the, L. EASL Clinical Practice Guidelines on hepatitis E virus infection. J Hepatol 2018, 68, 1256–1271. [CrossRef] [PubMed]
- Woolson, K.L.; Forbes, A.; Vine, L.; Beynon, L.; McElhinney, L.; Panayi, V.; Hunter, J.G.; Madden, R.G.; Glasgow, T.; Kotecha, A.; Dalton, H.C.; Mihailescu, L.; Warshow, U.; Hussaini, H.S.; Palmer, J.; McLean, B.N.; Haywood, B.; Bendall, R.P.; Dalton, H.R. Extra-hepatic manifestations of autochthonous hepatitis E infection. Aliment Pharmacol Ther 2014, 40, 1282–1291. [Google Scholar] [CrossRef]
- Legrand-Abravanel, F.; Kamar, N.; Sandres-Saune, K.; Garrouste, C.; Dubois, M.; Mansuy, J.M.; Muscari, F.; Sallusto, F.; Rostaing, L.; Izopet, J. Characteristics of autochthonous hepatitis E virus infection in solid-organ transplant recipients in France. J Infect Dis 2010, 202, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Abravanel, F.; Lhomme, S.; Chapuy-Regaud, S.; Mansuy, J.M.; Muscari, F.; Sallusto, F.; Rostaing, L.; Kamar, N.; Izopet, J. Hepatitis E virus reinfections in solid-organ-transplant recipients can evolve into chronic infections. J Infect Dis 2014, 209, 1900–1906. [Google Scholar] [CrossRef]
- Williams, T.P.; Kasorndorkbua, C.; Halbur, P.G.; Haqshenas, G.; Guenette, D.K.; Toth, T.E.; Meng, X.J. Evidence of extrahepatic sites of replication of the hepatitis E virus in a swine model. J Clin Microbiol 2001, 39, 3040–3046. [Google Scholar] [CrossRef]
- Jothikumar, N.; Cromeans, T.L.; Robertson, B.H.; Meng, X.J.; Hill, V.R. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J Virol Methods 2006, 131, 65–71. [Google Scholar] [CrossRef]
- Lee, W.J.; Shin, M.K.; Cha, S.B.; Yoo, H.S. Development of a novel enzyme-linked immunosorbent assay to detect anti-IgG against swine hepatitis E virus. J Vet Sci 2013, 14, 467–472. [Google Scholar] [CrossRef]
- Schlosser, J.; Eiden, M.; Vina-Rodriguez, A.; Fast, C.; Dremsek, P.; Lange, E.; Ulrich, R.G.; Groschup, M.H. Natural and experimental hepatitis E virus genotype 3-infection in European wild boar is transmissible to domestic pigs. Vet Res 2014, 45, 121. [Google Scholar] [CrossRef] [PubMed]
- O'Connor, M.; Roche, S.J.; Sammin, D. Seroprevalence of Hepatitis E virus infection in the Irish pig population. Ir Vet J 2015, 68, 8. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.A.; Morozov, A.V.; Rotem, A.; Barkai, U.; Bornstein, S.; Denner, J. Extended Microbiological Characterization of Gottingen Minipigs in the Context of Xenotransplantation: Detection and Vertical Transmission of Hepatitis E Virus. PLoS One 2015, 10, e0139893. [Google Scholar] [CrossRef] [PubMed]
- Benfield, D.A.; Nelson, E.; Collins, J.E.; Harris, L.; Goyal, S.M.; Robison, D.; Christianson, W.T.; Morrison, R.B.; Gorcyca, D.; Chladek, D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest 1992, 4, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, R.; Qiao, S.; Chen, X.X.; Xing, G.; Zhang, G. Porcine Reproductive and Respiratory Syndrome Virus Utilizes Viral Apoptotic Mimicry as an Alternative Pathway To Infect Host Cells. J Virol 2020, 94, (17). [Google Scholar] [CrossRef]
- Lassalle, B.; Bastos, H.; Louis, J.P.; Riou, L.; Testart, J.; Dutrillaux, B.; Fouchet, P.; Allemand, I. 'Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 2004, 131, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, G.; Yu, L.; Li, L.; Zhang, Y.; Zhou, Y.; Tong, W.; Liu, C.; Gao, F.; Tong, G. Genetic Diversity of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) From 1996 to 2017 in China. Front Microbiol 2020, 11, 618. [Google Scholar] [CrossRef]
- Suarez, P.; Zardoya, R.; Martin, M.J.; Prieto, C.; Dopazo, J.; Solana, A.; Castro, J.M. Phylogenetic relationships of european strains of porcine reproductive and respiratory syndrome virus (PRRSV) inferred from DNA sequences of putative ORF-5 and ORF-7 genes. Virus Res 1996, 42, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Pitkin, A.; Deen, J.; Otake, S.; Moon, R.; Dee, S. Further assessment of houseflies (Musca domestica) as vectors for the mechanical transport and transmission of porcine reproductive and respiratory syndrome virus under field conditions. Can J Vet Res 2009, 73, 91–96. [Google Scholar]
- Otake, S.; Dee, S.A.; Rossow, K.D.; Moon, R.D.; Pijoan, C. Mechanical transmission of porcine reproductive and respiratory syndrome virus by mosquitoes, Aedes vexans (Meigen). Can J Vet Res 2002, 66, 191–195. [Google Scholar]
- Rossow, K.D. Porcine reproductive and respiratory syndrome. Vet Pathol 1998, 35, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Lunney, J.K.; Benfield, D.A.; Rowland, R.R. Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus Res 2010, 154, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kittawornrat, A.; Prickett, J.; Chittick, W.; Wang, C.; Engle, M.; Johnson, J.; Patnayak, D.; Schwartz, T.; Whitney, D.; Olsen, C.; Schwartz, K.; Zimmerman, J. Porcine reproductive and respiratory syndrome virus (PRRSV) in serum and oral fluid samples from individual boars: will oral fluid replace serum for PRRSV surveillance? Virus Res 2010, 154, 170–176. [Google Scholar] [CrossRef]
- Zhou, S.H.; Cui, S.J.; Chen, C.M.; Zhang, F.C.; Li, J.; Zhou, S.; Oh, J.S. Development and validation of an immunogold chromatographic test for on-farm detection of PRRSV. J Virol Methods 2009, 160, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Stringer, R.C.; Schommer, S.; Hoehn, D.; Grant, S.A. Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of Porcine Reproductive and Respiratory Syndrome Virus. Sensors and Actuators B: Chemical 2008, 134, 427–431. [Google Scholar] [CrossRef]
- Yan, J.; Peng, B.; Chen, H.; Jin, Z.; Cao, D.; Song, Q.; Ye, J.; Wang, H.; Tang, Y. On-site differential diagnostic detection of HP-PRRSV and C-PRRSV using EuNPs-mAb fluorescent probe-based immunoassay. Anal Bioanal Chem 2021, 413, 5799–5810. [Google Scholar] [CrossRef]
- Billinis, C.; Paschaleri-Papadopoulou, E.; Psychas, V.; Vlemmas, J.; Leontides, S.; Koumbati, M.; Kyriakis, S.C.; Papadopoulos, O. Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 1999, 70, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Hepatitis E virus (HEV)-The Future. Viruses 2019, 11, (3). [Google Scholar] [CrossRef] [PubMed]
- Spahr, C.; Knauf-Witzens, T.; Vahlenkamp, T.; Ulrich, R.G.; Johne, R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2018, 65, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bocanegra, I.; Rivero, A.; Caballero-Gomez, J.; Lopez-Lopez, P.; Cano-Terriza, D.; Frias, M.; Jimenez-Ruiz, S.; Risalde, M.A.; Gomez-Villamandos, J.C.; Rivero-Juarez, A. Hepatitis E virus infection in equines in Spain. Transbound Emerg Dis 2019, 66, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Izopet, J.; Dubois, M.; Bertagnoli, S.; Lhomme, S.; Marchandeau, S.; Boucher, S.; Kamar, N.; Abravanel, F.; Guerin, J.L. Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. Emerg Infect Dis 2012, 18, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.P.; Stadejek, T.; Abrahante, J.E.; Lam, T.T.; Leung, F.C. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res 2010, 154, 18–30. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).