Submitted:
01 January 2024
Posted:
04 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Main population description
3.2. Neurological outcome and statistical analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation, et al. Born too soon: the global action report on preterm birth. Geneva: World Health Organization; 2012.
- Behrman RE, Babson GS, Lessel R. Fetal and neonatal mortality in white middle class infants: mortality risks by gestational age and weight. Am J Dis Child 1971; 21: 486-489; [CrossRef]
- Platt MJ. Outcomes in preterm infants. Public Health. 2014 May;128(5):399-403. [CrossRef]
- Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008 Jan 19;371(9608):261-9. [CrossRef]
- Himpens E, Van den Broeck C, Oostra A, Calders P, Vanhaesebrouch P. Prevalence, type, distribution and severity of cerebral palsy in relation to gestational age: a meta-analytical review. Dev Med Child Neurol 2008;50:334e40. [CrossRef]
- Edwards J, Berube M, Erlandson K, Haug S, Johnstone H, Meagher M, Sarkodee-Ado S, Zwicker JG. Development coordination disorder in school-aged children born very preterm and/or low birth weight: a systemic review. J Dev Behav Pediatr 2011;32:678e87. [CrossRef]
- Clark RH, Thomas P, Peabody J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics. 2003 May;111(5 Pt 1):986-90. [CrossRef]
- Zozaya C, Díaz C, Saenz de Pipaón M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology. 2018;114(2):177-180. [CrossRef]
- Roggero P, Giannì ML, Orsi A, Amato O, Piemontese P, Liotto N, Morlacchi L, Taroni F, Garavaglia E, Bracco B, Agosti M, Mosca F. Implementation of nutritional strategies decreases postnatal growth restriction in preterm infants. PLoS One. 2012;7(12):e5116. [CrossRef]
- De Rose DU, Cota F, Gallini F, Bottoni A, Fabrizio GC, Ricci D, Romeo DM, Mercuri E, Vento G, Maggio L. Extra-uterine growth restriction in preterm infants: Neurodevelopmental outcomes according to different definitions. Eur J Paediatr Neurol. 2021 Jul;33:135-145. [CrossRef]
- Martínez-Jiménez MD, Gómez-García FJ, Gil-Campos M, Pérez-Navero JL. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. Eur J Pediatr. 2020 Aug;179(8):1255-1265. [CrossRef]
- Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006 Apr;117(4):1253-61. [CrossRef]
- Guellec I, Lapillonne A, Marret S, Picaud JC, Mitanchez D, Charkaluk ML, Fresson J, Arnaud C, Flamant C, Cambonie G, Kaminski M, Roze JC, Ancel PY. Étude Épidémiologique sur les Petits Âges Gestationnels (EPIPAGE; [Epidemiological Study on Small Gestational Ages]) Study Group. Effect of Intra- and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants. J Pediatr. 2016 Aug;175:93. [CrossRef]
- Parodi A, Morana G, Severino MS, Malova M, Natalizia AR, Sannia A, Rossi A, Ramenghi LA. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2015 Nov;28 Suppl 1:2261-4. [CrossRef]
- Parodi A, Rossi A, Severino M, Morana G, Sannia A, Calevo MG, Malova M, Ramenghi LA. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed. 2015 Jul;100(4):F289-92. [CrossRef]
- Bancker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol. 1962 Nov; 7: 386-410; [CrossRef]
- Sannia A, Natalizia AR, Parodi A, Malova M, Fumagalli M, Rossi A et al. Different gestational 270 ages and changing vulnerability of the premature brain. J Matern Fetal Neonatal Med 2015; 28 271 Suppl 1: 2268–72. [CrossRef]
- Krageloh-Mann I, Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol. 2007; 49: 144– 151; [CrossRef]
- Woodward LJ, Clark, CA, Bora, S, Inder, TE. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS One. 2012; 7: 518-79; [CrossRef]
- Inder T, Perlman J, Volpe J. Unit V - Intracranial hemorrhage. In: Neurology of the Newborn ( Sixth Edition) by JJ Volpe, TE Inder, BT Darras, et al. Elsevier; 2018. p. 591– 698.
- Parodi A, Govaert P, Horsch S, Bravo MC, Ramenghi LA; eurUS.brain group. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res. 2020 Mar;87(Suppl 1):13-24. [CrossRef]
- De Angelis LC, Parodi A, Sebastiani M, Consales A, Ravegnani GM, Severino M, Tortora D, Rossi A, Malova M, Minghetti D, Cama A, Piatelli G, Ramenghi LA. External ventricular drainage for posthemorrhagic ventricular dilatation in preterm infants: insights on efficacy and failure. J Neurosurg Pediatr. 2021 Sep 3;28(5):563-571. [CrossRef]
- Parodi A, Giordano I, De Angelis L, Malova M, Calevo MG, Preiti D, Ravegnani M, Cama A, Bellini C, Ramenghi LA. Post-haemorrhagic hydrocephalus management: Delayed neonatal transport negatively affects outcome. Acta Paediatr. 2021 Jan;110(1):168-170. [CrossRef]
- Boswinkel V, Steggerda SJ, Fumagalli M, Parodi A, Ramenghi LA, Groenendaal F, Dudink J, Benders MN, Knol R, de Vries LS, van Wezel-Meijler G. The CHOPIn Study: a Multicenter Study on Cerebellar Hemorrhage and Outcome in Preterm Infants. Cerebellum. 2019 Dec;18(6):989-998. [CrossRef]
- Uccella S, Parodi A, Calevo MG, Nobili L, Tortora D, Severino M, Andreato C, Group, Eu-Brain Neonatal and Rossi A, Ramenghi LA. Influence of isolated low-grade intracranial haemorrhages on the neurodevelopmental outcome of infants born very low birthweight. Dev Med Child Neurol. 2023 Mar 30. [CrossRef]
- Parodi A, Malova M, Cardiello V, Raffa S, Re M, Calevo MG, Severino M, Tortora D, Morana G, Rossi A, Ramenghi LA. Punctate white matter lesions of preterm infants: Risk factor analysis. Eur J Paediatr Neurol. 2019 Sep;23(5):733-739. [CrossRef]
- de Bruijn CAM, Di Michele S, Tataranno ML, Ramenghi LA, Rossi A, Malova M, Benders M, van den Hoogen A, Dudink J. Neurodevelopmental consequences of preterm punctate white matter lesions: a systematic review. Pediatr Res. 2023 May;93(6):1480-1490. [CrossRef]
- Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2012;86:329e38. [CrossRef]
- Bassler D, Stoll BJ, Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS. rial of Indomethacin Prophylaxis in Preterms Investigators. Using a count of neonatal morbidities to predict poor outcome in extremely low birth weight infants: added role of neonatal infection. Pediatrics. 2009 Jan;123(1):313-8. [CrossRef]
- Soraisham AS, Amin HJ, Al-Hindi MY, Singhal N, Sauve RS. Does necrotising enterocolitis impact the neurodevelopmental and growth outcomes in preterm infants with birthweight < or =1250 g? J Paediatr Child Health. 2006 Sep;42(9):499-504. [CrossRef]
- Hickey M, Georgieff M, Ramel S. Neurodevelopmental outcomes following necrotizing enterocolitis. Semin Fetal Neonatal Med. 2018 Dec;23(6):426-432. [CrossRef]
- Gou X, Yang L, Pan L, Xiao D. Association between bronchopulmonary dysplasia and cerebral palsy in children: a meta-analysis. BMJ Open. 2018 Sep 19;8(9):e020735. [CrossRef]
- Cheong JLY, Doyle LW. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol. 2018 Nov;42(7):478-484. [CrossRef]
- Poets CF, Lorenz L. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence. Arch Dis Child Fetal Neonatal Ed. 2018 May;103(3):F285-F291. [CrossRef]
- Hunt RW, Hickey LM, Burnett AC, Anderson PJ, Cheong JLY, Doyle LW; Victorian Infant Collaborative Study group. Early surgery and neurodevelopmental outcomes of children born extremely preterm. Arch Dis Child Fetal Neonatal Ed. 2018 May;103(3):F227-F232. [CrossRef]
- Tortora D, Severino M, Di Biase C, Malova M, Parodi A, Minghetti D, Traggiai C, Uccella S, Boeri L, Morana G, Rossi A, Ramenghi LA. Early Pain Exposure Influences Functional Brain Connectivity in Very Preterm Neonates. Front Neurosci. 2019 Aug 23;13:899. [CrossRef]
- Antonov NK, Ruzal-Shapiro CB, Morel KD, Millar WS, Kashyap S, Lauren CT, Garzon MC. Feed and Wrap MRI Technique in Infants. Clin Pediatr (Phila). 2017 Oct;56(12):1095-1103. [CrossRef]
- Parodi A, Morana G, Severino MS, Malova M, Natalizia AR, Sannia A, Rossi A, Ramenghi LA. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2015 Nov;28 Suppl 1:2261-4. [CrossRef]
- Boswinkel V, Steggerda SJ, Fumagalli M, Parodi A, Ramenghi LA, Groenendaal F, et al. The CHOPIn Study: a Multicenter Study on Cerebellar Hemorrhage and Outcome in Preterm Infants. Cerebellum. 2019 Dec; 18(6): 989– 98. [CrossRef]
- Malova M, Morelli E, Cardiello V, Tortora D, Severino M, Calevo MG, Parodi A, De Angelis LC, Minghetti D, Rossi A, Ramenghi LA. Nosological Differences in the Nature of Punctate White Matter Lesions in Preterm Infants. Front Neurol. 2021 Apr 29;12:657461. [CrossRef]
- Villar J, Giuliani F, Fenton TR, Ohuma EO, Ismail LC, Kennedy SH et al. INTERGROWTH-21st very preterm size at birth reference charts. Lancet 2016, 387(10021):844-45. [CrossRef]
- Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC et al. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21st Project. Lancet Glob Health 2015, 3(11):e681-e691. [CrossRef]
- LMS Parameters for Girls: Infant Weight for Age. National health and nutrition survey (NHANES), CDC/National Center for Health Statistics; . LMS Parameters for Boys: Infant Weight for Age. National health and nutrition survey (NHANES), CDC/National Center for Health Statistics; : s.n.
- Fenton TR, Chan HT, Madhu A, Griffin IJ, Hoyos A, Ziegler EE, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139:e20162045. [CrossRef]
- Griffiths R, Huntley M. GMDS-R Griffiths mental development scales- revised 0–2 years. In: Battaglia FM, Savoini M (eds) Manuale. Giunti O.S, Firenze 2007;.
- Kumar, R.K.; Singhal, A.; Vaidya, U.; Banerjee, S.; Anwar, F.; Rao, S. Optimizing Nutrition in Preterm Low Birth Weight Infants—Consensus Summary. Front. Nutr. 2017, 4, 20. [CrossRef]
- Zhou Q, Zhang L, Lee SK, Chen C, Hu XJ, Liu C, Cao Y. A Quality Improvement Initiative to Increase Mother's Own Milk Use in a Chinese Neonatal Intensive Care Unit. Breastfeed Med. 2020 Apr;15(4):261-267. [CrossRef]
- Cerasani J, Ceroni F, De Cosmi V, Mazzocchi A, Morniroli D, Roggero P, Mosca F, Agostoni C, Giannì ML. Human Milk Feeding and Preterm Infants' Growth and Body Composition: A Literature Review. Nutrients. 2020 Apr 21;12(4):1155. [CrossRef]
- ESPGHAN Committee on Nutrition; Aggett PJ, Agostoni C, Axelsson I, De Curtis M, et. al. Feeding preterm infants after hospital discharge: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2006 May;42(5):596-603. [CrossRef]
- Lucas, A.; Morley, R.; Cole, T.J.; Lister, G.; Leeson-Payne, C. Breast milk and subsequent intelligence quotient in. Lancet 1992, 339, 261–264. [CrossRef]
- Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, Poole WK. National Institute of Child Health and Human Development National Research Network. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. s.l. : Pediatrics. 2007 Oct;120(4):e953-9. [CrossRef]
- Young, L.; Embleton, N.D.; McCormick, F.M.; McGuire, W. Multinutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2013, 2, CD004866.
- Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016 Dec 13;12(12):CD004696.
- Vandenplas Y, Ksiażyk J, Luna MS, Migacheva N, Picaud JC, Ramenghi LA, Singhal A, Wabitsch M. Partial Hydrolyzed Protein as a Protein Source for Infant Feeding: Do or Don't? Nutrients. 2022 Apr 21;14(9):1720. [CrossRef]
- World Health Organization. Complementary feeding: report of the global consultation, and summary of guiding principles for complementary feeding of the breastfed child. World Health Organization. 2003.
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) and Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Bresson JL, Fe. Appropriate age range for introduction of complementary feeding into an infant's diet. EFSA J. 2019 Sep 12;17(9):e05780. [CrossRef]
- Baldassarre ME, Di Mauro A, Pedico A, Rizzo V, Capozza M, Meneghin F, Lista G, Laforgia N; SIP, SIN, SIGENP. Weaning Time in Preterm Infants: An Audit of Italian Primary Care Paediatricians. Nutrients. 2018 May 15;10(5):616. [CrossRef]
- Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr. 2017;64:119–32. [CrossRef]
- DHSS (Department of Health and Social Security). Present day practice in infant feeding. Lancet. 1988;331:975–6.
- Department of Health. Weaning and the weaning diet. Rep Health Soc Subj (Lond). 1994;45:1-113.
- Palmer DJ, Makrides M. Introducing solid foods to preterm infants in developed countries. Ann Nutr Metab. 2012;60:31–8. [CrossRef]
- Gupta S, Agarwal R, Aggarwal KC, Chellani H, Duggal A, Arya S, Bhatia S, Sankar MJ, Sreenivas V, Jain V, Gupta AK, Deorari AK, Paul VK. Investigators of the CF trial. Complementary feeding at 4 versus 6 months of age for preterm infants born at less than 34 weeks of gestation: a randomised, open-label, multicentre trial. Lancet Glob Health. 2017 May;5(5):e501-e511. [CrossRef]
- Marriott LD, Foote KD, Bishop JA, Kimber AC, Morgan JB. Weaning preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2003;88:F302–7. [CrossRef]
- Haiden N, Thanhaeuser M, Eibensteiner F, Huber-Dangl M, Gsoellpointner M, Ristl R, Kroyer B, Brandstetter S, Kornsteiner-Krenn M, Binder C, Thajer A, Jilma B. Randomized Controlled Trial of Two Timepoints for Introduction of Standardized Complementary Food in Preterm Infants. Nutrients. 2022 Feb 7;14(3):697. [CrossRef]
- Spiegler J, Eisemann N, Ehlers S, Orlikowsky T, Kannt O, Herting E, et al. Length and weight of very low birth weight infants in Germany at 2 years of age: does it matter at what age they start complementary food? Eur J Clin Nutr. 2015;69:662–7. [CrossRef]
- Morgan, J.B.; Lucas, A.; Fewtrell, M.S. Does weaning influence growth and health up to 18 months? Arch. Dis. Child. 2004, 89, 728–733. [CrossRef]
- Sun C, Foskey RJ, Allen KJ, et al. The impact of timing of introduction of solids on infant body mass index. J Pediatr. 2016;179:104–110.e1. [CrossRef]
- Yrjänä, J.M.S.; Koski, T.; Törölä, H.; Valkama, M.; Kulmala, P. Very early introduction of semisolid foods in preterm infants does not increase food allergies or atopic dermatitis. Ann. Allergy Asthma Immunol. 2018, 121, 353–359. [CrossRef]
- Baldassarre ME, Panza R, Cresi F, Salvatori G, Corvaglia L, Aceti A, Giannì ML, Liotto N, Ilardi L, Laforgia N, Maggio L, Lionetti P, Agostoni C, Orfeo L, Di Mauro A, Staiano A, Mosca F and Italian Society of Paediatrics (SIP), Italian Society of Neonatology. Complementary feeding in preterm infants: a position paper by Italian neonatal, paediatric and paediatric gastroenterology joint societies. Ital J Pediatr. 2022 Aug 5;48(1). [CrossRef]
- Salvatori G, Martini L, The Study Group On Neonatal Nutrition And Gastroenterology-Italian Society Of Neonatology OBO. Complementary Feeding in the Preterm Infants: Summary of Available Macronutrient Intakes and Requirements. Nutrients. 2020 Nov 30;12(12). [CrossRef]
- Ojha S, Elfzzani Z, Kwok TC, Dorling J. Education of family members to support weaning to solids and nutrition in later infancy in term-born infants. Cochrane Database Syst Rev. 2020;7(7):CD012241.
- Elfzzani Z, Kwok TC, Ojha S, Dorling J. Education of family members to support weaning to solids and nutrition in infants born preterm. Cochrane Database Syst Rev. 2019 Feb 21;2(2):CD012240. [CrossRef]
- Duncan AF, Matthews MA. Neurodevelopmental Outcomes in Early Childhood. Clin Perinatol. 2018 Sep;45(3):377-392. [CrossRef]
- Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics. 2018 Nov; 19(7): 507– 21. [CrossRef]
- Malova M, Parodi A, Severino M, Tortora D, Calevo MG, Traggiai C, Massirio P, Minghetti D, Uccella S, Preiti D, Nobili L, Rossi A, Ramenghi LA. Neurodevelopmental Outcome at 3 Years of Age in Very Low Birth Weight Infants According to Brain Development and Lesions. Curr Pediatr Rev. 2024;20(1):94-105. [CrossRef]
| Whole population | N= 288 |
|---|---|
| Gestational age (weeks) | 28.9 + 2.1 |
| Birth Weight (g) | 1097 + 255 g (z-score -0,449 + 1,09) |
| Small for gestational age (SGA) | 62 (21,5%) |
| Male sex | 139 (48,3%) |
| Cesarean delivery | 232 (80,6%) |
| Apgarat 5 minutes | 8+ 1,2 |
| Sepsis | 108 (37,5%) |
| Necrotizing enterocolitis (NEC) | 30 (10,4%) |
| Bronchodysplasia (BPD) | 68 (23,6%) |
| Major Surgery | 36 (12,5%) |
| NEC Surgery | 15 (5,2%) |
| Patent Ductus Arteriosus Surgery | 17 (5,9%) |
| Exclusive mother-milk feeding | 49 (17%) |
| Exclusive formula feeding | 118 (41%) |
| MRI low-grade lesions | 101 (35,1%) |
| Low-grade intraventricular-hemorrhage (GMH-IVH) | 44 (15,3%) |
| Punctate white matter lesions (PWML) | 47 (16,3%) |
| Cerebellar micro-hemorrage (micro-CBH) | 31 (10,8%) |
| Weight at term age TEA (g) | 2600 + 598 (z-score -1.407 + 1.415) |
| “Cross-sectional” EUGR at TEA | 144 (50%) |
| “Longitudinal” EUGR at TEA | 126 (43,8%) |
| Weight at 6 months (kg) | 6.81 + 1.03 (z-score -1.240+ 1.29) |
| “Cross-sectional” EUGR at 6 months | 133 (46,2%) |
| “Longitudinal” EUGR at 6 months | 46 (16,0%) |
| Weight at 12 months (kg) | 8.78+ 1.16 (z-score -1.360+ 1.25) |
| “Cross-sectional” EUGR at 12 months | 139 (48,3%) |
| Pathologic or border line (<85) GMDS at 2y (n=288) | |
| Global DQ | 56 (19,4%) |
| Locomotor (scale A) | 68 (23,6%) |
| Personal-social (scale B) | 67 (23,2%) |
| Language (scale C) | 127 (44,1%) |
| Hand-eye coordination (scale D) | 38 (13,2%) |
| Performance (scale E) | 70 (24,3%) |
| Pathologic or border line (<85) GMDS at 3y (n= 262) | |
| Global DQ | 100 (38,2%) |
| Locomotor (scale A) | 83 (31,7%) |
| Personal-social (scale B) | 87 (33,2%) |
| Language (scale C) | 139 (53,0%) |
| Hand-eye coordination (scale D) | 83 (31,6%) |
| Performance (scale E) | 126 (48,1%) |
| Practicalreasoning (scale F) | 101 (38,5%) |
| 2y GMDS GLOBAL DQ | <85 | > 85 | |
|---|---|---|---|
| N | 56 | 232 | Total 288 |
| z-score 6 month | -1,639 + 1,582 | -1,140 + 1,188 | p=0,03 |
| z-score 12 month | -1,735 + 1,56 | -1,264 + 1,155 | p=0,03 |
| Surgical NEC | 6 (10,7%) | 9 (3,9%) | p=0,08 |
| “Cross-sectional” EUGR at 6 months | 33 (58,9%) | 101 (43,5%) | p=0,07 |
| Multivariate analysis (corrected for GA): | |||
| z-score 6 month | OR 0,74 (CI95% 0,59-0,93) | p=0,01 | |
| 2y GMDS Locomotor DQ | ||||
| Major surgery | OR 3.79 (CI 95% 1.69-8.49) | p=0,001 | ||
| “Cross-sectional” EUGR at 6 months | OR 1.96 (CI 95% 1.10-3.47) | p=0,02 | ||
| Punctate white matter lesions (PWML) | OR 2,33 (CI 95% 1,15-4,71) | p=0,02 | ||
| 2y GMDS Personal-social DQ | ||||
| “Cross-sectional” EUGR at 6 months | OR 1,94 (CI 95% 1,12-3,37) | p=0,02 | ||
| NEC | OR 2,60 (CI 95% 1,14-5,92) | p=0,02 | ||
| 2y GMDS Language DQ | ||||
| Gestational age (GA) | OR 0,50 (CI 95% 0,27, 0,92) | p=0,02 | ||
| NEC | OR 2,48 (CI 95% 1,07-5,71) | p=0,03 | ||
| “Cross-sectional” EUGR at 6 months | OR 1,87 (CI 95% 1,05-3,29) | p=0,02 | ||
| Weight z-score at birth | OR 0,31 (CI 95% 0,12-0,81) | p=0,02 | ||
| 2y GMDS Hand-eye coordination DQ | ||||
| NEC | OR 3,98 (CI 95% 1,66-9,55) | p=0,002 | ||
| 2y GMDS Performance DQ | ||||
| Male sex | OR 2,01 (CI 95% 1,13-3,57) | p=0,02 | ||
| Punctate white matter lesions (PWML) | OR 2,03 (CI 95% 1,00-4,14) | p=0,05 | ||
| Major surgery | OR 4,07 (CI 95% 1,78-9,33) | p=0,001 | ||
| “Longitudinal” EUGR at 6 months | OR 2,10 (CI 95% 1,03-4,30) | p=0,04 | ||
| 3y GMDS GLOBAL DQ | <85 | > 85 | |
|---|---|---|---|
| N | 100 | 162 | Total 262 |
| Male sex | 60 (60%) | 70 (43,2%) | p=0,01 |
| Caesarean delivery | 76 (76%) | 138 (85,2%) | p=0,05 |
| NEC | 17 (17%) | 12 (7,4%) | p=0,02 |
| Multivariate analysis (corrected for GA): | |||
| Male sex | OR 1,94 (CI 95% 1,16-3,24) | p=0,01 | |
| NEC | OR 2,55 (CI 95% 1,11-5,86) | p=0,03 | |
| 3y GMDS Locomotor DQ | ||||
| Gestational Age (GA) | OR 0,88 (CI 95% 0,77-1) | p=0,06 | ||
| Male sex | OR 1,82 (CI 95% 1.07-3,10) | p=0,03 | ||
| 3y GMDS Personal-social DQ | ||||
| Male sex | OR 2,18 (CI 95% 1,28-3,72) | p=0,004 | ||
| Caesarean delivery | OR 0,47 (CI 95% 0,25-0,91) | p=0,02 | ||
| 3y GMDS Language DQ | ||||
| “Cross-sectional” EUGR at 6 months | OR 1,63 (CI 95% 0,99-2,68) | p=0,05 | ||
| Male sex | OR 1,88 (CI 95% 1,14-3,10) | p=0,01 | ||
| 3y GMDS Hand-eye coordination DQ | ||||
| NEC | OR 4,17 (CI 95% 1,78-9,76) | p=0,001 | ||
| Male sex | OR 1,80 (CI95% 1,04-3,10) | p=0,03 | ||
| 3y GMDS Performance DQ | ||||
| NEC | OR 4,31 (CI 95% 1,63-11,35) | p=0,003 | ||
| Male sex | OR 2,39 (CI 95% 1,44-3,97) | p=0,001 | ||
| 3y GMDS Practical Reasoning DQ | ||||
| NEC | OR 4,47 (CI 95% 1,84-10,85) | p=0,001 | ||
| “Longitudinal” EUGR at 6 months | OR 2,07 (CI 95% 1,02-4,17) | p=0,04 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
