Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Genome-Wide Classification of Myb Domain-Containing Protein Families in Entamoeba invadens

Version 1 : Received: 29 December 2023 / Approved: 4 January 2024 / Online: 4 January 2024 (06:52:50 CET)

A peer-reviewed article of this Preprint also exists.

Cuellar, P.; Castañeda-Ortiz, E.J.; Rosales-Zarza, C.; Martínez-Rodríguez, C.E.; Canela-Pérez, I.; Rodríguez, M.A.; Valdés, J.; Azuara-Liceaga, E. Genome-Wide Classification of Myb Domain-Containing Protein Families in Entamoeba invadens. Genes 2024, 15, 201. Cuellar, P.; Castañeda-Ortiz, E.J.; Rosales-Zarza, C.; Martínez-Rodríguez, C.E.; Canela-Pérez, I.; Rodríguez, M.A.; Valdés, J.; Azuara-Liceaga, E. Genome-Wide Classification of Myb Domain-Containing Protein Families in Entamoeba invadens. Genes 2024, 15, 201.

Abstract

Entamoeba histolytica, the causative agent of amebiasis, is the third leading cause of death among parasitic diseases globally. Its life cycle includes encystation, which has been mostly studied in Entamoeba invadens, responsible of reptilian amebiasis. However, the molecular mechanisms underlying this process are not fully understood. Therefore, we focused on the identification and characterization of Myb proteins, that regulate the expression of encystation-related genes in various protozoan parasites. Through bioinformatic analysis, we identified 47 genes in E. invadens encoding MYB-domain-containing proteins. These were classified into single-repeat 1R (19), 2R-MYB proteins (27), and one 4R-MYB protein. The in silico analysis suggests that these proteins are multifunctional, participating in transcriptional regulation, chromatin remodeling, telomere maintenance, and splicing. Transcriptomic data analysis revealed expression signatures of eimyb genes, suggesting a potential orchestration in the regulation of early and late encystation-excystation genes. Furthermore, we identified 3135 probable target genes associated with reproduction, meiotic cell cycle, ubiquitin-dependent protein catabolism, and endosomal transport. In conclusion, our findings suggest that E. invadens Myb proteins regulate stage-specific proteins and a wide array of cellular processes. This study provides a foundation for further exploration of the molecular mechanisms governing encystation and unveils potential targets for therapeutic intervention in amebiasis.

Keywords

MYB-DBD containing proteins; encystation-excystation; transcriptional regulation; protozoan; Myb Recognition Element

Subject

Biology and Life Sciences, Parasitology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.