Submitted:
26 December 2023
Posted:
26 December 2023
You are already at the latest version
Abstract
Keywords:
Introduction
1. Anti-SRP and Anti-HMGCR Autoantibody as a Hallmark of Disease
2. Autoantibody Assays at the Heart of Diagnosis
3. Autoantibodies at the Heart of Pathophysiology
3. B cell and IgG Targeted Therapies as Therapeutic Perspectives
1. Treatments Targeting aAbs
2. Treatments Targeting Immune Cells
3. Treatments Targeting Inflammatory Cytokines
4. Other Treatments
Conclusion
Author Contributions
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bohan, A.; Peter, J.B. Polymyositis and Dermatomyositis (First of Two Parts). N Engl J Med 1975, 292, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Bohan, A.; Peter, J.B. Polymyositis and Dermatomyositis (Second of Two Parts). N Engl J Med 1975, 292, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, J.E.; Amato, A.A.; Lecky, B.R.; Choy, E.H.; Lundberg, I.E.; Rose, M.R.; Vencovsky, J.; de Visser, M.; Hughes, R.A. 119th ENMC International Workshop: Trial Design in Adult Idiopathic Inflammatory Myopathies, with the Exception of Inclusion Body Myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscul Disord 2004, 14, 337–345. [Google Scholar] [CrossRef]
- McHugh, N.J.; Tansley, S.L. Autoantibodies in Myositis. Nat Rev Rheumatol 2018, 14, 290–302. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; Visser, M. de; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. 2017 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Adult and Juvenile Idiopathic Inflammatory Myopathies and Their Major Subgroups. Ann Rheum Dis 2017, 76, 1955–1964. [Google Scholar] [CrossRef]
- Oldroyd, A.; Chinoy, H. Recent Developments in Classification Criteria and Diagnosis Guidelines for Idiopathic Inflammatory Myopathies. Curr Opin Rheumatol 2018, 30, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Mariampillai, K.; Granger, B.; Amelin, D.; Guiguet, M.; Hachulla, E.; Maurier, F.; Meyer, A.; Tohmé, A.; Charuel, J.-L.; Musset, L.; et al. Development of a New Classification System for Idiopathic Inflammatory Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA Neurol 2018, 75, 1528–1537. [Google Scholar] [CrossRef]
- Quinn, C.; Salameh, J.S.; Smith, T.; Souayah, N. Necrotizing Myopathies: An Update. J Clin Neuromuscul Dis 2015, 16, 131–140. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Carrino, J.A.; Lahouti, A.H.; Basharat, P.; Albayda, J.; Paik, J.J.; Ahlawat, S.; Danoff, S.K.; Lloyd, T.E.; et al. Thigh Muscle MRI in Immune-Mediated Necrotising Myopathy: Extensive Oedema, Early Muscle Damage and Role of Anti-SRP Autoantibodies as a Marker of Severity. Ann Rheum Dis 2017, 76, 681–687. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Stenzel, W.; Boyer, O. Immune-Mediated Necrotizing Myopathy: Clinical Features and Pathogenesis. Nat Rev Rheumatol 2020, 16, 689–701. [Google Scholar] [CrossRef]
- Allenbach, Y.; Keraen, J.; Bouvier, A.-M.; Jooste, V.; Champtiaux, N.; Hervier, B.; Schoindre, Y.; Rigolet, A.; Gilardin, L.; Musset, L.; et al. High Risk of Cancer in Autoimmune Necrotizing Myopathies: Usefulness of Myositis Specific Antibody. Brain 2016, 139, 2131–2135. [Google Scholar] [CrossRef]
- Reeves, W.H.; Nigam, S.K.; Blobel, G. Human Autoantibodies Reactive with the Signal-Recognition Particle. Proc Natl Acad Sci U S A 1986, 83, 9507–9511. [Google Scholar] [CrossRef]
- Keenan, R.J.; Freymann, D.M.; Stroud, R.M.; Walter, P. The Signal Recognition Particle. Annu Rev Biochem 2001, 70, 755–775. [Google Scholar] [CrossRef]
- Benveniste, O.; Drouot, L.; Jouen, F.; Charuel, J.-L.; Bloch-Queyrat, C.; Behin, A.; Amoura, Z.; Marie, I.; Guiguet, M.; Eymard, B.; et al. Correlation of Anti-Signal Recognition Particle Autoantibody Levels with Creatine Kinase Activity in Patients with Necrotizing Myopathy. Arthritis Rheum 2011, 63, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Duan, F.; Liu, P.; Wang, P.F.; Wang, M.X. Expression of Anti-SRP19 Antibody in Muscle Tissues from Patients with Autoimmune Necrotizing Myopathy. Genet Mol Res 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Römisch, K.; Miller, F.W.; Dobberstein, B.; High, S. Human Autoantibodies against the 54 kDa Protein of the Signal Recognition Particle Block Function at Multiple Stages. Arthritis Res Ther 2006, 8, R39. [Google Scholar] [CrossRef] [PubMed]
- Apiwattanakul, M.; Milone, M.; Pittock, S.J.; Kryzer, T.J.; Fryer, J.P.; O’toole, O.; Mckeon, A.; Lennon, V.A. Signal Recognition Particle Immunoglobulin g Detected Incidentally Associates with Autoimmune Myopathy. Muscle Nerve 2016, 53, 925–932. [Google Scholar] [CrossRef]
- Satoh, T.; Okano, T.; Matsui, T.; Watabe, H.; Ogasawara, T.; Kubo, K.; Kuwana, M.; Fertig, N.; Oddis, C.V.; Kondo, H.; et al. Novel Autoantibodies against 7SL RNA in Patients with Polymyositis/Dermatomyositis. J Rheumatol 2005, 32, 1727–1733. [Google Scholar]
- Christopher-Stine, L.; Casciola-Rosen, L.A.; Hong, G.; Chung, T.; Corse, A.M.; Mammen, A.L. A Novel Autoantibody Recognizing 200-Kd and 100-Kd Proteins Is Associated with an Immune-Mediated Necrotizing Myopathy. Arthritis Rheum 2010, 62, 2757–2766. [Google Scholar] [CrossRef]
- Needham, M.; Fabian, V.; Knezevic, W.; Panegyres, P.; Zilko, P.; Mastaglia, F.L. Progressive Myopathy with Up-Regulation of MHC-I Associated with Statin Therapy. Neuromuscul Disord 2007, 17, 194–200. [Google Scholar] [CrossRef]
- Grable-Esposito, P.; Katzberg, H.D.; Greenberg, S.A.; Srinivasan, J.; Katz, J.; Amato, A.A. Immune-Mediated Necrotizing Myopathy Associated with Statins. Muscle Nerve 2010, 41, 185–190. [Google Scholar] [CrossRef]
- Liscum, L.; Finer-Moore, J.; Stroud, R.M.; Luskey, K.L.; Brown, M.S.; Goldstein, J.L. Domain Structure of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase, a Glycoprotein of the Endoplasmic Reticulum. Journal of Biological Chemistry 1985, 260, 522–530. [Google Scholar] [CrossRef]
- Mammen, A.L.; Chung, T.; Christopher-Stine, L.; Rosen, P.; Rosen, A.; Doering, K.R.; Casciola-Rosen, L.A. Autoantibodies against 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase in Patients with Statin-Associated Autoimmune Myopathy. Arthritis Rheum 2011, 63, 713–721. [Google Scholar] [CrossRef]
- Cavazzana, I.; Fredi, M.; Ceribelli, A.; Mordenti, C.; Ferrari, F.; Carabellese, N.; Tincani, A.; Satoh, M.; Franceschini, F. Testing for Myositis Specific Autoantibodies: Comparison between Line Blot and Immunoprecipitation Assays in 57 Myositis Sera. J Immunol Methods 2016, 433, 1–5. [Google Scholar] [CrossRef]
- Damoiseaux, J.; Vulsteke, J.-B.; Tseng, C.-W.; Platteel, A.C.M.; Piette, Y.; Shovman, O.; Bonroy, C.; Hamann, D.; De Langhe, E.; Musset, L.; et al. Autoantibodies in Idiopathic Inflammatory Myopathies: Clinical Associations and Laboratory Evaluation by Mono- and Multispecific Immunoassays. Autoimmunity Reviews 2019, 18, 293–305. [Google Scholar] [CrossRef]
- Bossuyt, X.; Fieuws, S. Detection of Antinuclear Antibodies: Added Value of Solid Phase Assay? Annals of the Rheumatic Diseases 2014, 73, e10–e10. [Google Scholar] [CrossRef]
- Infantino, M.; Tampoia, M.; Fabris, M.; Alessio, M.G.; Previtali, G.; Pesce, G.; Deleonardi, G.; Porcelli, B.; Musso, M.; Grossi, V.; et al. Combining Immunofluorescence with Immunoblot Assay Improves the Specificity of Autoantibody Testing for Myositis. Rheumatology (Oxford) 2019, 58, 1239–1244. [Google Scholar] [CrossRef]
- Damoiseaux, J.; Mammen, A.L.; Piette, Y.; Benveniste, O.; Allenbach, Y. ; ENMC 256th Workshop Study Group 256th ENMC International Workshop: Myositis Specific and Associated Autoantibodies (MSA-Ab): Amsterdam, The Netherlands, 8-10 October 2021. Neuromuscul Disord 2022, 32, 594–608. [Google Scholar] [CrossRef]
- Isenberg, D.A.; Dudeney, C.; Williams, W.; Todd-Pokropek, A.; Stollar, B.D. Disease Activity in Systemic Lupus Erythematosus Related to a Range of Antibodies Binding DNA and Synthetic Polynucleotides. Ann Rheum Dis 1988, 47, 717–724. [Google Scholar] [CrossRef]
- Allenbach, Y.; Drouot, L.; Rigolet, A.; Charuel, J.L.; Jouen, F.; Romero, N.B.; Maisonobe, T.; Dubourg, O.; Behin, A.; Laforet, P.; et al. Anti-HMGCR Autoantibodies in European Patients with Autoimmune Necrotizing Myopathies: Inconstant Exposure to Statin. Medicine (Baltimore) 2014, 93, 150–157. [Google Scholar] [CrossRef]
- Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.; Lloyd, T.E.; Mammen, A.L. Antibody Levels Correlate with Creatine Kinase Levels and Strength in Anti-3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase-Associated Autoimmune Myopathy. Arthritis Rheum 2012, 64, 4087–4093. [Google Scholar] [CrossRef]
- Arlet, J.-B.; Dimitri, D.; Pagnoux, C.; Boyer, O.; Maisonobe, T.; Authier, F.-J.; Bloch-Queyrat, C.; Goulvestre, C.; Heshmati, F.; Atassi, M.; et al. Marked Efficacy of a Therapeutic Strategy Associating Prednisone and Plasma Exchange Followed by Rituximab in Two Patients with Refractory Myopathy Associated with Antibodies to the Signal Recognition Particle (SRP). Neuromuscul Disord 2006, 16, 334–336. [Google Scholar] [CrossRef]
- Rojana-udomsart, A.; Mitrpant, C.; Bundell, C.; Price, L.; Luo, Y.-B.; Fabian, V.; Wilton, S.D.; Hollingsworth, P.; Mastaglia, F.L. Complement-Mediated Muscle Cell Lysis: A Possible Mechanism of Myonecrosis in Anti-SRP Associated Necrotizing Myopathy (ASANM). J Neuroimmunol 2013, 264, 65–70. [Google Scholar] [CrossRef]
- Arouche-Delaperche, L.; Allenbach, Y.; Amelin, D.; Preusse, C.; Mouly, V.; Mauhin, W.; Tchoupou, G.D.; Drouot, L.; Boyer, O.; Stenzel, W.; et al. Pathogenic Role of Anti-Signal Recognition Protein and Anti-3-Hydroxy-3-Methylglutaryl-CoA Reductase Antibodies in Necrotizing Myopathies: Myofiber Atrophy and Impairment of Muscle Regeneration in Necrotizing Autoimmune Myopathies. Ann Neurol 2017, 81, 538–548. [Google Scholar] [CrossRef]
- Ohashi, K.; Osuga, J.; Tozawa, R.; Kitamine, T.; Yagyu, H.; Sekiya, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Yahagi, N.; et al. Early Embryonic Lethality Caused by Targeted Disruption of the 3-Hydroxy-3-Methylglutaryl-CoA Reductase Gene. J Biol Chem 2003, 278, 42936–42941. [Google Scholar] [CrossRef]
- Osaki, Y.; Nakagawa, Y.; Miyahara, S.; Iwasaki, H.; Ishii, A.; Matsuzaka, T.; Kobayashi, K.; Yatoh, S.; Takahashi, A.; Yahagi, N.; et al. Skeletal Muscle-Specific HMG-CoA Reductase Knockout Mice Exhibit Rhabdomyolysis: A Model for Statin-Induced Myopathy. Biochem Biophys Res Commun 2015, 466, 536–540. [Google Scholar] [CrossRef]
- Bergua, C.; Chiavelli, H.; Allenbach, Y.; Arouche-Delaperche, L.; Arnoult, C.; Bourdenet, G.; Jean, L.; Zoubairi, R.; Guerout, N.; Mahler, M.; et al. In Vivo Pathogenicity of IgG from Patients with Anti-SRP or Anti-HMGCR Autoantibodies in Immune-Mediated Necrotising Myopathy. Ann Rheum Dis 2019, 78, 131–139. [Google Scholar] [CrossRef]
- Allenbach, Y.; Arouche-Delaperche, L.; Preusse, C.; Radbruch, H.; Butler-Browne, G.; Champtiaux, N.; Mariampillai, K.; Rigolet, A.; Hufnagl, P.; Zerbe, N.; et al. Necrosis in Anti-SRP+ and Anti-HMGCR+myopathies: Role of Autoantibodies and Complement. Neurology 2018, 90, e507–e517. [Google Scholar] [CrossRef]
- Kim, J.-S.; Choi, D.-K.; Shin, J.-Y.; Shin, S.-M.; Park, S.-W.; Cho, H.-S.; Kim, Y.-S. Endosomal Acidic pH-Induced Conformational Changes of a Cytosol-Penetrating Antibody Mediate Endosomal Escape. J Control Release 2016, 235, 165–175. [Google Scholar] [CrossRef]
- Rider, L.G.; Koziol, D.; Giannini, E.H.; Jain, M.S.; Smith, M.R.; Whitney-Mahoney, K.; Feldman, B.M.; Wright, S.J.; Lindsley, C.B.; Pachman, L.M.; et al. Validation of Manual Muscle Testing and a Subset of Eight Muscles (MMT8) for Adult and Juvenile Idiopathic Inflammatory Myopathies. Arthritis Care Res (Hoboken) 2010, 62, 465–472. [Google Scholar] [CrossRef]
- Fionda, L.; Vanoli, F.; Di Pasquale, A.; Leonardi, L.; Morino, S.; Merlonghi, G.; Lauletta, A.; Alfieri, G.; Costanzo, R.; Tufano, L.; et al. Comparison of Quantitative Muscle Ultrasound and Whole-Body Muscle MRI in Facioscapulohumeral Muscular Dystrophy Type 1 Patients. Neurol Sci 2023, 44, 4057–4064. [Google Scholar] [CrossRef]
- Meyer, A.; Troyanov, Y.; Drouin, J.; Oligny-Longpré, G.; Landon-Cardinal, O.; Hoa, S.; Hervier, B.; Bourré-Tessier, J.; Mansour, A.-M.; Hussein, S.; et al. Statin-Induced Anti-HMGCR Myopathy: Successful Therapeutic Strategies for Corticosteroid-Free Remission in 55 Patients. Arthritis Res Ther 2020, 22, 5. [Google Scholar] [CrossRef]
- Kruse, R.L.; Albayda, J.; Vozniak, S.O.; Lawrence, C.E.; Goel, R.; Lokhandwala, P.M.; Ness, P.M.; Tobian, A.A.R.; Bloch, E.M.; Crowe, E.P. Therapeutic Plasma Exchange for the Treatment of Refractory Necrotizing Autoimmune Myopathy. J Clin Apher 2022, 37, 253–262. [Google Scholar] [CrossRef]
- Landon-Cardinal, O.; Allenbach, Y.; Soulages, A.; Rigolet, A.; Hervier, B.; Champtiaux, N.; Monzani, Q.; Solé, G.; Benveniste, O. Rituximab in the Treatment of Refractory Anti-HMGCR Immune-Mediated Necrotizing Myopathy. J Rheumatol 2019, 46, 623–627. [Google Scholar] [CrossRef]
- Allenbach, Y.; Mammen, A.L.; Benveniste, O.; Stenzel, W. ; Immune-Mediated Necrotizing Myopathies Working Group 224th ENMC International Workshop:: Clinico-Sero-Pathological Classification of Immune-Mediated Necrotizing Myopathies Zandvoort, The Netherlands, 14-16 October 2016. Neuromuscul Disord 2018, 28, 87–99. [Google Scholar] [CrossRef]
- Menon, D.; Bril, V. Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals. Drugs 2022, 82, 865–887. [Google Scholar] [CrossRef]
- Miyasaka, N.; Hara, M.; Koike, T.; Saito, E.; Yamada, M.; Tanaka, Y. ; GB-0998 Study Group Effects of Intravenous Immunoglobulin Therapy in Japanese Patients with Polymyositis and Dermatomyositis Resistant to Corticosteroids: A Randomized Double-Blind Placebo-Controlled Trial. Mod Rheumatol 2012, 22, 382–393. [Google Scholar] [CrossRef]
- Kamperman, R.G.; Bogaards, J.A.; Evers, S.W.; Walter, H.A.W.; de Visser, M.; de Borgie, C.; Colen-de Koning, J.C.A.; Verhamme, C.; Maas, M.; Eftimov, F.; et al. Treatment with Add-on IVIg in Myositis Early In the diSease Course May Be sUperior to Steroids Alone for Reaching CLinical improvEment (TIME IS MUSCLE): Study Protocol of a Phase-2 Double-Blind Placebo-Controlled Randomised Trial. BMJ Open 2023, 13, e067435. [Google Scholar] [CrossRef]
- Blumberg, L.J.; Humphries, J.E.; Jones, S.D.; Pearce, L.B.; Holgate, R.; Hearn, A.; Cheung, J.; Mahmood, A.; Del Tito, B.; Graydon, J.S.; et al. Blocking FcRn in Humans Reduces Circulating IgG Levels and Inhibits IgG Immune Complex-Mediated Immune Responses. Sci Adv 2019, 5, eaax9586. [Google Scholar] [CrossRef]
- Howard, J.F.; Bril, V.; Vu, T.; Karam, C.; Peric, S.; Margania, T.; Murai, H.; Bilinska, M.; Shakarishvili, R.; Smilowski, M.; et al. Safety, Efficacy, and Tolerability of Efgartigimod in Patients with Generalised Myasthenia Gravis (ADAPT): A Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Neurol 2021, 20, 526–536. [Google Scholar] [CrossRef]
- Julien, S.; van der Woning, B.; De Ceuninck, L.; Briand, E.; Jaworski, T.; Roussel, G.; Zoubaïri, R.; Allenbach, Y.; Benveniste, O.; Drouot, L.; et al. Efgartigimod Restores Muscle Function in a Humanized Mouse Model of Immune-Mediated Necrotizing Myopathy. Rheumatology (Oxford) 2023, kead298. [Google Scholar] [CrossRef]
- Smith, B.; Kiessling, A.; Lledo-Garcia, R.; Dixon, K.L.; Christodoulou, L.; Catley, M.C.; Atherfold, P.; D’Hooghe, L.E.; Finney, H.; Greenslade, K.; et al. Generation and Characterization of a High Affinity Anti-Human FcRn Antibody, Rozanolixizumab, and the Effects of Different Molecular Formats on the Reduction of Plasma IgG Concentration. MAbs 2018, 10, 1111–1130. [Google Scholar] [CrossRef]
- Peter, H.-H.; Ochs, H.D.; Cunningham-Rundles, C.; Vinh, D.C.; Kiessling, P.; Greve, B.; Jolles, S. Targeting FcRn for Immunomodulation: Benefits, Risks, and Practical Considerations. J Allergy Clin Immunol 2020, 146, 479–491. [Google Scholar] [CrossRef]
- Ulrichts, P.; Guglietta, A.; Dreier, T.; van Bragt, T.; Hanssens, V.; Hofman, E.; Vankerckhoven, B.; Verheesen, P.; Ongenae, N.; Lykhopiy, V.; et al. Neonatal Fc Receptor Antagonist Efgartigimod Safely and Sustainably Reduces IgGs in Humans. J Clin Invest 2018, 128, 4372–4386. [Google Scholar] [CrossRef]
- Newland, A.C.; Sánchez-González, B.; Rejtő, L.; Egyed, M.; Romanyuk, N.; Godar, M.; Verschueren, K.; Gandini, D.; Ulrichts, P.; Beauchamp, J.; et al. Phase 2 Study of Efgartigimod, a Novel FcRn Antagonist, in Adult Patients with Primary Immune Thrombocytopenia. Am J Hematol 2020, 95, 178–187. [Google Scholar] [CrossRef]
- Goebeler, M.; Bata-Csörgő, Z.; De Simone, C.; Didona, B.; Remenyik, E.; Reznichenko, N.; Stoevesandt, J.; Ward, E.S.; Parys, W.; de Haard, H.; et al. Treatment of Pemphigus Vulgaris and Foliaceus with Efgartigimod, a Neonatal Fc Receptor Inhibitor: A Phase II Multicentre, Open-Label Feasibility Trial. Br J Dermatol 2022, 186, 429–439. [Google Scholar] [CrossRef]
- Devanaboyina, S.C.; Khare, P.; Challa, D.K.; Ober, R.J.; Ward, E.S. Engineered Clearing Agents for the Selective Depletion of Antigen-Specific Antibodies. Nat Commun 2017, 8, 15314. [Google Scholar] [CrossRef]
- Sun, W.; Khare, P.; Wang, X.; Challa, D.K.; Greenberg, B.M.; Ober, R.J.; Ward, E.S. Selective Depletion of Antigen-Specific Antibodies for the Treatment of Demyelinating Disease. Molecular Therapy 2021, 29, 1312–1323. [Google Scholar] [CrossRef]
- Pickering, M.C.; Ismajli, M.; Condon, M.B.; McKenna, N.; Hall, A.E.; Lightstone, L.; Terence Cook, H.; Cairns, T.D. Eculizumab as Rescue Therapy in Severe Resistant Lupus Nephritis. Rheumatology (Oxford) 2015, 54, 2286–2288. [Google Scholar] [CrossRef]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019, 381, 614–625. [Google Scholar] [CrossRef]
- Mammen, A.L.; Amato, A.A.; Dimachkie, M.M.; Chinoy, H.; Hussain, Y.; Lilleker, J.B.; Pinal-Fernandez, I.; Allenbach, Y.; Boroojerdi, B.; Vanderkelen, M.; et al. Zilucoplan in Immune-Mediated Necrotising Myopathy: A Phase 2, Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet Rheumatol 2023, 5, e67–e76. [Google Scholar] [CrossRef]
- Julien, S.; Vadysirisack, D.; Sayegh, C.; Ragunathan, S.; Tang, Y.; Briand, E.; Carrette, M.; Jean, L.; Zoubairi, R.; Gondé, H.; et al. Prevention of Anti-HMGCR Immune-Mediated Necrotising Myopathy by C5 Complement Inhibition in a Humanised Mouse Model. Biomedicines 2022, 10, 2036. [Google Scholar] [CrossRef]
- Oddis, C.V.; Reed, A.M.; Aggarwal, R.; Rider, L.G.; Ascherman, D.P.; Levesque, M.C.; Barohn, R.J.; Feldman, B.M.; Harris-Love, M.O.; Koontz, D.C.; et al. Rituximab in the Treatment of Refractory Adult and Juvenile Dermatomyositis and Adult Polymyositis: A Randomized, Placebo-Phase Trial. Arthritis Rheum 2013, 65, 314–324. [Google Scholar] [CrossRef]
- Allenbach, Y.; Guiguet, M.; Rigolet, A.; Marie, I.; Hachulla, E.; Drouot, L.; Jouen, F.; Jacquot, S.; Mariampillai, K.; Musset, L.; et al. Efficacy of Rituximab in Refractory Inflammatory Myopathies Associated with Anti- Synthetase Auto-Antibodies: An Open-Label, Phase II Trial. PLoS One 2015, 10, e0133702. [Google Scholar] [CrossRef]
- Maher, T.M.; Tudor, V.A.; Saunders, P.; Gibbons, M.A.; Fletcher, S.V.; Denton, C.P.; Hoyles, R.K.; Parfrey, H.; Renzoni, E.A.; Kokosi, M.; et al. Rituximab versus Intravenous Cyclophosphamide in Patients with Connective Tissue Disease-Associated Interstitial Lung Disease in the UK (RECITAL): A Double-Blind, Double-Dummy, Randomised, Controlled, Phase 2b Trial. Lancet Respir Med 2023, 11, 45–54. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Pu, C.; Zhu, K.; Lu, C.; Jiang, Y.; Xiao, L.; Han, Y.; Lu, L. Therapeutic Efficacy of Anti-CD19 CAR-T Cells in a Mouse Model of Systemic Lupus Erythematosus. Cell Mol Immunol 2021, 18, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Müller, F.; Mougiakakos, D.; Böltz, S.; Wilhelm, A.; Aigner, M.; Völkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T Cell Therapy for Refractory Systemic Lupus Erythematosus. Nat Med 2022, 28, 2124–2132. [Google Scholar] [CrossRef]
- Müller, F.; Boeltz, S.; Knitza, J.; Aigner, M.; Völkl, S.; Kharboutli, S.; Reimann, H.; Taubmann, J.; Kretschmann, S.; Rösler, W.; et al. CD19-Targeted CAR T Cells in Refractory Antisynthetase Syndrome. The Lancet 2023, 401, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Tjärnlund, A.; Tang, Q.; Wick, C.; Dastmalchi, M.; Mann, H.; Tomasová Studýnková, J.; Chura, R.; Gullick, N.J.; Salerno, R.; Rönnelid, J.; et al. Abatacept in the Treatment of Adult Dermatomyositis and Polymyositis: A Randomised, Phase IIb Treatment Delayed-Start Trial. Ann Rheum Dis 2018, 77, 55–62. [Google Scholar] [CrossRef]
- Tang, Q.; Ramsköld, D.; Krystufkova, O.; Mann, H.F.; Wick, C.; Dastmalchi, M.; Lakshmikanth, T.; Chen, Y.; Mikes, J.; Alexanderson, H.; et al. Effect of CTLA4-Ig (Abatacept) Treatment on T Cells and B Cells in Peripheral Blood of Patients with Polymyositis and Dermatomyositis. Scand J Immunol 2019, 89, e12732. [Google Scholar] [CrossRef]
- Collison, J. Low-Dose IL-2 Therapy for Autoimmune Diseases. Nat Rev Rheumatol 2019, 15, 2–2. [Google Scholar] [CrossRef]
- Miao, M.; Li, Y.; Huang, B.; Chen, J.; Jin, Y.; Shao, M.; Zhang, X.; Sun, X.; He, J.; Li, Z. Treatment of Active Idiopathic Inflammatory Myopathies by Low-Dose Interleukin-2: A Prospective Cohort Pilot Study. Rheumatol Ther 2021, 8, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Studynkova, J.; Mann, H.; Jarosova, K.; Blumhardt, S.; Maurer, B.; Dastmalchi, M.; Danko, K.; wierkocka, K.; Olesinska, M.; Distler, O.; et al. OP0289 A Prospective, Randomized, Open-Label, Assessor-Blind, Multicenter Study of Efficacy and Safety of Combined Treatment of Methotrexate + Glucocorticoids versus Glucocorticoids Alone in Patients with Polymyositis and Dermatomyositis (Prometheus Trial). Annals of the Rheumatic Diseases 2014, 73, 171–171. [Google Scholar] [CrossRef]
- Takada, K.; Katada, Y.; Ito, S.; Hayashi, T.; Kishi, J.; Itoh, K.; Yamashita, H.; Hirakata, M.; Kawahata, K.; Kawakami, A.; et al. Impact of Adding Tacrolimus to Initial Treatment of Interstitial Pneumonitis in Polymyositis/Dermatomyositis: A Single-Arm Clinical Trial. Rheumatology (Oxford) 2020, 59, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Rowland, S.L.; Riggs, J.M.; Gilfillan, S.; Bugatti, M.; Vermi, W.; Kolbeck, R.; Unanue, E.R.; Sanjuan, M.A.; Colonna, M. Early, Transient Depletion of Plasmacytoid Dendritic Cells Ameliorates Autoimmunity in a Lupus Model. J Exp Med 2014, 211, 1977–1991. [Google Scholar] [CrossRef]
- Karnell, J.L.; Wu, Y.; Mittereder, N.; Smith, M.A.; Gunsior, M.; Yan, L.; Casey, K.A.; Henault, J.; Riggs, J.M.; Nicholson, S.M.; et al. Depleting Plasmacytoid Dendritic Cells Reduces Local Type I Interferon Responses and Disease Activity in Patients with Cutaneous Lupus. Sci Transl Med 2021, 13, eabf8442. [Google Scholar] [CrossRef]
- Higgs, B.W.; Zhu, W.; Morehouse, C.; White, W.I.; Brohawn, P.; Guo, X.; Rebelatto, M.; Le, C.; Amato, A.; Fiorentino, D.; et al. A Phase 1b Clinical Trial Evaluating Sifalimumab, an Anti-IFN-α Monoclonal Antibody, Shows Target Neutralisation of a Type I IFN Signature in Blood of Dermatomyositis and Polymyositis Patients. Ann Rheum Dis 2014, 73, 256–262. [Google Scholar] [CrossRef]
- Cappelletti, C.; Brugnoni, R.; Bonanno, S.; Andreetta, F.; Salerno, F.; Canioni, E.; Vattemi, G.N.A.; Tonin, P.; Mantegazza, R.; Maggi, L. Toll-like Receptors and IL-7 as Potential Biomarkers for Immune-Mediated Necrotizing Myopathies. European Journal of Immunology 2023, 53, 2250326. [Google Scholar] [CrossRef]
- Alonso-Pérez, J.; Carrasco-Rozas, A.; Borrell-Pages, M.; Fernández-Simón, E.; Piñol-Jurado, P.; Badimon, L.; Wollin, L.; Lleixà, C.; Gallardo, E.; Olivé, M.; et al. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022, 10, 2629. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Li, T.; Dong, N.; Yi, L.; Zhang, Q.; Mi, M. GLP-1 Regulates Exercise Endurance and Skeletal Muscle Remodeling via GLP-1R/AMPK Pathway. Biochim Biophys Acta Mol Cell Res 2022, 1869, 119300. [Google Scholar] [CrossRef]
- Kamiya, M.; Mizoguchi, F.; Yasuda, S. Amelioration of Inflammatory Myopathies by Glucagon-like Peptide-1 Receptor Agonist via Suppressing Muscle Fibre Necroptosis. Journal of Cachexia, Sarcopenia and Muscle 2022, 13, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- López-Armada, M.J.; Riveiro-Naveira, R.R.; Vaamonde-García, C.; Valcárcel-Ares, M.N. Mitochondrial Dysfunction and the Inflammatory Response. Mitochondrion 2013, 13, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Kim, S.; Kim, Y.; Lee, S.-E.; Park, J.H.; Cho, G.; Ha, J.-C.; Jung, H.; Lim, S.-M.; Han, K.; et al. Erratum to: Human Umbilical Cord Mesenchymal Stem Cell-Derived Mitochondria (PN-101) Attenuate LPS-Induced Inflammatory Responses by Inhibiting NFκB Signaling Pathway. BMB Rep 2022, 55, 361. [Google Scholar] [CrossRef] [PubMed]
| N° trial | Sponsor | mono/multicentric | Phase | Molecule | Number of patients | Status | Start date | Completion date |
|---|---|---|---|---|---|---|---|---|
| NCT05832034 | Academisch Medisch Centrum - Universiteit van Amsterdam | Monocentric | Phase 2 | IVIg | 48 | Recruiting | 13/09/2021 | - |
| NCT04450654 | University of Washington | Monocentric | Phase 2 | IVIg | Withdrawn | 01/05/2022 | 25/07/2022 | |
| NCT05523167 | ArgenX | Multicentric | Phase 2/3 | Efgartigimod | 240 | Recruiting | 12/10/2022 | - |
| NCT05979441 | ArgenX | Multicentric | Phase 3 | Efgartigimod | 240 | Recruiting | 12/09/2023 | - |
| NCT05379634 | Janssen Research & Development, LLC | Multicentric | Phase 2 | Nipocalimab | 200 | Recruiting | 05/07/2022 | - |
| NCT04025632 | Ra Pharmaceuticals | Multicentric | Phase 2 | Zilucoplan | 27 | Completed | 07/11/2019 | 14/06/2021 |
| NCT00774462 | Assistance Publique - Hôpitaux de Paris | Monocentric | Phase 2 | Rituximab | 30 | Completed | 01/01/2008 | 01/12/2011 |
| NCT02347891 | Northwell Health (New York) | Monocentric | Phase 2/3 | belimumab | 60 | Unknown status | 01/01/2015 | - |
| NCT06056921 | Chongqing Precision Biotech Co., Ltd | Monocentric | Phase 1 | CAR-T CD19 | 24 | Recruiting | 31/08/2023 | - |
| NCT04561557 | Tongji Hospital | Monocentric | Phase 1 | CT103 Cells (CAR-T anti-BCMA) | 18 | Recruiting | 22/09/2020 | - |
| NCT05859997 | Bioray Laboratories | Monocentric | Phase 1/2 | UCAR-T BRL-301 (anti-BCMA) | 15 | Recruiting | 17/05/2023 | - |
| NCT06154252 | Cabaletta Bio | Monocentric | Phase 1/2 | CAR-T CD19 (CABA-201) | 18 | Recruiting | 17/11/2023 | - |
| NCT02971683 | Bristol-Myers Squibb | Multicentric | Phase 3 | Abatacept | 149 | Terminated | 04/04/2017 | 02/08/2022 |
| NCT05799755 | University of Pittsburgh | Multicentric | Phase 4 | Nintedanib | 134 | Recruiting | 01/08/2023 | - |
| NCT03092180 | University Sao paulo | Monocentric | Observationnal | Glucocorticoid | 60 | Recruiting | 01/01/2005 | - |
| NCT04062019 | Peking University People's Hospital | Monocentric | Phase 2 | IL-2 | 15 | recruiting | 30/08/2019 | - |
| NCT04486261 | Rigshospitalet, Denmark | Monocentric | NA | Non pharmacological | 34 | Active not recruiting | 30/08/2021 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
