Submitted:
20 December 2023
Posted:
21 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the sample
2.3. E-Nose analysis
| Array number | Sensor name | Description of sensitivity | Sensitive gases | Thresholds/(mL/m3) |
|---|---|---|---|---|
| 1 | W1C | Aromatic components and benzene | C7H8 | 10 |
| 2 | W5S | Nitrogen oxides | NO2 | 1 |
| 3 | W3C | Aromatic components with ammonia | C6H6 | 10 |
| 4 | W6S | Selective for hydrides | H2 | 100 |
| 5 | W5C | Aromatic components of short-chain alkanes | C3H8 | 1 |
| 6 | W1S | Methyl groups | CH4 | 100 |
| 7 | W1W | Sulfides | H2S | 1 |
| 8 | W2S | Alcohols, aldehydes and ketones | CO | 100 |
| 9 | W2W | Aromatic components and organosulfides | H2S | 1 |
| 10 | W3S | Long chain alkanes | CH4 | 100 |
2.4. GC-IMS analysis
2.5. SPME-GC-MS analysis
2.6. Qualitative and quantitative analysis of volatile components
2.7. Date analysis
3. Results
3.1. E-Nose analysis
3.2. GC-IMS analysis
3.3. GC-MS analysis

3.3.1. OPLS-DA of odor-active compounds from different cooking methods

5. Conclusions
Authors’ Contributions
Supplementary Materials
Funding
Conflicts of interest
References
- Bureau of Fisheries and Fishery Administration, Ministry of Agriculture and Rural Affairs; National General Station for the Promotion of Aquatic Technology; Chinese Fisheries Society. Fisheries Statistics Yearbook 2023. China Agricultural Press: Beijing, China, 2023; p 159. Press.
- Yu, J.; Lu, K.; Zi, J.; Yang, X.; Zheng, Z.; Xie, W. Halophilic bacteria as starter cultures : A new strategy to accelerate fermentation and enhance flavor of shrimp paste. Food Chem 2022, 393. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhu, Z.; Wu, Z.; Wang, F.; Li, J.; Raghavan, V.; Li, B.; Song, C. Characterization of volatile components of microwave dried perilla leaves using GC–MS and E-nose. Food Biosci 2023, 56, 103083. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J. The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem 2017, 230, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Ke, Y.; Li, C.; Zhang, Z.; Liu, A.; Luo, Q.; Lin, B.; He, J.; Wu, W. Processing of four different cooking methods of Oudemansiella radicata: Effects on in vitro bioaccessibility of nutrients and antioxidant activity. Food Chem 2021, 337, 128007. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Xin, M.; Yanyan, W.; Lan, W.; Jianbin, S.; Sui, Y.; Sha, C.; Cai, F.; Chen, X.; Fan, A.C. Insights into nutrition, flavor and edible quality changes of golden pomfret ( Trachinotus ovatus ) fillets prepared by different cooking methods. Front. Nutr. 2023. [Google Scholar] [CrossRef] [PubMed]
- Alexi, N.; Kogiannou, D.; Oikonomopoulou, I.; Kalogeropoulos, N.; Byrne, D.V.; Grigorakis, K. Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chem 2019, 301, 125263. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Luo, X.; Huang, Y.; Zhao, M.; Liu, T.; Wang, J.; Feng, F. Influence of cooking techniques on food quality, digestibility, and health risks regarding lipid oxidation. Food Res Int 2023, 167, 112685. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Gubanenko, G.A.; Demirchieva, S.M.; Kalachova, G.S. Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chem 2006, 96, 446–451. [Google Scholar] [CrossRef]
- Tian, P.; Zhan, P.; Tian, H.; Wang, P.; Lu, C.; Zhao, Y.; Ni, R.; Zhang, Y. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC–MS, OAV, and multivariate analysis. Food Chem, 2021; 345. [Google Scholar] [CrossRef]
- A. , F.S.; M., P.M.; D., S.G.; D., R.V.G.; B., B.S.; P., S.B.; A., L.G.F. Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification. J Food Eng 2018, 221. [Google Scholar]
- Zheng, X.; Ji, H.; Zhang, D.; Zhang, Z.; Liu, S.; Song, W. The identification of three phospholipid species roles on the aroma formation of hot-air-dried shrimp (Litopenaeus vannamei) by gas chromatography–ion mobility spectrometry and gas chromatography- mass spectrometry. Food Res Int 2022, 162. [Google Scholar] [CrossRef]
- Di, Zhang; Hongwu, J.; Shucheng, L.; Jing, G. 13. Di Zhang; Hongwu, J.; Shucheng, L.; Jing, G. Similarity of aroma attributes in hot-air-dried shrimp ( Penaeus vannamei ) and its different parts using sensory analysis and GC–MS. Food Res Int, 2020; 137. [Google Scholar]
- Ni, J.; Bi, Y.; Vidyarthi, S.K.; Xiao, H.; Han, L.; Wang, J.; Fang, X. Non-thermal electrohydrodynamic (EHD) drying improved the volatile organic compounds of lotus bee pollen via HS-GC-IMS and HS-SPME-GC-MS. LWT 2023, 176, 114480. [Google Scholar] [CrossRef]
- Cheng, Y.; Leng, H.; Huang, L.; Tan, X.; Wu, H.; Li, G. Association between flavor composition and sensory profile in thermally processed mandarin juices by multidimensional gas chromatography and multivariate statistical analysis. Food Chem 2023, 419. [Google Scholar] [CrossRef]
- Li, W.; Zheng, L.; Xiao, Y.; Li, L.; Wang, N.; Che, Z.; Wu, T. Insight into the aroma dynamics of Dongpo pork dish throughout the production process using electronic nose and GC×GC-MS. LWT 2022, 169. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Hengchao, E.; He, X.; Li, J.; Zhao, X.; Zhou, C. Characteristic fingerprints and comparison of volatile flavor compounds in Morchella sextelata under different drying methods. Food Res Int 2023, 172. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Sun, Q.; Zheng, O.; Wei, S.; Xia, Q.; Ji, H.; Deng, C.; Hao, J.; Xu, J. Insight into muscle quality of golden pompano (Trachinotus ovatus) frozen with liquid nitrogen at different temperatures. Food Chem 2022, 374, 131737. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J Sci Food Agr 2020, 100, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Li, H.; Zhang, H. Changes in the volatile components of squid ( illex argentinus ) for different cooking methods via headspace - gas chromatography - ion mobility spectrometry. Food Sci Nutr 2020, 8, 5748–5762. [Google Scholar] [CrossRef]
- Jing, B.; Fan, Y.; Zhu, L. Characteristic flavor of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) induced by thermal treatment. Food Chem 2022, 132074. [Google Scholar]
- Nie, S.; Li, L.; Wang, Y.; Wu, Y.; Li, C.; Chen, S.; Zhao, Y.; Wang, D.; Xiang, H.; Wei, Y. Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. Food Biosci 2022, 50, 102048. [Google Scholar] [CrossRef]
- Jeong, H.; Yoon, S.; Yang, N.; Youn, M.Y.; Hong, S.J.; Jo, S.M.; Kim, K.S.; Jeong, E.J.; Kim, H.; Shin, E. Chemometric approach for an application of Atlantic salmons (Oncorhynchus keta) by-product for potential food sources. Food Sci Biotechnol 2023. [CrossRef]
- Zhang, Q.; Zhao, F.; Shi, T.; Xiong, Z.; Gao, R.; Yuan, L. Suanyu fermentation strains screening, process optimization and the effect of thermal processing methods on its flavor. Food Res Int 2023, P1. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Huang, X.; Dong, M.; Dong, X.; Zhou, D.; Zhu, B.; Qin, L. Integrated volatolomics and metabolomics analysis reveals the characteristic flavor formation in Chouguiyu, a traditional fermented mandarin fish of China. Food Chem 2023, 418, 135874. [Google Scholar] [CrossRef]
- Huiyong, Y.; Libin, X.; A, P.N. Free Radical Lipid Peroxidation Mechanisms and Analysis. Chem Rev 2011, 10. [Google Scholar]
- Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Res Int 2012, 48, 856–865. [Google Scholar] [CrossRef]
- Huang, X.; You, Y.; Liu, Q.; Dong, H.; Bai, W.; Lan, B.; Wu, J. Effect of gamma irradiation treatment on microstructure, water mobility, flavor, sensory and quality properties of smoked chicken breast. Food Chem 2023, 421, 136174. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Liu, Q.; Ma, C.; Muhoza, B.; Huang, Y.; Sun, M.; Song, S.; Ho, C. Characteristic flavor fingerprint disclosure of dzo beef in Tibet by applying SAFE-GC-O-MS and HS-GC-IMS technology. Food Res Int 2023, 166, 112581. [Google Scholar] [CrossRef]
- Kashyap, J.; Ringiesn, J.R.; Schwab, N.; Ferguson, D.J. Isolation and characterization of a novel choline degrading Citrobacter amalonaticus strain from the human gut. Curr. Res. Microb. Sci. 2022, 3, 100157. [Google Scholar] [CrossRef] [PubMed]
- Shahidi. Flavor of meat,meat products and seafood. China Light Industry Press: Beijing, 2001; p 360.
- Nie, S.; Li, L.; Wang, Y.; Wu, Y.; Li, C.; Chen, S.; Zhao, Y.; Wang, D.; Xiang, H.; Wei, Y. Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. Food Biosci 2022, 50, 102048. [Google Scholar] [CrossRef]
- van Gemert, L.J. Compilations of Odour Threshold Values in Air,Water and Other media. Li, Z.; Wang, K., Ed.; Mao, D.,Eds. Science Press: Beijing, 2018; pp. 242–431. [Google Scholar]
- Kang, C.; Zhang, Y.; Zhang, M.; Qi, J.; Zhao, W.; Gu, J.; Guo, W.; Li, Y. Screening of specific quantitative peptides of beef by LC–MS/MS coupled with OPLS-DA. Food Chem 2022, 387, 132932. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Wang, Y.; Kong, B.; Chen, Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT 2021, 140, 110764. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception [Review]. Food Rev Int 2002, 18. [Google Scholar] [CrossRef]
- Zang, J.; Yu, D.; Li, T.; Xu, Y.; Regenstein, J.M.; Xia, W. Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L. ). Food Res Int 2022, 155, 111128. [Google Scholar] [CrossRef] [PubMed]


| NO | Compound | Threshold(ug/kg)[33] | Odorant Description | CK | A | B | C | D | E | |
|---|---|---|---|---|---|---|---|---|---|---|
| A1 | Hexanal | 4.5 | green onion flavour, green fruit flavour | - | 2.99 | 2.75 | - | 9.82 | 2.45 | |
| A2 | Isovaleric aldehyde | 13 | apple, peach | 0.47 | 0.78 | - | 1.51 | 1.61 | - | |
| A3 | Nonanal | 1 | green onion, green fruit flavour | 1.99 | 9.12 | 12.10 | 4.43 | 13.96 | 11.52 | |
| A4 | Dodec-(2E)-enal | 1.4 | citrus, fat | - | - | 1.35 | - | 0.05 | - | |
| A5 | U-ecanal | 10 | oil, pungent, sweet | 0.04 | - | 0.14 | 0.09 | - | 0.83 | |
| A6 | Non-(2E)-enal | 0.69 | cucumber, fat, green | - | 0.44 | 0.80 | 1.22 | 0.76 | 1.23 | |
| A7 | (E)-2-Dodecenal | 1.4 | soap | - | - | 0.24 | - | - | 0.11 | |
| A8 | Oct-2-enal | 0.3 | green, nut, fat | 2.25 | - | 1.49 | 1.42 | - | - | |
| A9 | (E,E)-Octen-1-al | 3 | fat | - | 0.15 | - | - | 0.28 | 0.13 | |
| A10 | (E,E)-2,4-Decadienal | 2.3 | citrus, chicken | - | 0.10 | - | - | 0.18 | 0.79 | |
| A11 | (E)-Decenal | 3 | soap | 0.06 | - | - | - | - | 0.47 | |
| A12 | Decanal | 1 | soap, orange peel, tallow | - | - | - | 1.24 | - | 1.61 | |
| A13 | Acetoin | 8 | butter, cream | 1.11 | 0.60 | 0.80 | 3.41 | - | 0.34 | |
| A14 | Heptan-2-one | 9 | pears | 0.37 | - | - | 0.18 | - | - | |
| A15 | 2-U-ecanone | 7 | waxy fruity creamy fatty orris floral | 0.41 | - | - | - | - | - | |
| A16 | 2-Nonanone | 5 | green weedy earthy herbal | 1.90 | - | - | 0.32 | - | - | |
| A17 | 1-Octen-3-ol | 1 | mushroom | - | 6.90 | 5.55 | 7.02 | 7.17 | 3.80 | |
| A18 | (E)-2-Octen-1-ol | 40 | mushroom | 0.13 | - | - | 0.04 | 0.05 | - | |
| A19 | β-Myrcene | 13 | herb, wood, spice | 0.10 | - | - | 0.26 | - | - | |
| A20 | Limonene | 4 | lemon, orange | 0.68 | - | - | - | - | - | |
| A21 | D-Limonene | 60 | fruit | - | 0.56 | 0.48 | 1.71 | 0.40 | 0.09 | |
| A22 | Terpilene | 85 | lemon, orange | 0.09 | 0.04 | - | 0.12 | - | - | |
| A23 | γ-Decalactone | 2.6 | peach, fat | 0.71 | - | - | 0.18 | - | - | |
| A24 | Estragole | 35 | licorice, anise | 0.89 | 0.34 | 0.54 | 0.49 | 0.25 | 0.14 | |
| A26 | 2-pentyl-Furan | 6 | fruity, Green | - | - | - | 0.27 | - | 0.23 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
