Submitted:
18 December 2023
Posted:
19 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Synthetic procedures
2.1.1. Synthetic procedures for intermediates 4, 5, 8 and 12.
Synthesis of (2-aminophenyl)(thiomorpholino)methanone (4):
Synthesis of 2-amino-N-(thiophen-2-ylmethyl)benzamide (5):
Synthesis of N-(2-aminobenzyl)thiophene-2-sulfonamide (8):
Synthesis of N-(2-aminobenzyl)-5-(dimethylamino)naphthalene-1-sulfonamide (12):
2.1.2. Synthetic procedures for target compounds L1-L6
2.2. Spectrophotometric and spectrofluorometric measurements
2.3. Dye doped PMMA Polymeric films
2.4. Acidity Assays
3. Results and Discussion
3.1. Synthesis



3.2. Photophysical studies

| Cpd. | Solv. | λabs [nm] |
λem [nm] |
ε [103 cm-1 M-1] |
Stokes shift [cm-1] |
λem.solid nm] |
Φ (%) | Brightness (ε X ϕ) [cm-1 M-1] |
t[ns] |
|---|---|---|---|---|---|---|---|---|---|
| L1 | DMSO | 337 | 522 | 5.765 | 54054 | 484 | 22 | 1291 | 17 |
| CH3CN | 341 | 519 | 5.531 | 56179 | 35 | 1941 | 10 | ||
| EtOH | 335 | 516 | 4.873 | 55248 | 31 | 1506 | 13 | ||
| THF | 334 | 498 | 4.969 | 60975 | 21 | 1048 | 12 | ||
| CHCl3 | 345 | 496 | 4.721 | 66225 | 35 | 1671 | 14 | ||
| L2 | DMSO | 353 | 540 | 5.950 | 53475 | 478 | 11 | 666 | 13 |
| CH3CN | 345 | 528 | 5.519 | 54644 | 29 | 1606 | 12 | ||
| EtOH | 346 | 520 | 4.983 | 57471 | 38 | 1913 | 13 | ||
| THF | 334 | 504 | 5.201 | 58823 | 39 | 200 | 13 | ||
| CHCl3 | 345 | 499 | 5.204 | 64935 | 37 | 1951 | 15 | ||
| L3 | DMSO | 340 | 536 | 5.397 | 51020 | 486 | 10 | 550 | 13 |
| CH3CN | 320 | 535 | 5.454 | 46511 | 28 | 1538 | 11 | ||
| EtOH | 340 | 531 | 5.052 | 52356 | 32 | 1596 | 11 | ||
| THF | 339 | 511 | 4.921 | 58139 | 32 | 1555 | 13 | ||
| CHCl3 | 346 | 503 | 4.057 | 63694 | 32 | 1282 | 15 | ||
| L4 | DMSO | 343 | 533 | 4.254 | 52631 | 505 | 21 | 914 | 15 |
| CH3CN | 345 | 530 | 4.471 | 54054 | 27 | 1211 | 10 | ||
| EtOH | 345 | 522 | 3.780 | 56497 | 17 | 646 | 13 | ||
| THF | 343 | 502 | 4.653 | 62893 | 27 | 1261 | 13 | ||
| CHCl3 | 345 | 504 | 4.482 | 62893 | 29 | 1313 | 15 | ||
| L5 | DMSO | 339 | 524 | 4.640 | 54054 | 500 | 30 | 1378 | 17 |
| CH3CN | 337 | 520 | 5.674 | 54644 | 36 | 2048 | 11 | ||
| EtOH | 338 | 515 | 3.968 | 56497 | 22 | 877 | 13 | ||
| THF | 337 | 497 | 4.940 | 62500 | 26 | 1304 | 13 | ||
| CHCl3 | 343 | 500 | 0.3593 | 63694 | 34 | 1210 | 15 | ||
| L6 | DMSO | 347 | 537 | 4.279 | 52631 | 486 | 17 | 740 | 14 |
| CH3CN | 333 | 528 | 4.817 | 51282 | 28 | 1354 | 11 | ||
| EtOH | 329 | 525 | 7.164 | 51020 | 17 | 1189 | 13 | ||
| THF | 341 | 501 | 4.370 | 62500 | 29 | 1280 | 13 | ||
| CHCl3 | 341 | 497 | 4.782 | 64102 | 34 | 1616 | 14 |
3.3. Metal sensing ability
3.4. Low-cost dye-doped PMMA polymers: detection of acidic environments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sivaraman, G.; Iniya, M.; Anand, T.; Kotla, N.G.; Sunnapu, O.; Singaravadivel, S.; Gulyani, A.; Chellappa, D. Chemically Diverse Small Molecule Fluorescent Chemosensors for Copper Ion. Coord Chem Rev 2018, 357, 50–104. [Google Scholar] [CrossRef]
- Oliveira, E.; Bértolo, E.; Núñez, C.; Pilla, V.; Santos, H.M.; Fernández-Lodeiro, J.; Fernández-Lodeiro, A.; Djafari, J.; Capelo, J.L.; Lodeiro, C. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual-Color Flag. ChemistryOpen 2017. [Google Scholar] [CrossRef]
- Qin, X.; Yang, X.; Du, L.; Li, M. Polarity-Based Fluorescence Probes: Properties and Applications. RSC Med Chem 2021, 12, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Xiao, L.; Gou, Y.; He, F.; Zhou, D.; Liu, Y.; Xu, B.; Wang, P.; Zhou, Y. Fluorescent “on–off–on” Probe Based on Copper Peptide Backbone for Specific Detection of Cu(II) and Hydrogen Sulfide and Its Applications in Cell Imaging, Real Water Samples and Test Strips. Microchemical Journal 2022, 182, 107848. [Google Scholar] [CrossRef]
- Duarte, F.; Dobrikov, G.; Kurutos, A.; Santos, H.M.; Fernández-Lodeiro, J.; Capelo-Martinez, J.L.; Oliveira, E.; Lodeiro, C. Enhancing Water Sensing via Aggregation-Induced Emission (AIE) and Solvatofluorochromic Studies Using Two New Dansyl Derivatives Containing a Disulfide Bound: Pollutant Metal Ions Detection and Preparation of Water-Soluble Fluorescent Polymeric Particles. Dyes and Pigments 2023, 218, 111428. [Google Scholar] [CrossRef]
- Duarte, F.; Dobrikov, G.; Kurutos, A.; Capelo-Martinez, J.L.; Santos, H.M.; Oliveira, E.; Lodeiro, C. Development of Fluorochromic Polymer Doped Materials as Platforms for Temperature Sensing Using Three Dansyl Derivatives Bearing a Sulfur Bridge. J Photochem Photobiol A Chem 2023, 445, 115033. [Google Scholar] [CrossRef]
- Métivier, R.; Leray, I.; Lebeau, B.; Valeur, B. A Mesoporous Silica Functionalized by a Covalently Bound Calixarene-Based Fluoroionophore for Selective Optical Sensing of Mercury(Ii) in Water. J Mater Chem 2005, 15, 2965. [Google Scholar] [CrossRef]
- Algethami, J.S. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr 3+/6+ Ions. Crit Rev Anal Chem 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Majumdar, S. Polymers in Sensor Applications. Prog Polym Sci 2004, 29, 699–766. [Google Scholar] [CrossRef]
- GANS, P.; SABATINI, A.; VACCA, A. Investigation of Equilibria in Solution. Determination of Equilibrium Constants with the HYPERQUAD Suite of Programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Berlman, I.B. Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed.; Press, A., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; Taylor & Francis; BOCA: Boca Raton, FL, USA, 2006. [Google Scholar]
- Shi, F.; Tse, M.K.; Zhou, S.; Pohl, M.-M.; Radnik, J.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe 3 O 4. J Am Chem Soc 2009, 131, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, X.; He, N.; Huang, X.; Song, X.; Chen, J.; Lin, J.; Jin, Y. FeCl 3 -Catalyzed Oxidative Amidation of Benzylic C–H Bonds Enabled by a Photogenerated Chlorine-Radical. Chemical Communications 2023, 59, 10299–10302. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-Q.; Dong, X.; Qi, L.-W.; Zhang, B. Visible-Light Photocatalytic α-Amino C(Sp3)–H Activation through Radical Translocation: A Novel and Metal-Free Approach to α-Alkoxybenzamides. Tetrahedron Lett 2016, 57, 1600–1604. [Google Scholar] [CrossRef]
- Ye, W.; Liu, Y.; Ren, Q.; Liao, T.; Chen, Y.; Chen, D.; Wang, S.; Yao, L.; Jia, Y.; Zhao, C.; et al. Design, Synthesis and Biological Evaluation of Novel Triazoloquinazolinone and Imidazoquinazolinone Derivatives as Allosteric Inhibitors of SHP2 Phosphatase. J Enzyme Inhib Med Chem 2022, 37, 1495–1513. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.-D.; Zhang, J.-Y.; Ma, H.-X.; Wang, N.; An, X.; Li, G.-M.; Zhou, Z. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDY OF 1-(PYRROLIDIN-1- YL-METHYL)-4-(THIOPHEN-2-YL-METHYL)- [1,2,4]TRIAZOLO[4,3-a]QUINAZOLIN-5(4H)-ONE. Journal of Structural Chemistry 2022, 63, 19–25. [Google Scholar] [CrossRef]
- Zaytsev, V.P.; Revutskaya, E.L.; Kuz´menko, M.G.; Novikov, R.A.; Zubkov, F.I.; Sorokina, E.A.; Nikitina, E. V.; Toze, F.A.A.; Varlamov, A. V. Synthesis of Furyl-, Furylvinyl-, Thienyl-, Pyrrolinylquinazolines and Isoindolo[2,1-a]Quinazolines. Russian Chemical Bulletin 2015, 64, 1345–1353. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, S.B.; Hong, J.; Chun, S.; Lee, J.; Hong, S. Synthesis of 2-Aryl Quinazolinones via Iron-Catalyzed Cross-Dehydrogenative Coupling (CDC) between N–H and C–H Bonds. Org Biomol Chem 2020, 18, 5435–5441. [Google Scholar] [CrossRef]
- Sanmartín-Matalobos, J.; Bermejo-Barrera, P.; Pérez-Juste, I.; Fondo, M.; García-Deibe, A.M.; Alves-Iglesias, Y. Experimental and Computational Studies on the Interaction of a Dansyl-Based Fluorescent Schiff Base Ligand with Cu2+ Ions and CuO NPs. Int J Mol Sci 2022, 23, 11565. [Google Scholar] [CrossRef]
- Ambati, N.B.; Anand, V.; Hanumanthu, P. A Facile Synthesis of 2-N(Methyl Amino) Benzothiazoles. Synth Commun 1997, 27, 1487–1493. [Google Scholar] [CrossRef]
- Aliaga-Alcalde, N.; Rodríguez, L. Solvatochromic Studies of a Novel Cd2+–Anthracene-Based Curcuminoid and Related Complexes. Inorganica Chim Acta 2012, 380, 187–193. [Google Scholar] [CrossRef]
- Oliveira, E.; Baptista, R.M.; Costa, S.P.; Raposo MM, M.; Lodeiro, C. Synthesis and Solvatochromism Studies of Novel Bis(Indolyl)Methanes Bearing Functionalized Arylthiophene Groups as New Colored Materials. Photochemical & Photobiological Sciences 2014, 13, 492–498. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Pires, S.M.G.; Faustino, M.A.F.; Simões, M.M.Q.; Neves, M.G.P.M.S.; Santos, H.M.; Capelo, J.L.; Mota, J.P.; Lodeiro, C.; Oliveira, E. New Dual Colorimetric/Fluorimetric Probes for Hg2+ Detection & Extraction Based on Mesoporous SBA-16 Nanoparticles Containing Porphyrin or Rhodamine Chromophores. Dyes and Pigments 2019, 161, 427–437. [Google Scholar] [CrossRef]
- Gonc, A.C.; Luis, J.; Lodeiro, C.; Dos, A.A. Sensors and Actuators B : Chemical A Seleno-Pyrene Selective Probe for Hg 2 + Detection in Either Aqueous or Aprotic Systems. 2017, 239, 311–318. [CrossRef]
- Pinheiro, D.; De Castro, C.S.; Seixas De Melo, J.S.; Oliveira, E.; Nu??ez, C.; Fern??ndez-Lodeiro, A.; Capelo, J.L.; Lodeiro, C. From Yellow to Pink Using a Fluorimetric and Colorimetric Pyrene Derivative and Mercury (II) Ions. Dyes and Pigments 2014, 110, 152–158. [Google Scholar] [CrossRef]




| Solvent | εr | α | β | π* | η |
|---|---|---|---|---|---|
| DMSO | 47.24 | 0 | 0.76 | 1.00 | 1.47 |
| CH3CN | 35.94 | 0.19 | 0.40 | 0.66 | 1.34 |
| EtOH | 24.30 | 0.86 | 0.75 | 0.54 | 1.36 |
| THF | 7.58 | 0 | 0.55 | 0.58 | 1.40 |
| CHCl3 | 4.89 | 0.20 | 0.10 | 0.69 | 1.44 |
| υ0 | a | b | p | Slope | R2 | |
|---|---|---|---|---|---|---|
| L1 | 33032 | -533 | -4770 | -17808 | 1.00 | 1 |
| L2 | 35386 | -350 | -5804 | -21300 | 1.00 | 1 |
| L3 | 35354 | -432 | -6116 | -21414 | 1.00 | 1 |
| L4 | 35581 | -638 | -5444 | -21838 | 1.00 | 1 |
| L5 | 32841 | -629 | -4363 | -17796 | 1.00 | 1 |
| L6 | 36665 | -672 | -6248 | -22877 | 1.00 | 1 |
| Compounds (L) | Metal (M) | Association constants (LogKass.) | L:M |
|---|---|---|---|
| L1 | Cu2+ | 7.22±0.06 | 1:1 |
| Hg2+ | 9.10±0.01 | 1:1 | |
| L2 | Cu2+ | 10.54±0.01 | 1:1 |
| Hg2+ | 8.96±0.01 | 1:1 | |
| L3 | Cu2+ | 11.40±0.02 | 1:1 |
| Hg2+ | 9.44±0.01 | 1:1 | |
| L4 | Cu2+ | 5.34±0.01 | 1:1 |
| Hg2+ | 5.76±0.01 | 1:1 | |
| L5 | Cu2+ | 5.92±0.01 | 1:1 |
| Hg2+ | 5.20±0.01 | 1:1 | |
| Ag+ | 5.30±0.01 | 1:1 | |
| L6 | Cu2+ | 7.15±0.02 | 1:1 |
| Hg2+ | 5.67±0.01 | 1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
