Submitted:
14 December 2023
Posted:
15 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Phase 1 – Analysis of urban wind energy
- Site characterization and selection
- Wind energy analysis
- Selection of small wind turbine
- Annual energy production estimation
- Economic evaluation
Phase 2 – Stakeholder analysis through RACI matrix
- Rapid network assessment and interviews to experts
- RACI Matrix Elaboration
- Mapping the RACI matrix
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- S&P Global, “Climate Essentials”. ArcGIS StoryMaps. Available online: https://storymaps.arcgis.com/collections/1e05ebf390554cb8b7cefa80e521afda (accessed on 17 September 2023).
- Murugesan, M.; Reedman, L.; Brinsmead, T.S.; Rifkin, W.; Gordon, J.; Megharaj, M. Modelling least-cost technology pathways to decarbonise the New South Wales energy system by 2050. Renew. Sustain. Energy Transit. 2023, 3, 100041. [Google Scholar] [CrossRef]
- Karkowska, R.; Urjasz, S. How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices. J. Int. Financial Mark. Institutions Money 2023, 85, 101768. [Google Scholar] [CrossRef]
- Steffen, B.; Patt, A. A historical turning point? Early evidence on how the Russia-Ukraine war changes public support for clean energy policies. Energy Res. Soc. Sci. 2022, 91, 102758. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, X. Dynamics of systemic risk in European gas and oil markets under the Russia–Ukraine conflict: A quantile regression neural network approach. Energy Rep. 2023, 9, 3956–3966. [Google Scholar] [CrossRef]
- Martins, F.F.; Felgueiras, C.; Caetano, N.S. Macro modeling of electricity price towards SDG7. Energy Rep. 2022, 8, 614–622. [Google Scholar] [CrossRef]
- LAZARD. “Levelized Cost Of Energy,” Lazard.com. [Online]. Available online: http://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/ (accessed on 1 October 2022).
- IRENA. “Renewable Power Generation Costs in 2022.” [Online]. Available online: https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (accessed on 17 September 2023).
- Schlindwein, L.; Montalvo, C. Energy citizenship: Accounting for the heterogeneity of human behaviours within energy transition. Energy Policy 2023, 180, 113662. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, M. Does environmental regulation improve energy transition performance in China? Environ. Impact Assess. Rev. 2024, 104, 107335. [Google Scholar] [CrossRef]
- ICSC-CITIES. ICSC-CITIES | 2023 VI Ibero-American Congress of Smart Cities. [Online]. Available online: http://icsc-cities.com/ (accessed on 28 October 2023).
- van der Meij, M.G.; Fraaije, A.; Broerse, J.; Kupper, F. Guiding visions of corporate smart city innovators: Identifying opportunities for participatory futuring. Futures 2023, 154, 103269. [Google Scholar] [CrossRef]
- DOE. “Distributed Wind Market Report: 2022 Edition,” Energy.gov. [Online]. Available online: https://www.energy.gov/eere/wind/articles/distributed-wind-market-report-2022-edition (accessed on 10 March 2023).
- Simões, T.; Estanqueiro, A. A new methodology for urban wind resource assessment. Renew. Energy 2016, 89, 598–605. [Google Scholar] [CrossRef]
- Fields, J.; Oteri, F.; Preus, R.; Baring-Gould, I. Deployment of Wind Turbines in the Built Environment: Risks, Lessons, and Recommended Practices. NREL/TP--5000-65622 2016, 1260340. [Google Scholar] [CrossRef]
- Lens. “Scholar Search Results,” The Lens—Free & Open Patent and Scholarly Search. [Online]. Available online: https://www.lens.org/lens/search/scholar/list?publication_type.must=journal%20article&preview=true&q=urban%20wind%20energy&publishedDate.from=2015-01-01&publishedDate.to=2022-12-31 (accessed on 27 October 2023).
- VOSviewer VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com// (accessed on 11 June 2023).
- Fan, X.; Ge, M.; Tan, W.; Li, Q. Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study. Renew. Energy 2021, 177, 164–180. [Google Scholar] [CrossRef]
- Vallejo-Díaz, A.; Herrera-Moya, I.; Fernández-Bonilla, A.; Pereyra-Mariñez, C. Wind energy potential assessment of selected locations at two major cities in the Dominican Republic, toward energy matrix decarbonization, with resilience approach. Therm. Sci. Eng. Prog. 2022, 32, 101313. [Google Scholar] [CrossRef]
- Vallejo, A.; Herrera, I.; Malmquist, A. Building-mounted wind energy potential in Santo Domingo, the Dominican Republic, a contribution for resilient decarbonization. Proceedings of ECOS 2022—The 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Eds. Brian Elmegaard, Enrico Sciubba, AnaMBlanco-Marigorta, Jonas Kjær Jensen, Wiebke Brix Markussen, Wiebke Meesenburg, Nasrin Arjomand Kermani, Tingting Zhu, René Kofler, Danmarks Tekniske Universitet (DTU), Lyngby Denmark, 2022; pp. 1925–1936. [Google Scholar]
- O'Regan, A.C.; Nyhan, M.M. Towards sustainable and net-zero cities: A review of environmental modelling and monitoring tools for optimizing emissions reduction strategies for improved air quality in urban areas. Environ. Res. 2023, 231, 116242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Hou, Y.; Yuan, R.; Luo, K.; Fan, J. Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements. Renew. Energy 2018, 115, 1118–1133. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. A framework for preliminary large-scale urban wind energy potential assessment: Roof-mounted wind turbines. Energy Convers. Manag. 2020, 214, 112770. [Google Scholar] [CrossRef]
- Juan, Y.-H.; Wen, C.-Y.; Chen, W.-Y.; Yang, A.-S. Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas. Renew. Sustain. Energy Rev. 2020, 135, 110165. [Google Scholar] [CrossRef]
- Zagubień, A.; Wolniewicz, K. Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies. Energies 2022, 15, 5287. [Google Scholar] [CrossRef]
- Vallejo, A.; Herrera, I.; Castellanos, J.; Pereyra, C.; Garabitos, E. Urban Wind Potential Analysis: Case Study of Wind Turbines Integrated into a Building Using On-Site Measurements and CFD Modelling. 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023). Las Palmas De Gran Canaria, Spain: ECOS 2023, 2023, 534–546. [Google Scholar]
- NASA. Power Data Access View. 2019. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 20 September 2022).
- Hirmer, S.; George-Williams, H.; Rhys, J.; McNicholl, D.; McCulloch, M. Stakeholder decision-making: Understanding Sierra Leone's energy sector. Renew. Sustain. Energy Rev. 2021, 145, 111093. [Google Scholar] [CrossRef]
- IAEA. Enhanced Electricity System Analysis for Decision Making—A Reference Book; 2000. [Google Scholar]
- Tajbakhsh, A.; Shamsi, A. Sustainability performance of countries matters: A non-parametric index. J. Clean. Prod. 2019, 224, 506–522. [Google Scholar] [CrossRef]
- Craig, P.P.; Gadgil, A.; Koomey, J.G. What Can History Teach Us? A Retrospective Examination of Long-Term Energy Forecasts for the United States. Annu. Rev. Energy Environ. 2002, 27, 83–118. [Google Scholar] [CrossRef]
- Read, L.; Madani, K.; Mokhtari, S.; Hanks, C. Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty. Energy 2017, 119, 744–753. [Google Scholar] [CrossRef]
- Pollitt, M.G. Search of ’Good’Energy Policy: The Social Limits to Technological Solutions to Energy and Climate Problems. 2015. [Google Scholar]
- Díaz, A.V.; Moya, I.H.; Mariñez, C.P.; Lara, E.G.; Victorino, C.C. Key factors influencing urban wind energy: A case study from the Dominican Republic. Energy Sustain. Dev. 2023, 73, 165–173. [Google Scholar] [CrossRef]
- Arteaga-López, E.; Ángeles-Camacho, C.; Bañuelos-Ruedas, F. Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis. Energy 2018, 167, 181–188. [Google Scholar] [CrossRef]
- Gil-García, I.C.; García-Cascales, M.S.; Molina-García, A. Urban Wind: An Alternative for Sustainable Cities. Energies 2022, 15, 4759. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Patania, F.; Capizzi, A. Assessment of micro-wind turbines performance in the urban environments: An aided methodology through geographical information systems. Int. J. Energy Environ. Eng. 2013, 4, 43. [Google Scholar] [CrossRef]
- Jervase, J.A.; Al-Lawati, A.M. Wind energy potential assessment for the Sultanate of Oman. Renew. Sustain. Energy Rev. 2012, 16, 1496–1507. [Google Scholar] [CrossRef]
- Potić, I.; Joksimović, T.; Milinčić, U.; Kićović, D.; Milinčić, M. Wind energy potential for the electricity production—Knjaževac Municipality case study (Serbia). Energy Strat. Rev. 2020, 33, 100589. [Google Scholar] [CrossRef]
- SkyscraperPage. “Database—SkyscraperPage.com,” SkyscraperPage. [Online]. Available online: https://skyscraperpage.com/cities/ (accessed on 2 May 2021).
- Wilke, A.; Shen, Z.; Ritter, M. How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin. Energies 2021, 14, 5523. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Wind shear coefficients, roughness length and energy yield over coastal locations in Southern Italy. Renew. Energy 2011, 36, 1081–1094. [Google Scholar] [CrossRef]
- Vita, G.; Shu, Z.; Jesson, M.; Quinn, A.; Hemida, H.; Sterling, M.; Baker, C. On the assessment of pedestrian distress in urban winds. J. Wind. Eng. Ind. Aerodyn. 2020, 203, 104200. [Google Scholar] [CrossRef]
- IEC 61400-2:2013. 2013. [Online]. Available online: https://webstore.iec.ch/publication/5433.
- Cheng, C.; Gutierrez, N.P.; Blakers, A.; Stocks, M. GIS-based solar and wind resource assessment and least-cost 100 % renewable electricity modelling for Bolivia. Energy Sustain. Dev. 2022, 69, 134–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Zhao, L.; Cao, J. A case application of WRF-UCM models to the simulation of urban wind speed profiles in a typhoon. J. Wind. Eng. Ind. Aerodyn. 2021, 220, 104874. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Kono, T.; Peralta, C.; Lopez-Garcia, O.; Chen, J. A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind. Eng. Ind. Aerodyn. 2018, 180, 66–87. [Google Scholar] [CrossRef]
- Du, S.; Zhang, X.; Jin, X.; Zhou, X.; Shi, X. A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. J. Affect. Disord. 2022, 213, 108860. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Stathopoulos, T.; Pillay, P. Comparison of wind tunnel and on site measurements for urban wind energy estimation of potential yield. J. Wind. Eng. Ind. Aerodyn. 2016, 158, 1–10. [Google Scholar] [CrossRef]
- Mittal, H.; Sharma, A.; Gairola, A. A review on the study of urban wind at the pedestrian level around buildings. J. Build. Eng. 2018, 18, 154–163. [Google Scholar] [CrossRef]
- Mikhailuta, S.V.; Lezhenin, A.A.; Pitt, A.; Taseiko, O.V. Urban wind fields: Phenomena in transformation. Urban Clim. 2017, 19, 122–140. [Google Scholar] [CrossRef]
- Walker, S.L. Building mounted wind turbines and their suitability for the urban scale—A review of methods of estimating urban wind resource. Energy Build. 2011, 43, 1852–1862. [Google Scholar] [CrossRef]
- Byrne, R.; Hewitt, N.J.; Griffiths, P.; MacArtain, P. An assessment of the mesoscale to microscale influences on wind turbine energy performance at a peri-urban coastal location from the Irish wind atlas and onsite LiDAR measurements. Sustain. Energy Technol. Assessments 2019, 36, 100537. [Google Scholar] [CrossRef]
- Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, M.; Pilay, P. Urban wind energy: Some views on potential and challenges. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 146–157. [Google Scholar] [CrossRef]
- Anup, K.C.; Whale, J.; Urmee, T. Urban wind conditions and small wind turbines in the built environment: A review. Renew. Energy 2019, 131, 268–283. [Google Scholar] [CrossRef]
- Tasneem, Z.; Al Noman, A.; Das, S.K.; Saha, D.K.; Islam, R.; Ali, F.; Badal, F.R.; Ahamed, H.; Moyeen, S.I.; Alam, F. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Dev. Built Environ. 2020, 4, 100033. [Google Scholar] [CrossRef]
- Micallef, D.; Van Bussel, G. A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges. Energies 2018, 11, 2204. [Google Scholar] [CrossRef]
- Eltayesh, A.; Castellani, F.; Natili, F.; Burlando, M.; Khedr, A. Aerodynamic upgrades of a Darrieus vertical axis small wind turbine. Energy Sustain. Dev. 2023, 73, 126–143. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.-N.; Huang, Z. Environmental issues associated with wind energy—A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Aldersey-Williams, J.; Rubert, T. Levelised cost of energy—A theoretical justification and critical assessment. Energy Policy 2018, 124, 169–179. [Google Scholar] [CrossRef]
- Brugha, R.; Varvasovszky, Z. Stakeholder analysis: A review. Health Policy Plan. 2000, 15, 239–246. [Google Scholar] [CrossRef]
- Mori, N. Roles Of Stakeholders In Strategic Decision-Making Of Microfinance Organizations. Int. Bus. Econ. Res. J. (IBER) 2010, 9, 51–64. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.; Ngai, E.W. Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Metze, T.A.; Broek, J.v.D.; van Est, R.; Cuppen, E.H. Participatory repertoires for aligning policy and society: An analysis of Dutch stakeholder views on deep geothermal energy. Energy Res. Soc. Sci. 2023, 98, 103019. [Google Scholar] [CrossRef]
- Tomás, M.; García-Muros, X.; Alonso-Epelde, E.; Arto, I.; Rodríguez-Zúñiga, A.; Monge, C.; González-Eguino, M. Ensuring a just energy transition: A distributional analysis of diesel tax reform in Spain with stakeholder engagement. Energy Policy 2023, 177, 113558. [Google Scholar] [CrossRef]
- Shortall, O.; Anker, H.T.; Sandøe, P.; Gamborg, C. Room at the margins for energy-crops? A qualitative analysis of stakeholder views on the use of marginal land for biomass production in Denmark. Biomass- Bioenergy 2019, 123, 51–58. [Google Scholar] [CrossRef]
- Fu, F.; Feng, W.; Li, Z.; Crawley, E.F.; Ni, W. A network-based modeling framework for stakeholder analysis of China’s energy conservation campaign. Energy 2011, 36, 4996–5003. [Google Scholar] [CrossRef]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who's in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef]
- Hare, M.; Pahl-Wostl, C. Stakeholder Categorisation in Participatory Integrated Assessment Processes. Integr. Assess. 2002, 3, 50–62. [Google Scholar] [CrossRef]
- Salam, A.; Noguchi, T. Evaluating capacity development for participatory forest management in Bangladesh's Sal forests based on ‘4Rs’ stakeholder analysis. For. Policy Econ. 2006, 8, 785–796. [Google Scholar] [CrossRef]
- Susanto, N.; Putranto, T.T. Stakeholder interactions model of groundwater management in Semarang City/Indonesia. Int. J. GEOMATE 2018, 15, 170–177. [Google Scholar] [CrossRef]
- Suhanda, R.D.P.; Pratami, D. RACI Matrix Design for Managing Stakeholders in Project Case Study of PT. XYZ. Int. J. Innov. Enterp. Syst. 2021, 5, 122–133. [Google Scholar] [CrossRef]
- Mkhaimer, L.G.; Arafeh, M.; Sakhrieh, A.H. Effective implementation of ISO 50001 energy management system: Applying Lean Six Sigma approach. Int. J. Eng. Bus. Manag. 2017, 9, 1847979017698712. [Google Scholar] [CrossRef]
- Cabanillas, C.; Resinas, M.; Ruiz-Cortés, A. A template-based approach for responsibility management in executable business processes. Enterp. Inf. Syst. 2017, 12, 550–586. [Google Scholar] [CrossRef]
- Brower, H.H.; Nicklas, B.J.; Nader, M.A.; Trost, L.M.; Miller, D.P. Creating effective academic research teams: Two tools borrowed from business practice. J. Clin. Transl. Sci. 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Simhachalam, V.; Wang, T.; Liu, Y.; Wamelink, H.; Montenegro, L.; van Gorp, G. Accelerating Building Energy Retrofitting with BIM-Enabled BREEAM-NL Assessment. Energies 2021, 14, 8225. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Lee, S.-H.; Jin, C.; Hyun, C.-T. Development of the RACI Model for Processes of the Closure Phase in Construction Programs. Sustainability 2021, 13, 1806. [Google Scholar] [CrossRef]
- Altissimo, A. Combining Egocentric Network Maps and Narratives: An Applied Analysis of Qualitative Network Map Interviews. Sociol. Res. Online 2016, 21, 152–164. [Google Scholar] [CrossRef]
- Byrne, R.; Hewitt, N.J.; Griffiths, P.; MacArtain, P. An assessment of the mesoscale to microscale influences on wind turbine energy performance at a peri-urban coastal location from the Irish wind atlas and onsite LiDAR measurements. Sustain. Energy Technol. Assessments 2019, 36, 100537. [Google Scholar] [CrossRef]
- Vallejo, A. Urban wind energy potential in the southern region of the Dominican Republic. In Proceedings of the VI Ibero-American Congress of Smart Cities (ICSC-CITIES 2023), Ecuador, 2023; Moreno-Bernal, P., Hernández-Callejo, L., Nesmachnow, S., Rossit, D., Ochoa-Correa, D., Eds.; pp. 642–656. [Google Scholar]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Alawi, S. Assessment of wind energy potential locations in Oman using data from existing weather stations. Renew. Sustain. Energy Rev. 2010, 14, 1428–1436. [Google Scholar] [CrossRef]






| Proffesiononal area | Years of experience | Counter | % |
|---|---|---|---|
| Engineering | 17 | 48 | 81% |
| Lawyer | 12 | 7 | 12% |
| Bussiness | 9 | 3 | 5% |
| Architecture | 18 | 1 | 2% |
| Avg. 16 | Total 59 | Total 100% |
| Privinces | WS at 10 m (m/s) | WD at 10 m (°) |
Energy (kWh/yr) | Area (km²) | Population (inhabit.) | Population density (inhabit. /km²) |
|---|---|---|---|---|---|---|
| Azua | 3.97 | 86 | 1,464 | 2,532 | 256,981 | 101 |
| Bahoruco | 3.15 | 117 | 722 | 1,282 | 118,987 | 92 |
| Barahona | 4.12 | 92 | 1,638 | 1,739 | 226,898 | 130 |
| Dajabón | 3.93 | 60 | 1,416 | 1,021 | 67,887 | 66 |
| Distrito Nacional | 3.41 | 80 | 919 | 104 | 1,484,789 | 14216 |
| Duarte | 3.46 | 87 | 964 | 1,605 | 384,789 | 239 |
| Elías Piña | 2.57 | 80 | 385 | 1,426 | 70,589 | 49 |
| El Seibo | 5.21 | 82 | 3,162 | 1,787 | 115,889 | 64 |
| Espaillat | 2.72 | 88 | 461 | 839 | 390,478 | 465 |
| Hato Mayor | 3.29 | 82 | 828 | 1,329 | 89,578 | 67 |
| Hermanas Mirabal | 2.72 | 88 | 461 | 440 | 103,974 | 234 |
| Independencia | 3.15 | 117 | 722 | 2,006 | 54,785 | 27 |
| La Altagracia | 4.83 | 81 | 2,587 | 3,010 | 335,677 | 111 |
| La Romana | 4.83 | 81 | 2,587 | 654 | 330,587 | 505 |
| La Vega | 3.02 | 90 | 632 | 2,287 | 420,478 | 183 |
| María Trinidad Sánchez | 3.46 | 87 | 964 | 1,272 | 140,784 | 110 |
| Monseñor Nouel | 3.02 | 90 | 632 | 992 | 201,474 | 203 |
| Montecristi | 6.63 | 73 | 5,197 | 1,924 | 135,710 | 70 |
| Monte Plata | 2.19 | 84 | 236 | 2,632 | 200,454 | 76 |
| Pedernales | 4.50 | 95 | 2,121 | 2,075 | 38,941 | 19 |
| Peravia | 3.97 | 86 | 1,464 | 792 | 298,747 | 377 |
| Puerto Plata | 5.13 | 90 | 3,045 | 1,853 | 490,733 | 264 |
| Samaná | 3.29 | 82 | 828 | 854 | 168,265 | 126 |
| Sánchez Ramírez | 2.19 | 84 | 236 | 1,196 | 248,807 | 131 |
| San Cristóbal | 3.41 | 80 | 919 | 1,266 | 859,741 | 679 |
| San José de Ocoa | 3.97 | 86 | 1,464 | 855 | 82,458 | 96 |
| San Juan | 3.20 | 99 | 761 | 3,569 | 300,476 | 84 |
| San Pedro de Macorís | 4.07 | 82 | 1,572 | 1,255 | 418,850 | 333 |
| Santiago | 2.72 | 88 | 461 | 2,837 | 1,833,451 | 646 |
| Santiago Rodríguez | 3.83 | 78 | 1,313 | 1,111 | 164,941 | 148 |
| Santo Domingo | 3.41 | 80 | 919 | 1,302 | 2,995,211 | 2310 |
| Valverde | 3.83 | 78 | 1,313 | 823 | 207,447 | 251 |
| No. | Institution list | Accronys | X-axes | Y-axes | Relevance |
|---|---|---|---|---|---|
| 1 | City councils | AYTO | 0.03 | 0.09 | 0.49 |
| 2 | Ministry of Energy and Mines | MEM | 0.36 | 0.64 | 0.75 |
| 3 | Electricity Distribution Company | EDE | -0.34 | 0.40 | 0.61 |
| 4 | National Energy Commission | CNE | 0.16 | 0.16 | 0.16 |
| 5 | Superintendence of Electricity | SIE | 0.26 | 0.40 | 0.70 |
| 6 | Coordinating Entity | OC | -0.13 | -0.36 | 0.39 |
| 7 | Dominican Electric Transmission Company | ETED | 0.09 | 0.09 | 0.09 |
| 8 | Universities | UNIV | -0.33 | -0.40 | 0.37 |
| 9 | National Industrial Property Office (ONAPI) | ONAPI | 0.25 | -0.36 | 0.21 |
| 10 | Ministry of Higher Education, Science and Technology | MESCyT | 0.19 | -0.36 | 0.27 |
| 11 | International Cooperation Organizations (USAID, UNDP, GIZ) | OCI | -0.31 | -0.56 | 0.35 |
| 12 | NGOs | ONG | -0.19 | -0.44 | 0.31 |
| 13 | Ministry of Industry and commerce | MIC | 0.10 | -0.14 | 0.35 |
| 14 | Ministry of Economy, Planning and Development | MEPyD | 0.09 | -0.16 | 0.36 |
| 15 | Ministry of Labor | MT | 0.38 | -0.29 | 0.18 |
| 16 | Ministry of Environment and Natural Resources | MIMARENA | 0.01 | 0.04 | 0.55 |
| 17 | Superintendence of Banks | SB | 0.24 | -0.27 | 0.28 |
| 18 | Local banks | BL | 0.10 | -0.24 | 0.33 |
| 19 | International Cooperation Banks | BI | -0.09 | -0.25 | 0.38 |
| 20 | National Meteorological Office | ONAMET | -0.20 | -0.36 | 0.37 |
| 21 | Dominican Association of the Electrical Industry | ADIE | -0.19 | -0.43 | 0.34 |
| 22 | Association for the Promotion of Renewable Energies | ASOFER | -0.27 | -0.22 | 0.46 |
| 23 | National Association of Young Entrepreneurs | ANJE | 0.11 | -0.32 | 0.27 |
| 24 | Association of Energy Efficiency and Renewable Energy Companies | AEEER | -0.19 | -0.15 | 0.41 |
| 25 | National Congress | CN | 0.18 | 0.32 | 0.59 |
| 26 | Supreme Court of Justice | SCJ | 0.30 | -0.05 | 0.33 |
| 27 | Ministry of Education | MINERD | 0.28 | -0.31 | 0.24 |
| 28 | Construction entrepreneurs | EC | -0.06 | -0.27 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).