Submitted:
14 December 2023
Posted:
15 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Search Methods and Data Collection
2.2. Bibliometric and content analysis
3. Result and Discussion
3.1. Descriptive analysis
3.1.1. Publication trend
3.1.2. Publication outlet
3.1.3. Country production
3.2. Global research pattern
3.3. Emerging topics
3.4. Future works and directions
4. Conclusions
Acknowledgments
References
- Aruna,C., Visarada,K., Bhat,B.V., Tonapi,V.A. (2018). Breeding sorghum for diverse end uses. Woodhead Publishing.
- Hossain,M.S., Islam,M.N., Rahman,M.M., Mostofa,M.G., Khan,M.A.R. (2022). Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research, 8(October 2021): 100300. [CrossRef]
- Mercyana,V., Samanhudi., Harsono,P. (2023). Growth Response and Sugar Accumulation in First Ratoon Sweet Sorghum: Effects of Biochar and Shoot Number Manipulation. International Journal of Design & Nature and Ecodynamics, 18(3): 741–6. [CrossRef]
- Iqbal,M.A., Iqbal,A. (2015). Overview on sorghum for food, feed, forage and fodder: Opportunities and problems in Pakistan’s Perspectives. American-Eurasian Journal of Agricultural and Environmental Sciences, 15(9): 1818–26. [CrossRef]
- Pujiharti,Y., Paturohman,E., Ikhwani. (2022). Prospect of sorghum development as corn substitution in Indonesia. IOP Conference Series: Earth and Environmental Science, vol. 978. IOP Publishing p. 012019.
- McCuistion,K.C., Selle,P.H., Liu,S.Y., Goodband,R.D. (2019). Sorghum as a feed grain for animal production. Sorghum and Millets,: 355–91.
- Stamenković,O.S., Siliveru,K., Veljković,V.B., Banković-Ilić,I.B., Tasić,M.B., Ciampitti,I.A., et al. (2020). Production of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 124(February): 109769. [CrossRef]
- Zhang,C., Xie,G., Li,S., Ge,L., He,T. (2010). The productive potentials of sweet sorghum ethanol in China. Applied Energy, 87(7): 2360–8. [CrossRef]
- Rao,P.S., Vinutha,K.S., Kumar,G.S.A., Chiranjeevi,T., Uma,A., Lal,P., et al. (2019). Sorghum: A multipurpose bioenergy crop. Sorghum: A State of the Art and Future Perspetives, 58: 399–424.
- Chadalavada,K., Kumari,B.D.R., Kumar,T.S. (2021). Sorghum mitigates climate variability and change on crop yield and quality. Planta, 253(5): 113.
- Maina,F., Harou,A., Hamidou,F., Morris,G.P. (2022). Genome-wide association studies identify putative pleiotropic locus mediating drought tolerance in sorghum. Plant Direct, 6(6): e413.
- Mundia,C.W., Secchi,S., Akamani,K., Wang,G. (2019). A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability, 11(7): 2135.
- Kumar,M.V.N., Ramya,V., Govindaraj,M., Sameer Kumar,C.V., Maheshwaramma,S., Gokenpally,S., et al. (2021). Harnessing sorghum landraces to breed high-yielding, grain mold-tolerant cultivars with high protein for drought-prone environments. Frontiers in Plant Science, 12: 659874.
- George,T.T., Obilana,A.O., Oyenihi,A.B., Obilana,A.B., Akamo,D.O., Awika,J.M. (2022). Trends and progress in sorghum research over two decades, and implications to global food security. South African Journal of Botany, 151: 960–9.
- Rashwan,A.K., Yones,H.A., Karim,N., Taha,E.M., Chen,W. (2021). Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science & Technology, 110: 168–82.
- Adeyeye,S.A.O., Adebayo-Oyetoro,A.O., Fayemi,O.E., Tiamiyu,H.K., Oke,E.K., Soretire,A.A. (2019). Effect of co-fermentation on nutritional composition, anti-nutritional factors and acceptability of cookies from fermented sorghum (Sorghum bicolor) and soybeans (Glycine max) flour blends. Journal of Culinary Science & Technology, 17(1): 59–74.
- Rodríguez-España,M., Figueroa-Hernández,C.Y., de Dios Figueroa-Cárdenas,J., Rayas-Duarte,P., Hernández-Estrada,Z.J. (2022). Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Current Research in Food Science,.
- Saithalavi,K.M., Bhasin,A., Yaqoob,M. (2021). Impact of sprouting on physicochemical and nutritional properties of sorghum: a review. Journal of Food Measurement and Characterization, 15(5): 4190–204.
- Manyelo,T.G., Ng’ambi,J.W., Norris,D., Mabelebele,M. (2019). Substitution of Zea mays by Sorghum bicolor on performance and gut histo-morphology of Ross 308 broiler chickens aged 1–42 d. Journal of Applied Poultry Research, 28(3): 647–57.
- Nasidi,M., Agu,R., Walker,G., Deeni,Y. (2019). Sweet sorghum: agronomic practice for food, animal feed and fuel production in sub-saharan africa. Sweet Sorghum: Characteristics, Cultivation and Uses,.
- Donthu,N., Kumar,S., Mukherjee,D., Pandey,N., Lim,W.M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(April): 285–96. [CrossRef]
- Ellegaard,O., Wallin,J.A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3): 1809–31. [CrossRef]
- Noman,A.A., Akter,U.H., Pranto,T.H., Haque,A.K.M.B. (2022). Machine Learning and Artificial Intelligence in Circular Economy: A Bibliometric Analysis and Systematic Literature Review. Annals of Emerging Technologies in Computing, 6(2): 13–40. [CrossRef]
- Baker,H.K., Pandey,N., Kumar,S., Haldar,A. (2020). A bibliometric analysis of board diversity: Current status, development, and future research directions. Journal of Business Research, 108: 232–46.
- Pontieri,P., Mennini,F.S., Magni,D., Fiano,F., Scuotto,V., Papa,A., et al. (2022). Sustainable open innovation for the agri-food system: Sorghum as healthy food to deal with environmental challenges. British Food Journal, 124(9): 2649–72.
- Liaqat,W., Altaf,M.T., Barutçular,C., Zayed,E.M., Hussain,T. (2023). Drought and sorghum: a bibliometric analysis using VOS viewer. Journal of Biomolecular Structure and Dynamics, 0(0): 1–13. [CrossRef]
- Aguiar,E.V., Santos,F.G., Queiroz,V.A.V., Capriles,V.D. (2023). A Decade of evidence of sorghum potential in the development of novel food products : Insights from a bibliometric analysis. Foods, 12: 3790.
- Singh,V.K., Singh,P., Karmakar,M., Leta,J., Mayr,P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126: 5113–42.
- Page,M.J., McKenzie,J.E., Bossuyt,P.M., Boutron,I., Hoffmann,T.C., Mulrow,C.D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88: 105906.
- Van Eck,N.J., Waltman,L. (2020). VOSviewer Manual: Manual for VOSviewer version 1.6.16. Leiden: Centre for Science and Technology Studies (CWTS) of Leiden University.
- R Core Team. (2022). R: A language and environment for statistical computing.
- Aria,M., Cuccurullo,C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4): 959–75.
- Tijssen,R.J.W. (2004). Is the commercialisation of scientific research affecting the production of public knowledge?: Global trends in the output of corporate research articles. Research Policy, 33(5): 709–33.
- Venkata,M., Kumar,N., Ramya,V., Maheshwaramma,S., Ganapathy,K.N., Govindaraj,M., et al. (2023). Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Frontiers in Nutrition, 10: 1228422. [CrossRef]
- Hao,H., Li,Z., Leng,C., Lu,C., Luo,H., Liu,Y., et al. (2021). Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 134: 1899–924.
- Teferra,T.F. (2019). Quinoa and Other Andean Ancient Grains: Super Grains for the Future. Cereal Foods World, 64(5). [CrossRef]
- Pixley,K. V., Cairns,J.E., Lopez-Ridaura,S., Ojiewo,C.O., Dawud,M.A., Drabo,I., et al. (2023). Redesigning crop varieties to win the race between climate change and food security. Molecular Plant, 16(10): 1590–611. [CrossRef]
- Appiah-Nkansah,N.B., Li,J., Rooney,W., Wang,D. (2019). A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy, 143: 1121–32.
- Puntigam,R., Brugger,D., Slama,J., Inhuber,V., Boden,B., Krammer,V., et al. (2020). The effects of a partial or total replacement of ground corn with ground and whole-grain low-tannin sorghum (Sorghum bicolor (L.) Moench) on zootechnical performance, carcass traits and apparent ileal amino acid digestibility of broiler chickens. Livestock Science, 241(August): 104187. [CrossRef]
- Astoreca,A.L. (2019). Fungal contamination and mycotoxins associated with sorghum crop: its relevance today. European Journal of Plant Pathology,: 381–92. [CrossRef]
- Cobo,M.J., López-Herrera,A.G., Herrera-Viedma,E., Herrera,F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1): 146–66. [CrossRef]
- Wijewardane,N.K., Zhang,H., Yang,J., Schnable,J.C., Schachtman,D.P., Ge,Y. (2023). A leaf-level spectral library to support high-throughput plant phenotyping: predictive accuracy and model transfer. Journal of Experimental Botany,: erad129.
- Karumanchi,A.R., Sivan,P., Kummari,D., Rajasheker,G., Kumar,S.A., Reddy,P.S., et al. (2023). Root and Leaf Anatomy, Ion Accumulation, and Transcriptome Pattern under Salt Stress Conditions in Contrasting Genotypes of Sorghum bicolor. Plants, 12(13): 2400.
- Wang,N., Ryan,L., Sardesai,N., Wu,E., Lenderts,B., Lowe,K., et al. (2023). Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants, 9(2): 255–70.
- Al-Salman,Y., Cano,F.J., Pan,L., Koller,F., Piñeiro,J., Jordan,D., et al. (2023). Anatomical drivers of stomatal conductance in sorghum lines with different leaf widths grown under different temperatures. Plant, Cell & Environment,.
- Xie,X., Ge,Y., Walia,H., Yang,J., Yu,H. (2023). Leaf-counting in monocot plants using deep regression models. Sensors, 23(4): 1890.
- Alvar-Beltrán,J., Dibari,C., Ferrise,R., Bartoloni,N., Dalla Marta,A. (2023). Modelling climate change impacts on crop production in food insecure regions: The case of Niger. European Journal of Agronomy, 142: 126667.
- Fei,C., Jägermeyr,J., McCarl,B., Contreras,E.M., Mutter,C., Phillips,M., et al. (2023). Future climate change impacts on US agricultural yields, production, and market. Anthropocene, 42: 100386.
- Rumler,R., Bender,D., Schoenlechner,R. (2023). Mitigating the Effect of Climate Change within the Cereal Sector: Improving Rheological and Baking Properties of Strong Gluten Wheat Doughs by Blending with Specialty Grains. Plants, 12(3): 492.
- Yang,M., Zhao,H., Xian,X., Qi,Y., Li,Q., Guo,J., et al. (2023). Reconstructed Global Invasion and Spatio-Temporal Distribution Pattern Dynamics of Sorghum halepense under Climate and Land-Use Change. Plants, 12(17): 3128.
- Sanou,C.L., Neya,O., Agodzo,S.K., Antwi-Agyei,P., Bessah,E., Belem,M., et al. (2023). Trends and impacts of climate change on crop production in Burkina Faso. Journal of Water and Climate Change, 14(8): 2773–87.
- Akinbode,B.A., Malomo,S.A., Asasile,I.I. (2023). In vitro antioxidant, anti-inflammatory and in vivo anti-hyperglycemia potentials of cookies made from sorghum, orange-flesh-sweet-potato and mushroom protein isolate flour blends fed to Wistar rats. Food Chemistry Advances, 2: 100263.
- Xiao,M.-Z., Hong,S., Shen,X., Du,Z.-Y., Yuan,T.-Q. (2023). In vivo cadmium-assisted dilute acid pretreatment of the phytoremediation sweet sorghum for enzymatic hydrolysis and cadmium enrichment. Environmental Pollution, 324: 121372.
- Kumar,P.N.V., Mallikarjuna,M.G., Jha,S.K., Mahato,A., Lal,S.K., Yathish,K.R., et al. (2023). Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. International Journal of Biological Macromolecules, 229: 539–60.
- de Queiroz,G.C.M., de Medeiros,J.F., da Silva,R.R., da Silva Morais,F.M., de Sousa,L.V., de Souza,M.V.P., et al. (2023). Growth, Solute Accumulation, and Ion Distribution in Sweet Sorghum under Salt and Drought Stresses in a Brazilian Potiguar Semiarid Area. Agriculture, 13(4): 803.
- Ma,D., Xu,J., Zhou,J., Ren,L., Li,J., Zhang,Z., et al. (2023). Using Sweet Sorghum Varieties for the Phytoremediation of Petroleum-Contaminated Salinized Soil: A Preliminary Study Based on Pot Experiments. Toxics, 11(3): 208.
- Abdelbost,L., Morel,M.-H., do Nascimento,T.P., Cameron,L.-C., Bonicel,J., Larraz,M.F.S., et al. (2023). Sorghum grain germination as a route to improve kafirin digestibility: Biochemical and label free proteomics insights. Food Chemistry, 424: 136407.
- Peiris,K.H.S., Bean,S.R., Wu,X., Sexton-Bowser,S.A., Tesso,T. (2023). Performance of a Handheld MicroNIR Instrument for Determining Protein Levels in Sorghum Grain Samples. Foods, 12(16): 3101.
- Sruthi,N.U., Rao,P.S., Bennett,S.J., Bhattarai,R.R. (2023). Formulation of a Synergistic Enzyme Cocktail for Controlled Degradation of Sorghum Grain Pericarp. Foods, 12(2): 306.
- Luo,A., Yang,N., Yang,J., Hao,J., Zhao,J., Shi,S., et al. (2023). Effects of microbial interspecies relationships and physicochemical parameters on volatile flavors in sorghum-based fermented grains during the fermentation of Shanxi light-flavored liquor. Food Science & Nutrition, 11(3): 1452–62.
- Cabrera-Ramírez,A.H., Gaytán-Martínez,M., Gonzáles-Jasso,E., Ramírez-Jiménez,A.K., Velázquez,G., Villamiel,M., et al. (2023). Flours from popped grains: Physicochemical, thermal, rheological, and techno-functional properties. Food Hydrocolloids, 135: 108129.










| Basic of the comparison | [14] | [25] | [26] | [27] | Present study |
|---|---|---|---|---|---|
| Period | 2000-2020 | 1995-2021 | 2000-2022 | 2012–2022 | 2019-2023 |
| Keywords | Sorghum | A string of keywords related to sorghum, food innovation, and consumer behavior | sorghum and drought | A string of keywords related to sorghum, food products, and food processing | Sorghum |
| The focus of the study | Global food security | Healthy food in environmental challenge | Drought | Novel food products | Global trends and future works |
| Methodology | Bibliometric analysis | Systematic review and bibliometric analysis | Bibliometric analysis | Systematic reviews and Bibliometric analysis | Bibliometrics analysis and content analysis |
| Tools | VOSviewers | Bibliometrix | VOSviewers | VOSviewer | Vosviewers and Bibiliometrix |
| Database | Scopus | WOS and scopus | WOS | Scopus | Scopus |
| n Document | 17,720 | 198 | 1,731 | 231 (processing) and 451 (based food) | 7,197 |
| Label | replace by |
|---|---|
| article | |
| nonhuman | |
| controlled study | |
| animals | Animal |
| maize | zea mays |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
