Submitted:
12 December 2023
Posted:
13 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Participants and Clinical Assessment
2.2. Questionnaire to Assess Acute and Post-COVID Symptoms
2.3. Neuropsychological Assessment
2.3.1. Montreal Cognitive Assessment (MoCA)
2.3.1. Olfactory Testing
2.3.1. Stroop Color Word Test
2.3.3. Word Memory Test
2.3.3. Trail Making Test
2.3.1. Insomnia Severity Index
2.5. Statistical Analysis
3. Results
3.1. Clinical Assessment of the Patients with Post-COVID Depression
3.1. Acute and Post-COVID Symptoms
3.2. Results of Neuropsychological Testing
3.4. Associations between COVID-Related Parameters and Neuropsychological Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Soriano JB, Murthy S, Marshall JC, Relan P, D.J. Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect Dis 2020.
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di, J.D.; Cao, B.; et al. Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2020, 101, 93–135. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19 : A Retrospective Cohort Study Using Electronic Health Records. The Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
- Sobrino-Relaño, S.; Balboa-Bandeira, Y.; Peña, J.; Ibarretxe-Bilbao, N.; Zubiaurre-Elorza, L.; Ojeda, N. Neuropsychological Deficits in Patients with Persistent COVID-19 Symptoms: A Systematic Review and Meta-Analysis. Sci. Rep. 2023, 13, 1–14. [Google Scholar] [CrossRef]
- Lauria, A.; Carfì, A.; Benvenuto, F.; Bramato, G.; Ciciarello, F.; Rocchi, S.; Rota, E.; Salerno, A.; Stella, L.; Tritto, M.; et al. Neuropsychological Measures of Post-COVID-19 Cognitive Status. Front. Psychol. 2023, 14. [Google Scholar] [CrossRef]
- Simonetti, A.; Bernardi, E.; Margoni, S.; Catinari, A.; Restaino, A.; Ieritano, V.; Palazzetti, M.; Mastrantonio, F.; Janiri, D.; Tosato, M.; et al. Mixed Depression in the Post-COVID-19 Syndrome: Correlation between Excitatory Symptoms in Depression and Physical Burden after COVID-19. Brain Sci. 2023, 13. [Google Scholar] [CrossRef]
- Poletti, S.; Palladini, M.; Mazza, M.G.; De Lorenzo, R.; Irene, B.; Sara, B.; Beatrice, B.; Ceciclio, B.; Stefania, C.; Valentina, C.; et al. Long-Term Consequences of COVID-19 on Cognitive Functioning up to 6 Months after Discharge: Role of Depression and Impact on Quality of Life. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Ballentine, E.; Zhu, Y.; McGinley, E.L.; Pezzin, L.; Abramoff, B. The Unique Contribution of Depression to Cognitive Impairment in Post-Acute Sequelae of SARS-CoV-2 Infection. Brain, Behav. Immun.-Heal. 2022, 22, 100460. [Google Scholar] [CrossRef] [PubMed]
- Miskowiak, K.W.; Fugledalen, L.; Jespersen, A.E.; Sattler, S.M.; Podlekareva, D.; Rungby, J.; Porsberg, C.M.; Johnsen, S. Trajectory of Cognitive Impairments over 1 Year after COVID-19 Hospitalisation: Pattern, Severity, and Functional Implications. Eur. Neuropsychopharmacol. 2022, 59, 82–92. [Google Scholar] [CrossRef]
- Cheetham, N.J.; Penfold, R.; Giunchiglia, V.; Bowyer, V.; Sudre, C.H.; Canas, L.S.; Deng, J.; Murray, B.; Kerfoot, E.; Antonelli, M.; et al. The Effects of COVID-19 on Cognitive Performance in a Community-Based Cohort: A COVID Symptom Study Biobank Prospective Cohort Study. eClinicalMedicine 2023, 62, 102086. [Google Scholar] [CrossRef] [PubMed]
- Pistarini, C.; Fiabane, E.; Houdayer, E.; Vassallo, C.; Manera, M.R.; Alemanno, F. Cognitive and Emotional Disturbances Due to COVID-19: An Exploratory Study in the Rehabilitation Setting. Front. Neurol. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, W.; Deng, H.; Wang, L.; Wang, Y.; Wang, P. Prevalence of Depression and Its Association with Quality of Life in Clinically Stable Patients with COVID-19. 2020. [CrossRef]
- Renaud-Charest, O.; Lui, L.M.W.; Eskander, S.; Ceban, F.; Ho, R.; Di Vincenzo, J.D.; Rosenblat, J.D.; Lee, Y.; Subramaniapillai, M.; McIntyre, R.S. Onset and Frequency of Depression in Post-COVID-19 Syndrome: A Systematic Review. J. Psychiatr. Res. 2021, 144, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, L.; Lam, R.W.; McIntyre, R.S. Cognitive Impairment in Patients with Depression: Awareness, Assessment, and Management. J. Clin. Psychiatry 2017, 78, 1383–1394. [Google Scholar] [CrossRef]
- Hammar, Å.; Ronold, E.H.; Rekkedal, G.Å. Cognitive Impairment and Neurocognitive Profiles in Major Depression—A Clinical Perspective. Front. Psychiatry 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, H.; Pan, Z.; Park, C.; Brietzke, E.; Musial, N.; Shariq, A.S.; Iacobucci, M.; Yim, S.J.; Lui, L.M.W.; Rong, C.; et al. Recognition and Treatment of Cognitive Dysfunction in Major Depressive Disorder. Front. Psychiatry 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Dong, Z.; Zhang, L.; Li, B.; Zhang, Y.; Li, K. Depression and Cognitive Impairment: Current Understanding of Its Neurobiology and Diagnosis. Neuropsychiatr. Dis. Treat. 2022, 18, 2783–2794. [Google Scholar] [CrossRef] [PubMed]
- Herman, B.; Bruni, A.; Zain, E.; Dzulhadj, A.; Oo, A.C. Viwattanakulvanid Post-COVID Depression and Its Multiple Factors, Does Favipiravir Have a Protective Effect? A Longitudinal Study of Indonesia COVID-19 Patients. PLoS One 2022, 17, 1–20. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-Term Neurological Manifestations of COVID-19: Prevalence and Predictive Factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Gözen, E.D.; Aliyeva, C.; Tevetoğlu, F.; Karaali, R.; Balkan, İ.İ.; Yener, H.M.; Özdoğan, H.A. Evaluation of Olfactory Function With Objective Tests in COVID-19-Positive Patients: A Cross-Sectional Study. Ear, Nose Throat J. 2021, 100, 169S–173S. [Google Scholar] [CrossRef]
- Biederman, J.; Petty, C.R.; Fried, R.; Black, S.; Faneuil, A.; Doyle, A.E.; Seidman, L.J.; Faraone, S.V. Discordance between Psychometric Testing and Questionnaire-Based Definitions of Executive Function Deficits in Individuals with ADHD. J. Atten. Disord. 2008, 12, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snalth, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. [Revista En Internet] 2014 [Acceso 28 de Noviembre de 2019]; 64(5): 361-370. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. Development of a Rating Scale for Depressive Illness. Br. J. Soc. Clin. Psychol. 1967, 6, 278–296. [Google Scholar] [CrossRef] [PubMed]
- Chan Sui Ko, A.; Candellier, A.; Mercier, M.; Joseph, C.; Schmit, J.L.; Lanoix, J.P.; Andrejak, C. Number of Initial Symptoms Is More Related to Long COVID-19 than Acute Severity of Infection: A Prospective Cohort of Hospitalized Patients. Int. J. Infect. Dis. 2022, 118, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Pellicer-Valero, O.J.; Navarro-Pardo, E.; Rodríguez-Jiménez, J.; Martín-Guerrero, J.D.; Cigarán-Méndezd, M. The Number of Symptoms at the Acute COVID-19 Phase Is Associated with Anxiety and Depressive Long-Term Post-COVID Symptoms: A Multicenter Study. J. Psychosom. Res. 2021, 150, 110625. [Google Scholar] [CrossRef]
- Durstenfeld, M.S.; Peluso, M.J.; Peyser, N.D.; Lin, F.; Knight, S.J.; Djibo, A.; Khatib, R.; Kitzman, H.; O’Brien, E.; Williams, N.; et al. Factors Associated with Long COVID Symptoms in an Online Cohort Study. Open Forum Infect. Dis. 2023, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long Covid Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Green, P.; Montijo, J.; Brockhaus, R. High Specificity of the Word Memory Test and Medical Symptom Validity Test in Groups with Severe Verbal Memory Impairment. Appl. Neuropsychol. 2011, 18, 86–94. [Google Scholar] [CrossRef]
- Allen, M.; Bigler, E.; Larsen, J.; Goodrich-Hunsaker, N.; Hopkins, R. Functional Neuroimaging Evidence for High Cognitive Effort on the Word Memory Test in the Absence of External Incentives. Brain Inj. 2007, 21, 1425–1428. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept Mot Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Huang, C.L.-C. The Value of Patient-Administered Depression Rating Scale in Detecting Cognitive Deficits in Depressed Patients. J. Clin. Med. Res. 2010, 2, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Freud, T.; Vostrikov, A.; Dwolatzky, T.; Punchik, B.; Press, Y. Validation of the Russian Version of the MoCA Test as a Cognitive Screening Instrument in Cognitively Asymptomatic Older Individuals and Those With Mild Cognitive Impairment. Front. Med. 2020, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, R.; Chua, J.; Feng, L.; Kua, E.H.; Preedy, V.R. The Mini-Mental State Examination and Other Neuropsychological Assessment Tools for Detecting Cognitive Decline; Elsevier Inc., 2015; ISBN 9780124079397. [Google Scholar]
- Hummel, T.; Konnerth, C.G.; Rosenheim, K.; Kobal, G. Screening of Olfactory Function with a Four-Minute Odor Identification Test: Reliability, Normative Data, and Investigations in Patients with Olfactory Loss. Ann. Otol. Rhinol. Laryngol. 2001, 110, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Rumeau, C.; Nguyen, D.T.; Jankowski, R. How to Assess Olfactory Performance with the Sniffin’ Sticks Test®. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 203–206. [Google Scholar] [CrossRef]
- Cousijn, J.; van Benthem, P.; van der Schee, E.; Spijkerman, R. Motivational and Control Mechanisms Underlying Adolescent Cannabis Use Disorders: A Prospective Study. Dev. Cogn. Neurosci. 2015, 16, 36–45. [Google Scholar] [CrossRef]
- Tremblay, M.-P.; Potvin, O.; Belleville, S.; Bier, N.; Gagnon, L.; Blanchet, S.; Domingues, N.-S.; Gaudreau, G.; Macoir, J.; Hudon, C. The Victoria Stroop Test: Normative Data in Quebec-French Adults and Elderly. Arch. Clin. Neuropsychol. 2016, 31, acw029. [Google Scholar] [CrossRef]
- Bastien, C.H. Insomnia Severity Index. 28.
- Blair, M.; Coleman, K.; Jesso, S.; Desbeaumes Jodoin, V.; Smolewska, K.; Warriner, E.; Finger, E.; Pasternak, S.H. Depressive Symptoms Negatively Impact Montreal Cognitive Assessment Performance: A Memory Clinic Experience. Can. J. Neurol. Sci. 2016, 43, 513–517. [Google Scholar] [CrossRef]
- Wu, Z.; Su, G.; Lu, W.; Liu, L.; Zhou, Z.; Xie, B. Clinical Symptoms and Their Relationship with Cognitive Impairment in Elderly Patients with Depressive Disorder. Front. Psychiatry 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Nyundo, A.A.; Ismail, A. The Influence of Major Depressive Disorders on Neurocognitive Function among Adults Living with HIV/AIDS in a Regional Referral Hospital in Dodoma, Tanzania. Trop. Med. Int. Heal. 2022, 27, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Ab Latiff, H.Z.; Ariaratnam, S.; Shuib, N.; Isa, M.R. Cognitive Decline and Its Associated Factors in Patients with Major Depressive Disorder. Healthc. 2023, 11, 950. [Google Scholar] [CrossRef]
- Xu, G.; Lin, K.; Rao, D.; Dang, Y.; Ouyang, H.; Guo, Y.; Ma, J.; Chen, J. Neuropsychological Performance in Bipolar I, Bipolar II and Unipolar Depression Patients: A Longitudinal, Naturalistic Study. J. Affect. Disord. 2012, 136, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kitagawa, N.; Mitsui, N.; Fujii, Y.; Toyomaki, A.; Hashimoto, N.; Kako, Y.; Tanaka, T.; Asakura, S.; Kusumi, I. Neurocognitive Impairments and Quality of Life in Unemployed Patients with Remitted Major Depressive Disorder. Psychiatry Res. 2013, 210, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Baune, B.T.; Miller, R.; McAfoose, J.; Johnson, M.; Quirk, F.; Mitchell, D. The Role of Cognitive Impairment in General Functioning in Major Depression. Psychiatry Res. 2010, 176, 183–189. [Google Scholar] [CrossRef]
- Jia, Q.F.; Chen, P.; Zhu, H.L.; Chen, S.S.; Gu, X.C.; Yin, X.Y.; Wu, Y.H.; Yin, G.Z.; Hui, L. Cognitive Impairments in First-Episode Drug-Naïve Versus Medicated Depressive Patients: RBANS in a Chinese Population. Psychiatr. Q. 2019, 90, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Epp, A.M.; Dobson, K.S.; Dozois, D.J.A.; Frewen, P.A. A Systematic Meta-Analysis of the Stroop Task in Depression. Clin. Psychol. Rev. 2012, 32, 316–328. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Hammar, Å.; Isaksen, L.; Schmid, M.; Årdal, G.; Strand, M. Patients with Major Depression Show Intact Memory Performancegiven Optimal Conditions. Appl. Neuropsychol. 2011, 18, 191–196. [Google Scholar] [CrossRef]
- Li, Z.; Ruan, M.; Chen, J.; Fang, Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci. Bull. 2021, 37, 863–880. [Google Scholar] [CrossRef]
- Ramani, C.; Davis, E.M.; Kim, J.S.; Provencio, J.J.; Enfield, K.B.; Kadl, A. Post-ICU COVID-19 Outcomes: A Case Series. Chest 2021, 159, 215–218. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, X.; Zhao, W.; Du, Y.; Yang, D.; Huang, Y.; Chen, Y.; Zhang, H.; Yang, G.; Liu, J.; et al. Dynamic White Matter Changes in Recovered COVID-19 Patients: A Two-Year Follow-up Study. Theranostics 2023, 13, 724–735. [Google Scholar] [CrossRef]
- Huang, Y.; Ling, Q.; Manyande, A.; Wu, D.; Xiang, B. Brain Imaging Changes in Patients Recovered From COVID-19: A Narrative Review. Front. Neurosci. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Pinnock, F.S.; Rich, J.B.; Vasquez, B.; Wiegand, M.; Patcai, J.; Troyer, A.K.; Murphy, K.J. Neurocognitive Outcome Following Recovery from Severe Acute Respiratory Syndrome - Coronavirus-1 (SARS-CoV-1). J. Int. Neuropsychol. Soc. 2022, 28, 891–901. [Google Scholar] [CrossRef]
- Vandersteen, C.; Payne, M.; Dumas, L.É.; Plonka, A.; D’Andréa, G.; Chirio, D.; Demonchy, É.; Risso, K.; Robert, P.; Fernandez, X.; et al. What about Using Sniffin’ Sticks 12 Items Test to Screen Post-COVID-19 Olfactory Disorders? Eur. Arch. Oto-Rhino-Laryngology 2022, 279, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Bagnascoa, D.; Passalacquaa, G.; Braidoa, F.; Tagliabuea, E.; Cosinia, F.; Filaurob, M.; Ioppib, A.; Carobbiob, A.; Mocellinb, D.; Riccioa, A.M.; et al. Quick Olfactory Snif Fi n ’ Sticks Test ( Q-Sticks ) for the Detection of Smell Disorders in COVID- 19 Patients. World Allergy Organ. J. 2021, 14, 100497. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.; Lepra, M.; Kish, S.J.; Rusjan, P.M.; Nasser, Z.; Verhoeff, N.; Vasdev, N.; Bagby, M.; Boileau, I.; Husain, M.I.; et al. Neuroinflammation after COVID-19 with Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry 2023, 80, 787–795. [Google Scholar] [CrossRef]
- Sriwastava, S.; Tandon, M.; Podury, S.; Prasad, A.; Wen, S.; Guthrie, G.; Kakara, M.; Jaiswal, S.; Subedi, R.; Elkhooly, M.; et al. COVID-19 and Neuroinflammation: A Literature Review of Relevant Neuroimaging and CSF Markers in Central Nervous System Inflammatory Disorders from SARS-COV2. J. Neurol. 2021, 268, 4448–4478. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhou, Z.; Yang, D.; Zhao, W.; Zeng, M.; Xie, X.; Du, Y.; Jiang, Y.; Zhou, X.; Yang, W.; et al. Persistent White Matter Changes in Recovered COVID-19 Patients at the 1-Year Follow-Up. Brain 2022, 145, 1830–1838. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Chen, T.; Li, J.; Zhang, G.; Wu, D.; Zhou, Y.; Zheng, N.; Cai, A.; Ning, Q.; et al. Long-Term Microstructure and Cerebral Blood Flow Changes in Patients Recovered from COVID-19 without Neurological Manifestations. J. Clin. Invest. 2021, 131. [Google Scholar] [CrossRef]
- Bispo, D.D. de C.; Brandão, P.R. de P.; Pereira, D.A.; Maluf, F.B.; Dias, B.A.; Paranhos, H.R.; von Glehn, F.; de Oliveira, A.C.P.; Regattieri, N.A.T.; Silva, L.S.; et al. Brain Microstructural Changes and Fatigue after COVID-19. Front. Neurol. 2022, 13. [Google Scholar] [CrossRef]
- Butt, A.M.; Papanikolaou, M.; Rivera, A. Physiology of Oligodendroglia. In Advances in Experimental Medicine and Biology; 2019; Vol. 1175, pp. 117–128 ISBN 10.1007/9789811. [CrossRef]
- Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and Pathology. Acta Neuropathol. 2010, 119, 37–53. [Google Scholar] [CrossRef]
- Chapman, T.W.; Hill, R.A. Myelin Plasticity in Adulthood and Aging. Neurosci. Lett. 2020, 715, 134645. [Google Scholar] [CrossRef]
- Khodanovich, M.; Svetlik, M.; Kamaeva, D.; Usova, A.; Kudabaeva, M. Demyelination in Patients with Post-COVID Depression. Biomedicines 2023, Preprint, 1–23. [Google Scholar] [CrossRef]
- Kisel, A.A.; Naumova, A.V.; Yarnykh, V.L. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front. Neurosci. 2022, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yarnykh, V.L. Time-Efficient, High-Resolution, Whole Brain Three-Dimensional Macromolecular Proton Fraction Mapping. Magn. Reson. Med. 2016, 75, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Yarnykh, V.L. Fast Macromolecular Proton Fraction Mapping from a Single Off-Resonance Magnetization Transfer Measurement. Magn. Reson. Med. 2012, 68, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Khodanovich, M.Y.Y.; Sorokina, I.V.V.; Glazacheva, V.Y.Y.; Akulov, A.E.E.; Nemirovich-Danchenko, N.M.M.; Romashchenko, A.V.V.; Tolstikova, T.G.G.; Mustafina, L.R.R.; Yarnykh, V.L.L. Histological Validation of Fast Macromolecular Proton Fraction Mapping as a Quantitative Myelin Imaging Method in the Cuprizone Demyelination Model. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Khodanovich, M.Y.; Pishchelko, A.O.; Glazacheva, V.Y.; Pan, E.S.; Akulov, A.E.; Svetlik, M.V.; Tyumentseva, Y.A.; Anan’ina, T.V. Yarnykh Vasily Leonidovich Quantitative Imaging of White and Gray Matter Remyelination in the Cuprizone Demyelination Model Using the Macromolecular Proton Fraction. Cells 2019, 8, 1204. [Google Scholar] [CrossRef] [PubMed]
- Khodanovich, M.Y.; Gubskiy, I.L.; Kudabaeva, M.S.; Namestnikova, D.D.; Kisel, A.A.; Anan’ina, T.V.; Tumentceva, Y.A.; Mustafina, L.R.; Yarnykh, V.L. Long-Term Monitoring of Chronic Demyelination and Remyelination in a Rat Ischemic Stroke Model Using Macromolecular Proton Fraction Mapping. J. Cereb. Blood Flow Metab. 2021, 41, 2856–2869. [Google Scholar] [CrossRef] [PubMed]
- Khodanovich, M.Y.; Kisel, A.A.; Akulov, A.E.; Atochin, D.N.; Kudabaeva, M.S.; Glazacheva, V.Y.; Svetlik, M.V.; Medvednikova, Y.A.; Mustafina, L.R.; Yarnykh, V.L. Quantitative Assessment of Demyelination in Ischemic Stroke in Vivo Using Macromolecular Proton Fraction Mapping. J. Cereb. Blood Flow Metab. 2018, 38, 919–931. [Google Scholar] [CrossRef]
- Caverzasi, E.; Papinutto, N.; Amirbekian, B.; Berger, M.S.; Henry, R.G. Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond. PLoS One 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Conner, A.K.; Briggs, R.G.; Sali, G.; Rahimi, M.; Baker, C.M.; Burks, J.D.; Glenn, C.A.; Battiste, J.D.; Sughrue, M.E. A Connectomic Atlas of the Human Cerebrum-Chapter 13: Tractographic Description of the Inferior Fronto-Occipital Fasciculus. Oper. Neurosurg. 2018, 15, 5436–5443. [Google Scholar] [CrossRef] [PubMed]
- Hausman, H.K.; Hardcastle, C.; Albizu, A.; Kraft, J.N.; Evangelista, N.D.; Boutzoukas, E.M.; Langer, K.; O’Shea, A.; Van Etten, E.J.; Bharadwaj, P.K.; et al. Cingulo-Opercular and Frontoparietal Control Network Connectivity and Executive Functioning in Older Adults. GeroScience 2022, 44, 847–866. [Google Scholar] [CrossRef] [PubMed]
| Parameter | PCD | NoPCD | ControlPC | Control |
|---|---|---|---|---|
| Sample size | 25 | 46 | 18 | 19 |
| Male (%) | 4(16) | 17(37) | 7(39) | 8(42) |
| Female (%) | 21(84) | 29(63) | 11(61) | 11(58) |
| Education, years±SD | 15.2±1.9 | 15.9±2.1 | 16.1±2.4 | 16.4±1.8 |
| Age, years±SD | 37±13.7 | 43±10.4 | 43.7±9.7 | 38.3±10.3 |
| Age, median (min-max) | 42.0(19-59) | 43(21-61) | 42(24-61) | 39(20-58) |
| Parameter | mean±SD |
|---|---|
| Hamilton score (HDRS) | 18.36±3.66 |
| Age of manifestation, years | 34.62±13.96 |
| Number of episodes | 1.75±1.75 |
| Duration of last episode, month | 8.27±7.31 |
| Parameter | PCD | noPCD | ControlPC | Statistics |
|---|---|---|---|---|
| Severity, mild/moderate/severe/critical (%) | 88/8/4/0 | 63/17/15/4 | 66/28/0/1 | |
| Number of COVID-19 episodes, mean±SD | 1.60±0.71 | 1.65±0.77 | 1.50±0.51 | F(2, 86)=0.30, p=0.74 |
| Time after the first COVID-19, months±SD | 20.3±8.2 | 21.8± 9.4 | 16.3±6.4 | F(2, 86)=2.6, p=.08 |
| Time after last COVID-19, months±SD | 13.1±10.3 | 15.0±10.5 | 9.8±5.5 | F(2, 86)=1.8, p=0.16 |
| Acute symptoms | ||||
| Anosmia, n (%) | 22(88%) | 34(74%) | 15(83%) | - |
| Ageusia, n (%) | 19(76%)* | 27(59%) | 8(44%) | - |
| Fever, n (%) | 22(88%) | 44(96%) | 16(89%) | - |
| Difficulty breathing, n (%) | 14(56%) | 27(59%) | 7(39%) | - |
| Cough, n (%) | 22(88%) | 32(70%) | 13(72%) | - |
| Muscle weakness, n (%) | 24(96%) | 42(91%) | 15(83%) | - |
| Myalgia, n (%) | 20(80%) | 30(65%) | 10(56%) | - |
| Headache, n (%) | 22(88%)* | 34(74%) | 11(61%) | - |
| Dizziness, n (%) | 14(56%) | 28(61%)* | 6(33%) | - |
| Number of acute symptoms | 7.24± 1.85* | 6.48±2.21 | 5.61±1.94 | F(2, 86)=3.28, p=0.042 |
| Post-COVID symptoms | ||||
| Headache, n (%) | 7 (28%) | 6(13%) | 2(11%) | - |
| Dizziness, n (%) | 10 (40%)# | 22(48%)## | 2(11%) | - |
| Brain fog, n (%) | 14 (56%) | 19(41%) | 6(33%) | - |
| Anosmia, n (%) | 16 (64%)*& | 16(35%) | 5(28%) | - |
| Ageusia, n (%) | 14 (56%)**& | 12(26%) | 3(17%) | - |
| Sensitivity, n (%) | 3 (12%) | 7(15%) | 1(6%) | - |
| Hypertensia/hypotensia, n (%) | 7 (28%) | 23(50%)* | 4(22%) | - |
| Insomnia, n (%) | 20 (80%)*** | 27(59%)*** | 5(28%) | - |
| Fatigue, n (%) | 24(96%)***& | 36(78%)** | 8(44%) | - |
| Attention deficit, n (%) | 23(92%)***&& | 29(63%)*** | 4(22%) | - |
| Memory deficit,% | 19(76%)*** | 39(85%) | 4(22%) | - |
| Mialgia, n (%) | 15(60%)* | 25(54%) | 5(28%) | - |
| Depression, n (%) | 24(96%)***&&& | 24(52%)** | 2(11%) | - |
| Panic attacks, n (%) | 5(20%)* | 3(7%) | 0(0%) | - |
| Number of post-COVID symptoms | 8.04±2.23*** & | 6.26±2.95*** | 2.83±3.24 | F(2, 86)=17.95, p=0.000 |
| Test | Parameter | PCD | noPCD | ControlPC | Control |
|---|---|---|---|---|---|
| HADS | Total score | 21.04±7.40 *** ### &&& | 10.91±5.69 * &&& | 8.38±3.90 | 7.89±3.75 |
| Anxiety | 10.84±3.25 *** ### &&& | 6.19±3.68 * &&& | 4.78±3.09 | 4.42±2.41 | |
| Depression | 10.36±4.78 *** ### &&& | 4.93±3.22 &&& | 3.50±2.90 | 3.47±2.44 | |
| ISI | Total score | 14.56±7.02 *** ### &&& | 9.11±6.17 ### && | 4.11±3.79 | 6.11±4.62 |
| MoCA | Total score | 26.48±2.10 * | 26.59±2.16 * | 27.78±1.99 | 27.63±1.54 |
| Visuospatial/executive abilities | 4.28±0.89 | 4.48±0.75 | 4.61±0.98 | 4.58±0.69 | |
| Naming | 3.0±0.0 | 3.0±0.0 | 3.0±0.0 | 3.0±0.0 | |
| Attention | 5.44±0.77 | 5.37±0.95 | 5.89±0.32 | 5.84±0.37 | |
| Language | 2.32±0.63 | 2.11±0.95 | 2.39±0.70 | 2.32±0.75 | |
| Abstraction | 1.96±0.20 | 1.93±0.25 | 2.0±0.0 | 1.95±0.23 | |
| Memory | 3.56±1.36 | 3.76±1.30 | 4.00±1.14 | 4.05±1.03 | |
| Orientation | 5.92±0.28 | 5.93±0.25 | 5.89±0.32 | 5.89±0.32 | |
| WMT | Total score | 18.12±2.71* # & | 18.98±1.34 & | 19.44±0.92 | 19.10±1.17 |
| Immediate recall | 7.08±1.58 ** | 7.65±1.29* | 7.83±1.54 | 8.42±1.35 | |
| Immediate assistance | 1.96±1.06** | 2.09±1.28* | 2.11±1.49 | 1.47±1.17 | |
| Immediate total | 9.04±1.40 *** ### &&& | 9.70±0.51 &&& | 9.94±0.24 | 9.83±0.48 | |
| Delayed | 6.83±2.01 | 6.72±1.93 | 7.22±1.83 | 7.34±1.95 | |
| Delayed assistance | 2.12±1.30 | 2.52±1.56 | 2.22±1.44 | 1.73±1.69 | |
| Delayed total | 9.04±1.65 | 9.26±1.02 | 9.50±0.86 | 9.21±1.18 | |
| SCWT | W, time (s) | 55.40±12.22 (p=0.05 vs Control) | 51.76±7.07 | 55.67±12.50 | 49.68±7.82 |
| C, time (s) | 68.80±21.74 | 68.91±12.99 | 67.11±13.03 | 65.16±19.99 | |
| CW, time (s) | 119.12±35.46 | 121.33±23.23 | 116.83±31.48 | 110.32±38.90 | |
| Low interference | 1.05±1.28 | 0.77±0.14 | 0.83±0.11 | 0.80±0.16 | |
| High interference | 2.28±2.86 (p=0.08 vs Control, p=0.06 vs ControlPC) | 1.77±0.25 | 1.75±0.32 | 1.70±0.26 | |
| TMT | Processing time, s | 41.56±18.26 * # & | 33.98±9.00 # | 34.39±10.64 | 30.00±8.41 |
| Errors, mean±SD | 0.12±0.33 ** & | 0.43±0.62 & | 0.33±59 | 0.63±0.68 | |
| SST | Total score | 9.44±1.12 | 9.36±1.81 | 9.72±1.53 | 9.42±1.30 |
| Test | Parameter | Number of COVID-19 episodes |
Time after first COVID-19 | Time after last COVID-19 | Number of acute symptoms |
Number of post-COVID symptoms |
|||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sample | Total | PCD | Total | PCD | Total | PCD | Total | PCD | Total | PCD | |
| HADS | Total score | - | - | - | - | - | - | - | 0.36** | - | |
| Anxiety | - | - | - | - | - | - | - | 0.41*** | - | ||
| Depression | - | - | - | - | - | - | - | 0.27* | - | ||
| WMT | Total score | - | - | - | - | - | - | - | -0.27* | -0.39* | |
| Immediate recall | - | - | - | -0.49* | - | - | - | - | -0.24* | ||
| Immediate assistance |
- | - | - | -0.61** | - | - | - | - | - | - | |
| Delayed recall | - | - | - | - | - | - | - | - | -0.42* | ||
| MoCA | Language | - | - | 0.25* | - | - | - | - | - | - | |
| Orientation | - | - | - | - | -0.42* | - | - | - | - | ||
| TMT | Time | - | - | -0.24* | - | - | - | - | - | - | |
| Errors | - | - | -0.25* | - | - | - | - | - | - | ||
| SCWT | CW time | - | - | - | - | - | - | - | 0.48* | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
