Submitted:
05 December 2023
Posted:
07 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mapping the brain: the connectome
3. Brain Damage
3.1. Acquired Brain Injury
3.1.1. External: Traumatic Brain Injury
3.1.2. Internal: Non-Traumatic Brain Injury
3.2. Neurological disorders
3.2.1. Epilepsy
3.2.2. Neurodegenerative diseases
3.3. Psychiatric disorders
4. Conclusions and future research lines
Funding
Acknowledgments
Conflicts of Interest
References
- Padamsey, Z.; Rochefort, N.L. Paying the brain’s energy bill. Current Opinion in Neurobiology 2023, 78, 102668. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Spooner, F.; Roser, M. Causes of death. Our World in Data.
- Murphy, S.J.; Werring, D.J. Stroke: causes and clinical features. Medicine 2023, 51, 602–607. [Google Scholar] [CrossRef]
- McKinney, P.A. Brain tumours: incidence, survival, and aetiology. Journal of Neurology, Neurosurgery and Psychiatry 2004, 75, ii12–ii17. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; Barnholtz-Sloan, J.S. Brain and other central nervous system tumor statistics, 2021. CA: A Cancer Journal for Clinicians 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. Journal of Epidemiology and Global Health 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; multiple collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Pfeiffer, R.L.; Anderson, J.R.; Dahal, J.; Garcia, J.C.; Yang, J.H.; Sigulinsky, C.L.; Rapp, K.; Emrich, D.P.; Watt, C.B.; Johnstun, H.A.; Houser, A.R.; Marc, R.E.; Jones, B.W. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Experimental Eye Research 2020, 199, 108196. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Hamalainen, T.; Cong, F. Exploring Oscillatory Dysconnectivity Networks in Major Depression During Resting State Using Coupled Tensor Decomposition. IEEE Transactions on Biomedical Engineering 2022, 69, 2691–2700. [Google Scholar] [CrossRef]
- Rubinov, M.; Bullmore, E. Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Sciences 2013, 17, 641–647. [Google Scholar] [CrossRef]
- Dey, A.K.; Stamenova, V.; Turner, G.; Black, S.E.; Levine, B. Pathoconnectomics of cognitive impairment in small vessel disease: A systematic review. Alzheimer’s and Dementia 2016, 12, 831–845. [Google Scholar] [CrossRef]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B.; and. The economic cost of brain disorders in Europe. European Journal of Neurology 2011, 19, 155–162. [Google Scholar] [CrossRef]
- DiLuca, M.; Olesen, J. The Cost of Brain Diseases: A Burden or a Challenge? Neuron 2014, 82, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Parés-Badell, O.; Barbaglia, G.; Jerinic, P.; Gustavsson, A.; Salvador-Carulla, L.; Alonso, J. Cost of Disorders of the Brain in Spain. PLoS ONE 2014, 9, e105471. [Google Scholar] [CrossRef]
- Pino, R.D.; Díez-Cirarda, M.; Ustarroz-Aguirre, I.; Gonzalez-Larragan, S.; Caprino, M.; Busnatu, S.; Gand, K.; Schlieter, H.; Gabilondo, I.; Gómez-Esteban, J.C. Costs and effects of telerehabilitation in neurological and cardiological diseases: A systematic review. Frontiers in Medicine 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, S.J.; Shahbaz, N.N.; Nisa, Q.; Umer, S.R.; Ali, S.G.; Aziz, M.Y. Cost of Investigating Neurological Disease: Experience of a Tertiary Care Center in Karachi, Pakistan. Cureus 2020. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; multiple collaborators. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology 2017, 16, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Falk, E.B.; Hyde, L.W.; Mitchell, C.; Faul, J.; Gonzalez, R.; Heitzeg, M.M.; Keating, D.P.; Langa, K.M.; Martz, M.E.; Maslowsky, J.; Morrison, F.J.; Noll, D.C.; Patrick, M.E.; Pfeffer, F.T.; Reuter-Lorenz, P.A.; Thomason, M.E.; Davis-Kean, P.; Monk, C.S.; Schulenberg, J. What is a representative brain? Neuroscience meets population science. Proceedings of the National Academy of Sciences 2013, 110, 17615–17622. [Google Scholar] [CrossRef] [PubMed]
- Dotson, V.M.; Duarte, A. The importance of diversity in cognitive neuroscience. Annals of the New York Academy of Sciences 2019, 1464, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Green, K.H.; Groep, I.H.V.D.; Brinke, L.W.T.; van der Cruijsen, R.; van Rossenberg, F.; Marroun, H.E. A perspective on enhancing representative samples in developmental human neuroscience: Connecting science to society. Frontiers in Integrative Neuroscience 2022, 16. [Google Scholar] [CrossRef]
- Siuly, S.; Zhang, Y. Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis. Data Science and Engineering 2016, 1, 54–64. [Google Scholar] [CrossRef]
- Alonso, S.G.; de la Torre-Díez, I.; Hamrioui, S.; López-Coronado, M.; Barreno, D.C.; Nozaleda, L.M.; Franco, M. Data Mining Algorithms and Techniques in Mental Health: A Systematic Review. Journal of Medical Systems 2018, 42. [Google Scholar] [CrossRef] [PubMed]
- Dipietro, L.; Gonzalez-Mego, P.; Ramos-Estebanez, C.; Zukowski, L.H.; Mikkilineni, R.; Rushmore, R.J.; Wagner, T. The evolution of Big Data in neuroscience and neurology. Journal of Big Data 2023, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, R. Data Mining and Machine Learning Methods for Dementia Research. In Biomarkers for Alzheimer’s Disease Drug Development; Springer New York, 2018; pp. 363–370. [CrossRef]
- Baniya, B.; Athawale, S.V.; Choudhary, M.L.; Ram, N. Neurodegenerative Alzheimer’s Disease Disorders and Deep Learning Approaches. In Data Analysis for Neurodegenerative Disorders; Springer Nature Singapore, 2023; pp. 49–66. [CrossRef]
- Eschenburg, K.M.; Grabowski, T.J.; Haynor, D.R. Learning Cortical Parcellations Using Graph Neural Networks. Frontiers in Neuroscience 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Rekik, I.; Massoud, Y.; Solé-Casals, J. Editorial: Graph learning for brain imaging. Frontiers in Neuroscience 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Ma, L.; Jiang, T.; Zhang, Y. Unrevealing Reliable Cortical Parcellation of Individual Brains Using Resting-State Functional Magnetic Resonance Imaging and Masked Graph Convolutions. Frontiers in Neuroscience 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Kuai, H.; Chen, J.; Huang, J.; Liang, P.; Zhong, N. Systematic Fusion of Multi-Source Cognitive Networks With Graph Learning - A Study on Fronto-Parietal Network. Frontiers in Neuroscience 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Kurucu, M.C.; Rekik, I. Graph neural network based unsupervised influential sample selection for brain multigraph population fusion. Computerized Medical Imaging and Graphics 2023, 108, 102274. [Google Scholar] [CrossRef] [PubMed]
- Bessadok, A.; Mahjoub, M.A.; Rekik, I. Graph Neural Networks in Network Neuroscience. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023, 45, 5833–5848. [Google Scholar] [CrossRef] [PubMed]
- Najarro, E.; Sudhakaran, S.; Risi, S. Towards Self-Assembling Artificial Neural Networks through Neural Developmental Programs, 2023. [CrossRef]
- Brodmann, K. Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues; Barth, 1909.
- Ferris, C.F.; Cai, X.; Qiao, J.; Switzer, B.; Baun, J.; Morrison, T.; Iriah, S.; Madularu, D.; Sinkevicius, K.W.; Kulkarni, P. Life without a brain: Neuroradiological and behavioral evidence of neuroplasticity necessary to sustain brain function in the face of severe hydrocephalus. Scientific Reports 2019, 9. [Google Scholar] [CrossRef]
- Miller, A. The Lobotomy Patient. A Decade Later. Canadian Medical Association, 2016. [Google Scholar]
- Dickman, H.; Fletke, K.; Redfern, R.E. Prolonged unassisted survival in an infant with anencephaly. BMJ Case Reports, 2016. [Google Scholar] [CrossRef]
- Nagappan, P.G.; Chen, H.; Wang, D.Y. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research 2020, 7. [Google Scholar] [CrossRef]
- Lim, S.B.; Louie, D.R.; Peters, S.; Liu-Ambrose, T.; Boyd, L.A.; Eng, J.J. Brain activity during real-time walking and with walking interventions after stroke: a systematic review. Journal of NeuroEngineering and Rehabilitation 2021, 18. [Google Scholar] [CrossRef] [PubMed]
- Bigler, E.D. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques. Neuropsychology Review 2015, 25, 224–249. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; See, A.P.; Essayed, W.I.; Golby, A.J.; Tie, Y. Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage: Clinical 2018, 17, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, P.; Dang, A.T.; Do, Q.; Netoff, T.I.; Lim, K.O.; Atluri, G. Evaluation of functional MRI-based human brain parcellation: a review. Journal of Neurophysiology 2022, 128, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, P.; Kurant, M.; Gigandet, X.; Thiran, P.; Wedeen, V.J.; Meuli, R.; Thiran, J.P. Mapping Human Whole-Brain Structural Networks with Diffusion MRI. PLoS ONE 2007, 2, e597. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Rick, J.; Chandra, A.; Yagnik, G.; Aghi, M.K. Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurgical Review 2018, 42, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, A.; Bazin, P.L.; Balesar, R.; Pine, K.; Kirilina, E.; Möller, H.E.; Trampel, R.; Kros, J.M.; Keuken, M.C.; Bleys, R.L.A.W.; Swaab, D.F.; Herrler, A.; Weiskopf, N.; Forstmann, B.U. A unified 3D map of microscopic architecture and MRI of the human brain. Science Advances 2022, 8. [Google Scholar] [CrossRef]
- Amunts, K.; Mohlberg, H.; Bludau, S.; Zilles, K. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 2020, 369, 988–992. [Google Scholar] [CrossRef]
- Borys, D.; Kijonka, M.; Psiuk-Maksymowicz, K.; Gorczewski, K.; Zarudzki, L.; Sokol, M.; Swierniak, A. Non-parametric MRI Brain Atlas for the Polish Population. Frontiers in Neuroinformatics 2021, 15. [Google Scholar] [CrossRef]
- Zhao, B.; Li, T.; Li, Y.; Fan, Z.; Xiong, D.; Wang, X.; Gao, M.; Smith, S.M.; Zhu, H. An atlas of trait associations with resting-state and task-evoked human brain functional organizations in the UK Biobank. Imaging Neuroscience 2023, 1, 1–23. [Google Scholar] [CrossRef]
- Tan, L.H.; Chan, A.H.D.; Kay, P.; Khong, P.L.; Yip, L.K.C.; Luke, K.K. Language affects patterns of brain activation associated with perceptual decision. Proceedings of the National Academy of Sciences 2008, 105, 4004–4009. [Google Scholar] [CrossRef] [PubMed]
- Toro, R.; Fox, P.T.; Paus, T. Functional Coactivation Map of the Human Brain. Cerebral Cortex 2008, 18, 2553–2559. [Google Scholar] [CrossRef] [PubMed]
- Laird, A.R.; Eickhoff, S.B.; Rottschy, C.; Bzdok, D.; Ray, K.L.; Fox, P.T. Networks of task co-activations. NeuroImage 2013, 80, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Shibata, K.; Watanabe, T.; Kawato, M.; Sasaki, Y. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States. PLOS Biology 2016, 14, e1002546. [Google Scholar] [CrossRef] [PubMed]
- Nakuci, J.; Yeon, J.; Kim, J.H.; Kim, S.P.; Rahnev, D. Multiple brain activation patterns for the same task 2023. [CrossRef]
- Baek, C.Y.; Kim, H.D.; Yoo, D.Y.; Kang, K.Y.; Lee, J.W. Change in activity patterns in the prefrontal cortex in different phases during the dual-task walking in older adults. Journal of NeuroEngineering and Rehabilitation 2023, 20. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; DiNicola, L.M. The brain’s default network: updated anatomy, physiology and evolving insights. Nature Reviews Neuroscience 2019, 20, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, J.; Bernhardt, B.C.; Leech, R.; Bzdok, D.; Jefferies, E.; Margulies, D.S. The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience 2021, 22, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L. The brain’s default network: origins and implications for the study of psychosis. Dialogues in Clinical Neuroscience 2013, 15, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Kording, K.P.; Parvizi, J.; Fox, M.D. Causal mapping of human brain function. Nature Reviews Neuroscience 2022, 23, 361–375. [Google Scholar] [CrossRef]
- Finger, S.; Almli, C. Brain damage and neuroplasticity: Mechanisms of recovery or development? Brain Research Reviews 1985, 10, 177–186. [Google Scholar] [CrossRef]
- Grafman, J. Conceptualizing functional neuroplasticity. Journal of Communication Disorders 2000, 33, 345–356. [Google Scholar] [CrossRef]
- Fuchs, E.; Flügge, G. Adult Neuroplasticity: More Than 40 Years of Research. Neural Plasticity 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Kolb, B.; Gibb, R. Brain Plasticity and Behaviour in the Developing Brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry 2011. [Google Scholar]
- Park, D.C.; Bischof, G.N. The aging mind: neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience 2013, 15, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Viel, T.A.; Toricelli, M.; Pereira, A.R.; Abrao, G.S.; Malerba, H.N.; Maia, J.; Buck, H.S. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regeneration Research 2021, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.H.; Kirby, A.J.; Finnerty, G.T. Rewiring the connectome: Evidence and effects. Neuroscience and Biobehavioral Reviews 2018, 88, 51–62. [Google Scholar] [CrossRef]
- Seven, Y.B.; Mitchell, G.S. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respiratory Physiology and Neurobiology 2019, 265, 32–39. [Google Scholar] [CrossRef]
- Hill, N.L.; Kolanowski, A.M.; Gill, D.J. Plasticity in Early Alzheimer Disease. Topics in Geriatric Rehabilitation 2011, 27, 257–267. [Google Scholar] [CrossRef]
- Meyer, J.S.; Obara, K.; Muramatsu, K. Diaschisis. Neurological Research 1993, 15, 362–366. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Hutchins, J.B.; Barger, S.W. Why neurons die: Cell death in the nervous system. The Anatomical Record 1998, 253, 79–90. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Miura, M. Programmed Cell Death in Neurodevelopment. Developmental Cell 2015, 32, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, M.P.; Nikoletopoulou, V.; Barde, Y.A. Death of developing neurons: New insights and implications for connectivity. Journal of Cell Biology 2013, 203, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, M.; Ham, J. Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death and Differentiation 2014, 21, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Finger, S. Chapter 51 Recovery of function. In Handbook of Clinical Neurology; Elsevier, 2009; pp. 833–841. [CrossRef]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal Cell Death. Physiological Reviews 2018, 98, 813–880. [Google Scholar] [CrossRef] [PubMed]
- Pettmann, B.; Henderson, C.E. Neuronal Cell Death. Neuron 1998, 20, 633–647. [Google Scholar] [CrossRef]
- Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis 2000, 21, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental and Clinical Cancer Research 2011, 30. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Chi, H.; Chang, H.Y.; Sang, T.K. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. International Journal of Molecular Sciences 2018, 19, 3082. [Google Scholar] [CrossRef]
- Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal cell death mechanisms in Alzheimer’s disease: An insight. Frontiers in Molecular Neuroscience 2022, 15. [Google Scholar] [CrossRef]
- Zafarlotfi, S.; Quadri, M.; Borodovsky, J. Understanding Brain Damage and Sleep Apnea: A Review. Health Outcomes Research in Medicine 2010, 1, e103–e110. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chen, W.; Harnod, T.; Lin, C.L.; Hsu, W.H.; Lin, C.C.; Chang, Y.L.; Wang, I.K.; Kao, C.H. Sleep apnea and risk of traumatic brain injury and associated mortality and healthcare costs: a population-based cohort study. Annals of Translational Medicine 2019, 7, 644–644. [Google Scholar] [CrossRef] [PubMed]
- Giustini, A.; Pistarini, C.; Pisoni, C. Traumatic and nontraumatic brain injury. In Neurological Rehabilitation; Elsevier, 2013; pp. 401–409. [CrossRef]
- Hohmann, U.; Dehghani, F.; Hohmann, T. Assessment of Neuronal Damage in Brain Slice Cultures Using Machine Learning Based on Spatial Features. Frontiers in Neuroscience 2021, 15. [Google Scholar] [CrossRef]
- Mamere, A.; Saraiva, L.; Matos, A.; Carneiro, A.; Santos, A. Evaluation of Delayed Neuronal and Axonal Damage Secondary to Moderate and Severe Traumatic Brain Injury Using Quantitative MR Imaging Techniques. American Journal of Neuroradiology 2009, 30, 947–952. [Google Scholar] [CrossRef]
- Majdan, M.; Plancikova, D.; Brazinova, A.; Rusnak, M.; Nieboer, D.; Feigin, V.; Maas, A. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. The Lancet Public Health 2016, 1, e76–e83. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery 2019, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.; Siddiqui, E.M.; Khan, A.; Jahan, S.; Rehman, M.U.; Mehan, S.; Sharma, R.; Budkin, S.; Kumar, S.N.; Sahu, A.; Kumar, M.; Vaibhav, K. Understanding Acquired Brain Injury: A Review. Biomedicines 2022, 10, 2167. [Google Scholar] [CrossRef]
- Rogers, J.M.; Read, C.A. Psychiatric comorbidity following traumatic brain injury. Brain Injury 2007, 21, 1321–1333. [Google Scholar] [CrossRef] [PubMed]
- Hammond, F.M.; Corrigan, J.D.; Ketchum, J.M.; Malec, J.F.; Dams-O’Connor, K.; Hart, T.; Novack, T.A.; Bogner, J.; Dahdah, M.N.; Whiteneck, G.G. Prevalence of Medical and Psychiatric Comorbidities Following Traumatic Brain Injury. Journal of Head Trauma Rehabilitation 2019, 34, E1–E10. [Google Scholar] [CrossRef]
- Naumenko, Y.; Yuryshinetz, I.; Zabenko, Y.; Pivneva, T. Mild traumatic brain injury as a pathological process. Heliyon 2023, 9, e18342. [Google Scholar] [CrossRef] [PubMed]
- Dean, P.J.A.; Sterr, A. Long-term effects of mild traumatic brain injury on cognitive performance. Frontiers in Human Neuroscience 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Bramlett, H.M.; Dietrich, W.D. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. Journal of Neurotrauma 2015, 32, 1834–1848. [Google Scholar] [CrossRef] [PubMed]
- Danna-Dos-Santos, A.; Mohapatra, S.; Santos, M.; Degani, A.M. Long-term effects of mild traumatic brain injuries to oculomotor tracking performances and reaction times to simple environmental stimuli. Scientific Reports 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.S.; Kubilus, C.A.; Stern, R.A. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy After Repetitive Head Injury. Journal of Neuropathology and Experimental Neurology 2009, 68, 709–735. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, S.K.; Sridhar, S.; Char, S.; Pandya, K.; Mehta, K. Prevalence of comorbidities post mild traumatic brain injuries: a traumatic brain injury model systems study. Frontiers in Human Neuroscience 2023, 17. [Google Scholar] [CrossRef] [PubMed]
- Das, A.S.; Vicenty-Padilla, J.C.; Chua, M.M.; Jeelani, Y.; Snider, S.B.; Regenhardt, R.W.; Al-Mufti, F.; Du, R.; Izzy, S. Cerebrovascular injuries in traumatic brain injury. Clinical Neurology and Neurosurgery 2022, 223, 107479. [Google Scholar] [CrossRef] [PubMed]
- Rashid, B. Mechanical Characterization of Brain Tissue in Compression, Tension and Shear Under Dynamic Conditions. PhD thesis, School of Mechanical and Materials Engineering, University College Dublin, 2012.
- Accessed: 09-10-2023.
- Mokri, B. The Monro-Kellie hypothesis: Applications in CSF volume depletion. Neurology 2001, 56, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Kalisvaart, A.C.J.; Wilkinson, C.M.; Gu, S.; Kung, T.F.C.; Yager, J.; Winship, I.R.; van Landeghem, F.K.H.; Colbourne, F. An update to the Monro–Kellie doctrine to reflect tissue compliance after severe ischemic and hemorrhagic stroke. Scientific Reports 2020, 10. [Google Scholar] [CrossRef]
- Cruz-Haces, M.; Tang, J.; Acosta, G.; Fernandez, J.; Shi, R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Translational Neurodegeneration 2017, 6. [Google Scholar] [CrossRef]
- Graham, N.S.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. Journal of Neurology, Neurosurgery and Psychiatry 2019, 90, 1221–1233. [Google Scholar] [CrossRef]
- Graham, N.S.N.; Jolly, A.; Zimmerman, K.; Bourke, N.J.; Scott, G.; Cole, J.H.; Schott, J.M.; Sharp, D.J. Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury. Brain 2020, 143, 3685–3698. [Google Scholar] [CrossRef]
- Dodd, W.S.; Panther, E.J.; Pierre, K.; Hernandez, J.S.; Patel, D.; Lucke-Wold, B. Traumatic Brain Injury and Secondary Neurodegenerative Disease. Trauma Care 2022, 2, 510–522. [Google Scholar] [CrossRef]
- Li, X.Y.; Feng, D.F. Diffuse axonal injury: Novel insights into detection and treatment. Journal of Clinical Neuroscience 2009, 16, 614–619. [Google Scholar] [CrossRef]
- Vo, D.T.; Phan, C.C.; Le, H.G.N.; Vo, T.P.; Mai, U.T.T.; Le, H.K.; Ha, T.B.T. Diffuse axonal injury: a case report and MRI findings. Radiology Case Reports 2022, 17, 91–94. [Google Scholar] [CrossRef]
- Markl, M.; Leupold, J. Gradient echo imaging. Journal of Magnetic Resonance Imaging 2012, 35, 1274–1289. [Google Scholar] [CrossRef]
- Haller, S.; Haacke, E.M.; Thurnher, M.M.; Barkhof, F. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology 2021, 299, 3–26. [Google Scholar] [CrossRef]
- Skarupa, D.J.; Khan, M.; Hsu, A.; Madbak, F.G.; Ebler, D.J.; Yorkgitis, B.; Rahmathulla, G.; Alcindor, D.; Joseph, B. Trends in civilian penetrating brain injury: A review of 26, 871 patients. The American Journal of Surgery 2019, 218, 255–260. [Google Scholar] [CrossRef]
- Günther, M.; Dahlberg, M.; Rostami, A.; Azadali, A.; Arborelius, U.P.; Linder, F.; Rostami, E. Incidence, Demographics, and Outcomes of Penetrating Trauma in Sweden During the Past Decade. Frontiers in Neurology 2021, 12. [Google Scholar] [CrossRef]
- Vakil, M.T.; Singh, A.K. A review of penetrating brain trauma: epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emergency Radiology 2017, 24, 301–309. [Google Scholar] [CrossRef]
- Raymont, V.; Salazar, A.M.; Lipsky, R.; Goldman, D.; Tasick, G.; Grafman, J. Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology 2010, 75, 224–229. [Google Scholar] [CrossRef]
- Accessed: 11-10-2023.
- Enam, S.; Kazim, S.; Shamim, M.; Tahir, M.; Waheed, S. Management of penetrating brain injury. Journal of Emergencies, Trauma, and Shock 2011, 4, 395. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P. Current topic: Incidence, aetiology, and outcome of non-traumatic coma: a population based study. Archives of Disease in Childhood 2001, 84, 193–199. [Google Scholar] [CrossRef]
- Sarrazin, J.L.; Bonneville, F.; Martin-Blondel, G. Brain infections. Diagnostic and Interventional Imaging 2012, 93, 473–490. [Google Scholar] [CrossRef]
- Abdullahi, A.M.; Sarmast, S.T.; Singh, R. Molecular Biology and Epidemiology of Neurotropic Viruses. Cureus 2020. [Google Scholar] [CrossRef]
- Godkhindi, V.M.; Monappa, V.; Kairanna, N.V.; Sharma, S.; Vasudevan, G.; Hebbar, K.D. Brain infections that mimic malignancy. Diagnostic Histopathology 2022, 28, 456–466. [Google Scholar] [CrossRef]
- Sekino, N.; Selim, M.; Shehadah, A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. Journal of Neuroinflammation 2022, 19. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Steinmann, P.; Zhou, X.N.; Utzinger, J. Helminth Infections of the Central Nervous System Occurring in Southeast Asia and the Far East. In Important Helminth Infections in Southeast Asia: Diversity and Potential for Control and Elimination, Part A; Elsevier, 2010; pp. 351–408. [CrossRef]
- Owusu-Agyei, A.K.; Nabarro, L. Helminth infections and differentials of eosinophilia. Medicine 2021, 49, 766–769. [Google Scholar] [CrossRef]
- Accessed: 19-10-2023.
- Shadmani, G.; Simkins, T.J.; Assadsangabi, R.; Apperson, M.; Hacein-Bey, L.; Raslan, O.; Ivanovic, V. Autoimmune diseases of the brain, imaging and clinical review. The Neuroradiology Journal 2021, 35, 152–169. [Google Scholar] [CrossRef]
- McGlasson, S.; Wiseman, S.; Wardlaw, J.; Dhaun, N.; Hunt, D.P.J. Neurological Disease in Lupus: Toward a Personalized Medicine Approach. Frontiers in Immunology 2018, 9. [Google Scholar] [CrossRef]
- Kayser, M.S.; Dalmau, J. The Emerging Link Between Autoimmune Disorders and Neuropsychiatric Disease. Journal of Neuropsychiatry 2011, 23, 90–97. [Google Scholar] [CrossRef]
- Wiethoff, S.; Houlden, H. Neurodegeneration with brain iron accumulation. In Handbook of Clinical Neurology; Elsevier, 2018; pp. 157–166. [CrossRef]
- Buyukcoban, S.; Arici, M.A.; Koca, U.; Kalkan, S. A Case Report of Toxic Brain Syndrome Caused by Methyl Bromide. Turkish Journal of Anesthesia and Reanimation 2015, 43, 134–137. [Google Scholar] [CrossRef]
- Luvisetto, S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins 2021, 13, 751. [Google Scholar] [CrossRef]
- Weis, S.; Büttner, A. Neurotoxicology and drug-related disorders. In Handbook of Clinical Neurology; Elsevier, 2018; pp. 181–192. [CrossRef]
- Kim, Y.; Kim, J.W. Toxic Encephalopathy. Safety and Health at Work 2012, 3, 243–256. [Google Scholar] [CrossRef]
- Moratalla, R.; Khairnar, A.; Simola, N.; Granado, N.; García-Montes, J.R.; Porceddu, P.F.; Tizabi, Y.; Costa, G.; Morelli, M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Progress in Neurobiology 2017, 155, 149–170. [Google Scholar] [CrossRef]
- Cunha-Oliveira, T.; Rego, A.C.; Oliveira, C.R. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Research Reviews 2008, 58, 192–208. [Google Scholar] [CrossRef]
- Guennec, L.L.; Marois, C.; Demeret, S.; Wijdicks, E.; Weiss, N. Toxic-metabolic encephalopathy in adults: Critical discussion and pragmatical diagnostic approach. Revue Neurologique 2022, 178, 93–104. [Google Scholar] [CrossRef]
- Weis, S.; Büttner, A. Nutritional and systemic metabolic disorders. In Handbook of Clinical Neurology; Elsevier, 2018; pp. 167–173. [CrossRef]
- Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-induced brain injury: A review. Frontiers in Oncology 2012, 2. [Google Scholar] [CrossRef]
- Belka, C.; Budach, W.; Kortmann, R.D.; Bamberg, M. Radiation induced CNS toxicity – molecular and cellular mechanisms. British Journal of Cancer 2001, 85, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Nonoguchi, N.; Kawabata, S.; Miyatake, S.I.; Kuroiwa, T. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Medical Molecular Morphology 2015, 48, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Brown, S.L.; Jenrow, K.A.; Ryu, S. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. Journal of Neuro-Oncology 2008, 87, 279–286. [Google Scholar] [CrossRef]
- Ali, F.S.; Arevalo, O.; Zorofchian, S.; Patrizz, A.; Riascos, R.; Tandon, N.; Blanco, A.; Ballester, L.Y.; Esquenazi, Y. Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Current Oncology Reports 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, Y.R.; Li, X.A.; el Naqa, I.; Hahn, C.A.; Marks, L.B.; Merchant, T.E.; Dicker, A.P. Radiation Dose-Volume Effects in the Brain. International Journal of Radiation Oncology, Biology and Physics 2010, 76, S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.J.; Naik, A.; Shaffer, A.; Goel, M.; Krist, D.T.; Liang, E.; Furey, C.G.; Miller, W.K.; Lawton, M.T.; Barnett, D.H.; Weis, B.; Rizk, A.; Smith, R.S.; Hassaneen, W. Differentiating radiation necrosis from tumor recurrence: a systematic review and diagnostic meta-analysis comparing imaging modalities. Journal of Neuro-Oncology 2023, 162, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kenney, K.; Amyot, F.; Haber, M.; Pronger, A.; Bogoslovsky, T.; Moore, C.; Diaz-Arrastia, R. Cerebral Vascular Injury in Traumatic Brain Injury. Experimental Neurology 2016, 275, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.J.; Werring, D.J. Stroke: causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Grysiewicz, R.A.; Thomas, K.; Pandey, D.K. Epidemiology of Ischemic and Hemorrhagic Stroke: Incidence, Prevalence, Mortality, and Risk Factors. Neurologic Clinics 2008, 26, 871–895. [Google Scholar] [CrossRef]
- Silasi, G.; Murphy, T.H. Stroke and the Connectome: How Connectivity Guides Therapeutic Intervention. Neuron 2014, 83, 1354–1368. [Google Scholar] [CrossRef]
- Baldassarre, A.; Ramsey, L.E.; Siegel, J.S.; Shulman, G.L.; Corbetta, M. Brain connectivity and neurological disorders after stroke. Current Opinion in Neurology 2016, 29, 706–713. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, H.; Yu, C. Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke. Neural Plasticity 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Zhu, W.; Chen, X. Changes in brain functional network connectivity after stroke. Neural Regeneration Research 2014, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Desowska, A.; Turner, D.L. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences 2019, 30, 605–623. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.R.; Kaiser, M.; Farr, T.D. Functional Connectivity Change in Response to Stroke Is Comparable Across Species: From Mouse to Man. Stroke 2021, 52, 2961–2963. [Google Scholar] [CrossRef] [PubMed]
- McFaline-Figueroa, J.R.; Lee, E.Q. Brain Tumors. The American Journal of Medicine 2018, 131, 874–882. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, L.M. Brain Tumors. New England Journal of Medicine 2001, 344, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Herholz, K.; Langen, K.J.; Schiepers, C.; Mountz, J.M. Brain Tumors. Seminars in Nuclear Medicine 2012, 42, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. The Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.; Simjee, S. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific Journal of Cancer Prevention 2017, 18. [Google Scholar] [CrossRef]
- de Oliveira Costa, L.L.; Brandão, E.C.; Segundo, L.M.D.B.M. Atualização em epilepsia. Revista de Medicina 2020, 99, 170–181. [Google Scholar] [CrossRef]
- Scharfman, H.E. The neurobiology of epilepsy. Current Neurology and Neuroscience Reports 2007, 7, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2019, 54, 185–191. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Carmant, L. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harbor Perspectives in Medicine 2015, 5, a022426–a022426. [Google Scholar] [CrossRef]
- Banerjee, P.N.; Filippi, D.; Hauser, W.A. The descriptive epidemiology of epilepsy—A review. Epilepsy Research 2009, 85, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Staley, K. Epileptic Neurons Go Wireless. Science 2004, 305, 482–483. [Google Scholar] [CrossRef]
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. The Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Stefan, H.; da Silva, F.H.L. Epileptic Neuronal Networks: Methods of Identification and Clinical Relevance. Frontiers in Neurology 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Brodovskaya, A.; Hudson, J.L.; Kapur, J. Connectivity and Neuronal Synchrony during Seizures. The Journal of Neuroscience 2021, 41, 7623–7635. [Google Scholar] [CrossRef]
- Schependom, J.V.; D’haeseleer, M. Advances in Neurodegenerative Diseases. Journal of Clinical Medicine 2023, 12, 1709. [Google Scholar] [CrossRef]
- Davenport, F.; Gallacher, J.; Kourtzi, Z.; Koychev, I.; Matthews, P.M.; Oxtoby, N.P.; Parkes, L.M.; Priesemann, V.; Rowe, J.B.; Smye, S.W.; Zetterberg, H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. Journal of The Royal Society Interface 2023, 20. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology 2017, 9, a028035. [Google Scholar] [CrossRef] [PubMed]
- Amor, S.; Puentes, F.; Baker, D.; Valk, P.V.D. Inflammation in neurodegenerative diseases. Immunology 2010, 129, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Checkoway, H.; Lundin, J.I.; Kelada, S.N.
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: metaanálisis. Neurología 2017, 32, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiology of Aging 2011, 32, 1341–1371. [Google Scholar] [CrossRef] [PubMed]
- Depp, C.; Sun, T.; Sasmita, A.O.; Spieth, L.; Berghoff, S.A.; Nazarenko, T.; Overhoff, K.; Steixner-Kumar, A.A.; Subramanian, S.; Arinrad, S.; Ruhwedel, T.; Möbius, W.; Göbbels, S.; Saher, G.; Werner, H.B.; Damkou, A.; Zampar, S.; Wirths, O.; Thalmann, M.; Simons, M.; Saito, T.; Saido, T.; Krueger-Burg, D.; Kawaguchi, R.; Willem, M.; Haass, C.; Geschwind, D.; Ehrenreich, H.; Stassart, R.; Nave, K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 2023, 618, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Cain, A.; Taga, M.; McCabe, C.; Green, G.S.; Hekselman, I.; White, C.C.; Lee, D.I.; Gaur, P.; Rozenblatt-Rosen, O.; Zhang, F.; Yeger-Lotem, E.; Bennett, D.A.; Yang, H.S.; Regev, A.; Menon, V.; Habib, N.; Jager, P.L.D. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nature Neuroscience 2023, 26, 1267–1280. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.; Jones, B.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-World Networks and Functional Connectivity in Alzheimer’s Disease. Cerebral Cortex 2006, 17, 92–99. [Google Scholar] [CrossRef]
- Yu, M.; Sporns, O.; Saykin, A.J. The human connectome in Alzheimer disease — relationship to biomarkers and genetics. Nature Reviews Neurology 2021, 17, 545–563. [Google Scholar] [CrossRef]
- Mårtensson, G.; Pereira, J.B.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.; Lovestone, S.; Simmons, A.; Volpe, G.; Westman, E. Stability of graph theoretical measures in structural brain networks in Alzheimer’s disease. Scientific Reports 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.Y.; Mirra, S.S.; Sait, H.B.R.; Sacktor, T.C.; Sigurdsson, E.M. Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathologica 2011, 122, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Savioz, A.; Leuba, G.; Vallet, P.G. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Research Reviews 2014, 18, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kivisäkk, P.; Carlyle, B.C.; Sweeney, T.; Quinn, J.P.; Ramirez, C.E.; Trombetta, B.A.; Mendes, M.; Brock, M.; Rubel, C.; Czerkowicz, J.; Graham, D.; Arnold, S.E. Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer’s disease. Alzheimer’s Research and Therapy 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nature Medicine 2023, 29, 2187–2199. [Google Scholar] [CrossRef] [PubMed]
- Talarico, G.; Trebbastoni, A.; Bruno, G.; de Lena, C. Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease. Current Neuropharmacology 2019, 17, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Irastorza, I.T. Glial localization of the cannabinoid CB1 and CB2 receptors in a mouse model of Alzheimer’s disease. PhD thesis, Neuroscience Department, Faculty of Medicine and Nursery, Universidad del País Vasco / Euskal Herriko Unibersitatea (UPV/EHU), 2021.
- Kane, J.P.M.; Surendranathan, A.; Bentley, A.; Barker, S.A.H.; Taylor, J.P.; Thomas, A.J.; Allan, L.M.; McNally, R.J.; James, P.W.; McKeith, I.G.; Burn, D.J.; O’Brien, J.T. Clinical prevalence of Lewy body dementia. Alzheimer’s Research and Therapy 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Fahn, S. Classification of movement disorders. Movement Disorders 2011, 26, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Abdo, W.F.; van de Warrenburg, B.P.C.; Burn, D.J.; Quinn, N.P.; Bloem, B.R. The clinical approach to movement disorders. Nature Reviews Neurology 2010, 6, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Heim, B.; Krismer, F.; Marzi, R.D.; Seppi, K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. Journal of Neural Transmission 2017, 124, 915–964. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nature Reviews Disease Primers 2017, 3. [Google Scholar] [CrossRef]
- Pietracupa, S.; Martin-Bastida, A.; Piccini, P. Iron metabolism and its detection through MRI in parkinsonian disorders: a systematic review. Neurological Sciences 2017, 38, 2095–2101. [Google Scholar] [CrossRef]
- Dean, D.C.; Sojkova, J.; Hurley, S.; Kecskemeti, S.; Okonkwo, O.; Bendlin, B.B.; Theisen, F.; Johnson, S.C.; Alexander, A.L.; Gallagher, C.L. Alterations of Myelin Content in Parkinson’s Disease: A Cross-Sectional Neuroimaging Study. PLOS ONE 2016, 11, e0163774. [Google Scholar] [CrossRef] [PubMed]
- Boshkovski, T.; Cohen-Adad, J.; Misic, B.; Arnulf, I.; Corvol, J.C.; Vidailhet, M.; Lehéricy, S.; Stikov, N.; Mancini, M. The Myelin-Weighted Connectome in Parkinson’s Disease. Movement Disorders 2021, 37, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, C.; Sun, J.; Liang, L.; Lv, H.; Gao, L.; Fang, J.; Ma, T.; Wu, T. Alteration of brain structural connectivity in progression of Parkinson’s disease: A connectome-wide network analysis. NeuroImage: Clinical 2021, 31, 102715. [Google Scholar] [CrossRef]
- Tinaz, S. Functional Connectome in Parkinson’s Disease and Parkinsonism. Current Neurology and Neuroscience Reports 2021, 21. [Google Scholar] [CrossRef]
- Loh, A.; Boutet, A.; Germann, J.; Al-Fatly, B.; Elias, G.J.B.; Neudorfer, C.; Krotz, J.; Wong, E.H.Y.; Parmar, R.; Gramer, R.; Paff, M.; Horn, A.; Chen, J.J.; Azevedo, P.; Fasano, A.; Munhoz, R.P.; Hodaie, M.; Kalia, S.K.; Kucharczyk, W.; Lozano, A.M. A Functional Connectome of Parkinson’s Disease Patients Prior to Deep Brain Stimulation: A Tool for Disease-Specific Connectivity Analyses. Frontiers in Neuroscience 2022, 16. [Google Scholar] [CrossRef]
- Ashizawa, T.; Xia, G. Ataxia. CONTINUUM: Lifelong Learning in Neurology 2016, 22, 1208–1226. [Google Scholar] [CrossRef] [PubMed]
- Walker, F.O. Huntington’s disease. The Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef]
- Roos, R.A. Huntington’s disease: a clinical review. Orphanet Journal of Rare Diseases 2010, 5. [Google Scholar] [CrossRef]
- Odish, O.F.; Caeyenberghs, K.; Hosseini, H.; van den Bogaard, S.J.; Roos, R.A.; Leemans, A. Dynamics of the connectome in Huntington’s disease: A longitudinal diffusion MRI study. NeuroImage: Clinical 2015, 9, 32–43. [Google Scholar] [CrossRef]
- Poudel, G.R.; Harding, I.H.; Egan, G.F.; Georgiou-Karistianis, N. Network spread determines severity of degeneration and disconnection in Huntington’s disease. Human Brain Mapping 2019, 40, 4192–4201. [Google Scholar] [CrossRef]
- Espinoza, F.A.; Turner, J.A.; Vergara, V.M.; Miller, R.L.; Mennigen, E.; Liu, J.; Misiura, M.B.; Ciarochi, J.; Johnson, H.J.; Long, J.D.; Bockholt, H.J.; Magnotta, V.A.; Paulsen, J.S.; Calhoun, V.D. Whole-Brain Connectivity in a Large Study of Huntington’s Disease Gene Mutation Carriers and Healthy Controls. Brain Connectivity 2018, 8, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nature Reviews Genetics 2018, 19, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.T. Prion diseases. The Lancet Neurology 2005, 4, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.S.G. PRION DISEASES. Journal of Neurology, Neurosurgery and Psychiatry 2004, 75, 36i–342. [Google Scholar] [CrossRef] [PubMed]
- Ironside, J.W.; Ritchie, D.L.; Head, M.W. , Prion diseases. In Neuropathology; Elsevier, 2018; p. 393–403. [CrossRef]
- Fornari, S.; Schäfer, A.; Jucker, M.; Goriely, A.; Kuhl, E. Prion-like spreading of Alzheimer’s disease within the brain’s connectome. Journal of The Royal Society Interface 2019, 16, 20190356. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A. Multiple sclerosis is primarily a neurodegenerative disease. Journal of Neural Transmission 2013, 120, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Gironi, M.; Arnò, C.; Comi, G.; Penton-Rol, G.; Furlan, R. , Multiple Sclerosis and Neurodegenerative Diseases. In Immune Rebalancing; Elsevier, 2016; p. 63–84. [CrossRef]
- Goldenberg, M.M. Multiple Sclerosis Review. Pharmacy and Therapeutics 2012. [Google Scholar]
- Dobson, R.; Giovannoni, G. Multiple sclerosis – a review. European Journal of Neurology 2018, 26, 27–40. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Meijer, K.A.; Geurts, J.J.G. Network Collapse and Cognitive Impairment in Multiple Sclerosis. Frontiers in Neurology 2015, 6. [Google Scholar] [CrossRef]
- Høgestøl, E.A.; Ghezzo, S.; Nygaard, G.O.; Espeseth, T.; Sowa, P.; Beyer, M.K.; Harbo, H.F.; Westlye, L.T.; Hulst, H.E.; Alnæs, D. Functional connectivity in multiple sclerosis modelled as connectome stability: A 5-year follow-up study. Multiple Sclerosis Journal 2021, 28, 532–540. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Broeders, T.A.; Geurts, J.J. The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics. NeuroImage: Clinical 2022, 35, 103108. [Google Scholar] [CrossRef]
- Barile, B.; Ashtari, P.; Stamile, C.; Marzullo, A.; Maes, F.; Durand-Dubief, F.; Van Huffel, S.; Sappey-Marinier, D. Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome. Frontiers in Robotics and AI 2022, 9. [Google Scholar] [CrossRef]
- Manglani, H.R.; Fountain-Zaragoza, S.; Shankar, A.; Nicholas, J.A.; Prakash, R.S. Employing connectome-based models to predict working memory in multiple sclerosis. Brain Connectivity 2021, 12. [Google Scholar] [CrossRef]
- Tahedl, M.; Levine, S.M.; Greenlee, M.W.; Weissert, R.; Schwarzbach, J.V. Functional Connectivity in Multiple Sclerosis: Recent Findings and Future Directions. Frontiers in Neurology 2018, 9. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A. Treatment of Multiple Sclerosis: A Review. The American Journal of Medicine 2020, 133, 1380–1390. [Google Scholar] [CrossRef]
- Feldman, E.L.; Goutman, S.A.; Petri, S.; Mazzini, L.; Savelieff, M.G.; Shaw, P.J.; Sobue, G. Amyotrophic lateral sclerosis. The Lancet 2022, 400, 1363–1380. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nature Reviews Disease Primers 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. European Journal of Neurology 2020, 27, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, P.; Rucco, R.; Jacini, F.; Trojsi, F.; Lardone, A.; Baselice, F.; Femiano, C.; Santangelo, G.; Granata, C.; Vettoliere, A.; Monsurrò, M.R.; Tedeschi, G.; Sorrentino, G. Brain functional networks become more connected as amyotrophic lateral sclerosis progresses: a source level magnetoencephalographic study. NeuroImage: Clinical 2018, 20, 564–571. [Google Scholar] [CrossRef]
- Schmidt, R.; Verstraete, E.; de Reus, M.A.; Veldink, J.H.; van den Berg, L.H.; van den Heuvel, M.P. Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Human Brain Mapping 2014, 35, 4386–4395. [Google Scholar] [CrossRef]
- Verstraete, E.; van den Heuvel, M.P.; Veldink, J.H.; Blanken, N.; Mandl, R.C.; Hulshoff Pol, H.E.; van den Berg, L.H. Motor Network Degeneration in Amyotrophic Lateral Sclerosis: A Structural and Functional Connectivity Study. PLoS ONE 2010, 5, e13664. [Google Scholar] [CrossRef]
- Agosta, F.; Canu, E.; Valsasina, P.; Riva, N.; Prelle, A.; Comi, G.; Filippi, M. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging 2013, 34, 419–427. [Google Scholar] [CrossRef]
- Kessler, R.C.; Amminger, G.P.; Aguilar-Gaxiola, S.; Alonso, J.; Lee, S.; ??st??n, T.B. Age of onset of mental disorders: a review of recent literature. Current Opinion in Psychiatry 2007, 20, 359–364. [Google Scholar] [CrossRef]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; Salazar de Pablo, G.; Il Shin, J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; Kim, J.Y.; Carvalho, A.F.; Seeman, M.V.; Correll, C.U.; Fusar-Poli, P. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry 2021, 27, 281–295. [Google Scholar] [CrossRef]
- Crossley, N.A.; Mechelli, A.; Vértes, P.E.; Winton-Brown, T.T.; Patel, A.X.; Ginestet, C.E.; McGuire, P.; Bullmore, E.T. Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences 2013, 110, 11583–11588. [Google Scholar] [CrossRef]
- Crossley, N.A. , Connectome analysis and psychiatric disorders. In Connectome Analysis; Elsevier, 2023; p. 423–432. [CrossRef]
- Van Essen, D.C.; Barch, D.M. The human connectome in health and psychopathology. World Psychiatry 2015, 14, 154–157. [Google Scholar] [CrossRef]
- van den Heuvel, M.P.; Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nature Reviews Neuroscience 2019, 20, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Seitidis, G.; Mavridis, D.; Correll, C.U.; Dragioti, E.; Guimond, S.; Tuominen, L.; Dargél, A.; Carvalho, A.F.; Fornaro, M.; Maes, M.; Monaco, F.; Song, M.; Il Shin, J.; Cortese, S. Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Molecular Psychiatry 2023. [Google Scholar] [CrossRef] [PubMed]
- Schultz, S.H.; North, S.W.; Shields, C.G. Schizophrenia: A Review. American Family Physician 2007, 75, 1821–1829. [Google Scholar] [PubMed]
- Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: Overview and Treatment Options. Pharmacy and Therapeutics 2014. [Google Scholar]
- Yuan, L.; Ma, X.; Li, D.; Ouyang, L.; Fan, L.; Li, C.; He, Y.; Chen, X. Alteration of a brain network with stable and strong functional connections in subjects with schizophrenia. Schizophrenia 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Knock, S.A.; Stam, C.J.; Micheloyannis, S.; Harris, A.W.; Williams, L.M.; Breakspear, M. Small-world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping 2009, 30, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Micheloyannis, S.; Pachou, E.; Stam, C.J.; Breakspear, M.; Bitsios, P.; Vourkas, M.; Erimaki, S.; Zervakis, M. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia Research 2006, 87, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mastrandrea, R.; Piras, F.; Gabrielli, A.; Banaj, N.; Caldarelli, G.; Spalletta, G.; Gili, T. The unbalanced reorganization of weaker functional connections induces the altered brain network topology in schizophrenia. Scientific Reports 2021, 11. [Google Scholar] [CrossRef]
- Belmaker, R.; Agam, G. Major Depressive Disorder. New England Journal of Medicine 2008, 358, 55–68. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nature Reviews Disease Primers 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, H.; Alarcón, G.; Demeter, D.V.; Earl, E.; Fair, D.A.; Nagel, B.J. Reduced fronto-amygdalar connectivity in adolescence is associated with increased depression symptoms over time. Psychiatry Research: Neuroimaging 2017, 266, 35–41. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Y.; Zeng, L.L.; Liu, B.; Ju, Y.; Wang, M.; Dong, Q.; Lu, X.; Sun, J.; Zhang, L.; Guo, H.; Zhao, F.; Li, W.; Zhang, L.; Li, Z.; Liao, M.; Zhang, Y.; Hu, D.; Li, L. The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis. Translational Psychiatry 2021, 11. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Chen, Z.B.; Li, L.; Li, X.Y.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chang, Z.K.; Chen, G.M.; Chen, N.X.; Chen, W.; Cheng, C.; Cheng, Y.Q.; Cui, X.L.; Duan, J.; Fang, Y.; Gong, Q.Y.; Guo, W.B.; Hou, Z.H.; Hu, L.; Kuang, L.; Li, F.; Li, H.X.; Li, K.M.; Li, T.; Liu, Y.S.; Liu, Z.N.; Long, Y.C.; Lu, B.; Luo, Q.H.; Meng, H.Q.; Peng, D.; Qiu, H.T.; Qiu, J.; Shen, Y.D.; Shi, Y.S.; Si, T.M.; Tang, Y.Q.; Wang, C.Y.; Wang, F.; Wang, K.; Wang, L.; Wang, X.; Wang, Y.; Wang, Y.W.; Wu, X.P.; Wu, X.R.; Xie, C.M.; Xie, G.R.; Xie, H.Y.; Xie, P.; Xu, X.F.; Yang, J.; Yao, J.S.; Yao, S.Q.; Yin, Y.Y.; Yuan, Y.G.; Zang, Y.F.; Zhang, A.X.; Zhang, H.; Zhang, K.R.; Zhang, L.; Zhang, Z.J.; Zhao, J.P.; Zhou, R.; Zhou, Y.T.; Zhu, J.J.; Zhu, Z.C.; Zou, C.J.; Zuo, X.N.; Yan, C.G. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Molecular Psychiatry 2021, 26, 7363–7371. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Heffernan, J.; Avery, E.T.; Mickey, B.J.; Zubieta, J.K.; Peciña, M. Salience Network Functional Connectivity Predicts Placebo Effects in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2016, 1, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Scalabrini, A.; Vai, B.; Poletti, S.; Damiani, S.; Mucci, C.; Colombo, C.; Zanardi, R.; Benedetti, F.; Northoff, G. All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 2020, 45, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Saris, I.M.J.; Penninx, B.W.J.H.; Dinga, R.; van Tol, M.J.; Veltman, D.J.; van der Wee, N.J.A.; Aghajani, M. Default Mode Network Connectivity and Social Dysfunction in Major Depressive Disorder. Scientific Reports 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Hadas, I.; Zomorrodi, R.; Voineskos, D.; Farzan, F.; Fitzgerald, P.B.; Blumberger, D.M.; Daskalakis, Z.J. Modulation of functional network properties in major depressive disorder following electroconvulsive therapy (ECT): a resting-state EEG analysis. Scientific Reports 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Korgaonkar, M.S.; Goldstein-Piekarski, A.N.; Fornito, A.; Williams, L.M. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Molecular Psychiatry 2019, 25, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Berwian, I.M.; Wenzel, J.G.; Kuehn, L.; Schnuerer, I.; Kasper, L.; Veer, I.M.; Seifritz, E.; Stephan, K.E.; Walter, H.; Huys, Q.J.M. The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse. Scientific Reports 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Repple, J.; Mauritz, M.; Meinert, S.; de Lange, S.C.; Grotegerd, D.; Opel, N.; Redlich, R.; Hahn, T.; Förster, K.; Leehr, E.J.; Winter, N.; Goltermann, J.; Enneking, V.; Fingas, S.M.; Lemke, H.; Waltemate, L.; Nenadic, I.; Krug, A.; Brosch, K.; Schmitt, S.; Stein, F.; Meller, T.; Jansen, A.; Steinsträter, O.; Baune, B.T.; Kircher, T.; Dannlowski, U.; van den Heuvel, M.P. Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder. Molecular Psychiatry 2019, 25, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Kendler, K.S. Major Depressive Disorder. Neuron 2000, 28, 335–341. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Firth, J.; Vieta, E. Bipolar Disorder. New England Journal of Medicine 2020, 383, 58–66. [Google Scholar] [CrossRef]
- Vieta, E.; Berk, M.; Schulze, T.G.; Carvalho, A.F.; Suppes, T.; Calabrese, J.R.; Gao, K.; Miskowiak, K.W.; Grande, I. Bipolar disorders. Nature Reviews Disease Primers 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. The Lancet 2016, 387, 1561–1572. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, R.; Tian, S.; Wang, H.; Chen, Z.; Wang, X.; Shao, J.; Qin, J.; Shi, J.; Liu, H.; Chen, Y.; Yao, Z.; Lu, Q. Structural–functional decoupling predicts suicide attempts in bipolar disorder patients with a current major depressive episode. Neuropsychopharmacology 2020, 45, 1735–1742. [Google Scholar] [CrossRef]
- Sankar, A.; Scheinost, D.; Goldman, D.A.; Drachman, R.; Colic, L.; Villa, L.M.; Kim, J.A.; Gonzalez, Y.; Marcelo, I.; Shinomiya, M.; Pittman, B.; Lacadie, C.M.; Oquendo, M.A.; Constable, R.T.; Blumberg, H.P. Graph theory analysis of whole brain functional connectivity to assess disturbances associated with suicide attempts in bipolar disorder. Translational Psychiatry 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Fombonne, E. Epidemiology of Autistic Disorder and Other Pervasive Developmental Disorders. The Journal of Clinical Psychiatry 2005. [Google Scholar]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; Taylor, J.L.; Veenstra-VanderWeele, J. Autism spectrum disorder. Nature Reviews Disease Primers 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M. CONCEPTS OF AUTISM: A REVIEW OF RESEARCH*. Journal of Child Psychology and Psychiatry 1968, 9, 1–25. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Research 2022, 15, 778–790. [Google Scholar] [CrossRef]
- FOMBONNE, E. The epidemiology of autism: a review. Psychological Medicine 1999, 29, 769–786. [Google Scholar] [CrossRef]
- Miles, J.H. Autism spectrum disorders—A genetics review. Genetics in Medicine 2011, 13, 278–294. [Google Scholar] [CrossRef]
- Mohammad-Rezazadeh, I.; Frohlich, J.; Loo, S.K.; Jeste, S.S. Brain connectivity in autism spectrum disorder. Current Opinion in Neurology 2016, 29, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Berto, S.; Treacher, A.H.; Caglayan, E.; Luo, D.; Haney, J.R.; Gandal, M.J.; Geschwind, D.H.; Montillo, A.A.; Konopka, G. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nature Communications 2022. [Google Scholar] [CrossRef] [PubMed]
- Kana, R.K.; Uddin, L.Q.; Kenet, T.; Chigani, D.; Müller, R.A. Brain connectivity in autism. Frontiers in Human Neuroscience 2014. [Google Scholar] [CrossRef] [PubMed]
- Benkarim, O.; Paquola, C.; Park, B.y.; Hong, S.J.; Royer, J.; Vos de Wael, R.; Lariviere, S.; Valk, S.; Bzdok, D.; Mottron, L.; C. Bernhardt, B. Connectivity alterations in autism reflect functional idiosyncrasy. Communications Biology 2021, 4. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H. Alterations of functional connectivities associated with autism spectrum disorder symptom severity: a multi-site study using multivariate pattern analysis. Scientific Reports 2020, 10. [Google Scholar] [CrossRef]
- Redcay, E.; Moran, J.M.; Mavros, P.L.; Tager-Flusberg, H.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S. Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Frontiers in Human Neuroscience 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Roine, U.; Roine, T.; Salmi, J.; Nieminen-von Wendt, T.; Tani, P.; Leppämäki, S.; Rintahaka, P.; Caeyenberghs, K.; Leemans, A.; Sams, M. Abnormal wiring of the connectome in adults with high-functioning autism spectrum disorder. Molecular Autism 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.E.; X Cohen, M.; Geurts, H.M. Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neuroscience and Biobehavioral Reviews 2012, 36, 604–625. [Google Scholar] [CrossRef] [PubMed]
- Woodbury-Smith, M.R.; Volkmar, F.R. Asperger syndrome. European Child and Adolescent Psychiatry 2008, 18, 2–11. [Google Scholar] [CrossRef]
- Tantam, D. Asperger’S Syndrome. Journal of Child Psychology and Psychiatry 1988, 29, 245–255. [Google Scholar] [CrossRef]
- Tantam, D. Psychological Disorder in Adolescents and Adults with Asperger Syndrome. Autism 2000, 4, 47–62. [Google Scholar] [CrossRef]
- Javaheripour, N.; Wagner, G.; de la Cruz, F.; Walter, M.; Szycik, G.R.; Tietze, F.A. Altered brain network organization in adults with Asperger’s syndrome: decreased connectome transitivity and assortativity with increased global efficiency. Frontiers in Psychiatry 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Costa, D.L.C.; Lochner, C.; Miguel, E.C.; Reddy, Y.C.J.; Shavitt, R.G.; van den Heuvel, O.A.; Simpson, H.B. Obsessive–compulsive disorder. Nature Reviews Disease Primers 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Jenike, M.A. Obsessive–Compulsive Disorder. New England Journal of Medicine 2004, 350, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.W.; Corriveau-Lecavalier, N.; Franzmeier, N.; Pereira, J.B.; Brown, J.A.; Maass, A.; Botha, H.; Seeley, W.W.; Bassett, D.S.; Jones, D.T.; Ewers, M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nature Reviews Neuroscience 2023, 24, 620–639. [Google Scholar] [CrossRef]
- Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L.; Khaldi, F.E. Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering 2018, 27, 105–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
