Submitted:
05 December 2023
Posted:
06 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Functional neuroimaging correlates of hypnosis and hypnotizability
3. EEG oscillations and their associations with hypnotizability and hypnosis
4. EEG Connectivity in Hypnosis and Hypnotizability
4.1. EEG Functional Connectivity
4.2. EEG Functional Connectivity findings under hypnosis
4.3. EEG Functional Connectivity during rest condition
5. Conclusion and future directions
Acknowledgments
Conflicts of Interest
References
- Kihlstrom, J.F. The domain of hypnosis, revisited. The Oxford handbook of hypnosis: Theory, research and practice 2008, 21–52. [Google Scholar]
- Halsband, U.; Mueller, S.; Hinterberger, T.; Strickner, S. Plasticity changes in the brain in hypnosis and meditation. Contemporary Hypnosis 2009, 26, 194–215. [Google Scholar] [CrossRef]
- Kihlstrom, J.F.; Glisky, M.L.; McGovern, S.; Rapcsak, S.Z.; Mennemeier, M.S. Hypnosis in the right hemisphere. Cortex 2013, 49, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Oakley, D.A.; Halligan, P.W. Hypnotic suggestion: opportunities for cognitive neuroscience. Nature Reviews Neuroscience 2013, 14, 565–576. [Google Scholar] [CrossRef]
- Terhune, D.B.; Cleeremans, A.; Raz, A.; Lynn, S.J. Hypnosis and top-down regulation of consciousness. Neuroscience & Biobehavioral Reviews 2017, 81, 59–74. [Google Scholar] [CrossRef]
- Vanhaudenhuyse, A.; Laureys, S.; Faymonville, M.E. Neurophysiology of hypnosis. Neurophysiologie Clinique/Clinical Neurophysiology 2014, 44, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Reyher, J. A paradigm for determining the clinical relevance of hypnotically induced psychopathology. Psychological Bulletin 1962, 59, 344–352. [Google Scholar] [CrossRef]
- Cox, R.E.; Bryant, R.A. Advances in hypnosis research: methods, designs and contributions of intrinsic and instrumental hypnosis. The Oxford handbook of hypnosis: Theory, research, and practice 2008, 2008, 311–336. [Google Scholar]
- McGeown, W.J.; Mazzoni, G.; Venneri, A.; Kirsch, I. Hypnotic induction decreases anterior default mode activity. Consciousness and Cognition 2009, 18, 848–855. [Google Scholar] [CrossRef]
- Oakley, D.A.; Halligan, P.W. Hypnotic suggestion and cognitive neuroscience. Trends in cognitive sciences 2009, 13, 264–270. [Google Scholar] [CrossRef]
- Rainville, P.; Price, D.D. Hypnosis Phenomenology and the Neurobiology of Consciousness. International Journal of Clinical and Experimental Hypnosis 2003, 51, 105–129. [Google Scholar] [CrossRef]
- De Pascalis, V.; Scacchia, P.; Vecchio, A. Influences of hypnotic suggestibility, contextual factors, and EEG alpha on placebo analgesia. American Journal of Clinical Hypnosis 2021, 63, 302–328. [Google Scholar] [CrossRef]
- Cardeña, E.; Terhune, D.B. Hypnotizability, personality traits, and the propensity to experience alterations of consciousness. Psychology of Consciousness: Theory, Research, and Practice 2014, 1, 292–307. [Google Scholar] [CrossRef]
- Piccione, C.; Hilgard, E.R.; Zimbardo, P.G. On the degree of stability of measured hypnotizability over a 25-year period. Journal of Personality and Social Psychology 1989, 56, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gorassini, D.R.; Spanos, N.P. A social-cognitive skills approach to the successful modification of hypnotic susceptibility. Journal of Personality and Social Psychology 1986, 50, 1004–1012. [Google Scholar] [CrossRef]
- Gorassini, D.R.; Spanos, N.P. The Carleton Skill Training Program for modifying hypnotic suggestibility: Original version and variations. In Clinical hypnosis and self-regulation: Cognitive-behavioral perspectives; American Psychological Association: Washington, DC, US, 1999; pp. 141–177. [Google Scholar] [CrossRef]
- Rossi, E.L. Hypnosis and Ultradian Cycles: A New State(s) Theory of Hypnosis? American Journal of Clinical Hypnosis 1982, 25, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Green, J.P.; Smith, R.J.; Kromer, M. Diurnal Variations in Hypnotic Responsiveness: Is There an Optimal Time to Be Hypnotized? International Journal of Clinical and Experimental Hypnosis 2015, 63, 171–181. [Google Scholar] [CrossRef]
- Fassler, O.; Lynn, S.J.; Knox, J. Is hypnotic suggestibility a stable trait? Consciousness and Cognition 2008, 17, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Lynn, S.J.; Maxwell, R.; Green, J.P. The hypnotic induction in the broad scheme of hypnosis: A sociocognitive perspective. Hypnotic Induction 2017, 109–130. [Google Scholar] [CrossRef]
- Lynn, S.J. Hypnotic reponsiveness can be modified after hypnotic training. In Proceedings of Oral presentation at XXI world congress of medical and clinical hypnosis 2018.
- Landry, M.; Lifshitz, M.; Raz, A. Brain correlates of hypnosis: A systematic review and meta-analytic exploration. Neuroscience & Biobehavioral Reviews 2017, 81, 75–98. [Google Scholar] [CrossRef]
- Dienes, Z.; Beran, M.; Brandl, J.L.; Perner, J.; Proust, J. Is hypnotic responding the strategic relinquishment of metacognition. Foundations of metacognition 2012, 267–277. [Google Scholar]
- Jaffer, U.; Jamieson, G.A. Hypnosis and the neuroscience of cognitive and affective control. Australian Journal of Clinical & Experimental Hypnosis 2012, 40. [Google Scholar]
- Bowers, K.S. Imagination and Dissociation in Hypnotic Responding. International Journal of Clinical and Experimental Hypnosis 1992, 40, 253–275. [Google Scholar] [CrossRef]
- Woody, E.Z.; Sadler, P. Dissociation theories of hypnosis. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice, A, N.M.a.B., Ed. Oxford University Press Inc.: New York, 2008; pp. 81-110.
- Dienes, Z.; Perner, J. Executive control without conscious awareness: The cold control theory of hypnosis. In Hypnosis and conscious states: The cognitive neuroscience perspective; Jamieson, G.A., Ed.; Oxford University Press: NY, 2007; pp. 293–314. [Google Scholar]
- Chambon, V.; Wenke, D.; Fleming, S.M.; Prinz, W.; Haggard, P. An Online Neural Substrate for Sense of Agency. Cerebral Cortex 2013, 23, 1031–1037. [Google Scholar] [CrossRef]
- Haggard, P.; Chambon, V. Sense of agency. Current biology 2012, 22, R390–R392. [Google Scholar] [CrossRef]
- Lush, P.; Naish, P.; Dienes, Z. Metacognition of intentions in mindfulness and hypnosis. Neuroscience of Consciousness 2016, 2016. [Google Scholar] [CrossRef]
- Terhune, D.B. Discrete response patterns in the upper range of hypnotic suggestibility: A latent profile analysis. Consciousness and Cognition 2015, 33, 334–341. [Google Scholar] [CrossRef]
- Halsband, U.; Gerhard Wolf, T. Functional Changes in Brain Activity After Hypnosis: Neurobiological Mechanisms and Application to Patients with a Specific Phobia—Limitations and Future Directions. International Journal of Clinical and Experimental Hypnosis 2019, 67, 449–474. [Google Scholar] [CrossRef]
- Jensen, M.P.; Patterson, D.R. Hypnotic approaches for chronic pain management: Clinical implications of recent research findings. American Psychologist 2014, 69, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Facco, E.; Bacci, C.; Zanette, G. Hypnosis as sole anesthesia for oral surgery: The egg of Columbus. The Journal of the American Dental Association 2021, 152, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Faymonville, M.; Fissette, J.; Mambourg, P.; Roediger, L.; Joris, J.; Lamy, M. Hypnosis as adjunct therapy in conscious sedation for plastic surgery. Regional anesthesia 1995, 20, 145–145. [Google Scholar]
- Jensen, M.P.; Jamieson, G.A.; Lutz, A.; Mazzoni, G.; McGeown, W.J.; Santarcangelo, E.L.; Demertzi, A.; De Pascalis, V.; Bányai, É.I.; Rominger, C. , et al. New directions in hypnosis research: strategies for advancing the cognitive and clinical neuroscience of hypnosis. Neuroscience of Consciousness 2017, 2017. [Google Scholar] [CrossRef]
- Barnier, A.J.; Nash, M.R. 1 Introduction: a roadmap for explanation, a working definition. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice, Barnier, A.J., Nash, M.R., Eds. Oxford University Press: 2008. [CrossRef]
- Halsband, U. Learning in trance: Functional brain imaging studies and neuropsychology. Journal of Physiology-Paris 2006, 99, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Woody, E.Z.; McConkey, K.M. What we don’t know about the Brain and Hypnosis, but need to: A View from the Buckhorn Inn. International Journal of Clinical and Experimental Hypnosis 2003, 51, 309–338. [Google Scholar] [CrossRef] [PubMed]
- Halsband, U.; Wolf, T.G. Current neuroscientific research database findings of brain activity changes after hypnosis. American Journal of Clinical Hypnosis 2021, 63, 372–388. [Google Scholar] [CrossRef] [PubMed]
- DeSouza, D.D.; Stimpson, K.H.; Baltusis, L.; Sacchet, M.D.; Gu, M.; Hurd, R.; Wu, H.; Yeomans, D.C.; Willliams, N.; Spiegel, D. Association between Anterior Cingulate Neurochemical Concentration and Individual Differences in Hypnotizability. Cerebral Cortex 2020, 30, 3644–3654. [Google Scholar] [CrossRef]
- Faerman, A.; Spiegel, D. Shared cognitive mechanisms of hypnotizability with executive functioning and information salience. Scientific Reports 2021, 11, 5704. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, E.L. New views of hypnotizability. Frontiers in behavioral neuroscience 2014, 8, 224. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Scattina, E. Responding to Sensorimotor Suggestions: From Endothelial Nitric Oxide to the Functional Equivalence Between Imagery and Perception. International Journal of Clinical and Experimental Hypnosis 2019, 67, 394–407. [Google Scholar] [CrossRef]
- Egner, T.; Jamieson, G.; Gruzelier, J. Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage 2005, 27, 969–978. [Google Scholar] [CrossRef]
- Faymonville, M.E.; Laureys, S.; Degueldre, C.; Del Fiore, G.; Luxen, A.; Franck, G.; Lamy, M.; Maquet, P. Neural mechanisms of antinociceptive effects of hypnosis. ANESTHESIOLOGY-PHILADELPHIA THEN HAGERSTOWN- 2000, 92, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Grond, M.; Pawlik, G.; Walter, H.; Lesch, O.M.; Heiss, W.-D. Hypnotic catalepsy-induced changes of regional cerebral glucose metabolism. Psychiatry Research: Neuroimaging 1995, 61, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; White, M.P.; Greicius, M.D.; Waelde, L.C.; Spiegel, D. Brain Activity and Functional Connectivity Associated with Hypnosis. Cerebral Cortex 2017, 27, 4083–4093. [Google Scholar] [CrossRef]
- Kosslyn, S.M.; Thompson, W.L.; Costantini-Ferrando, M.F.; Alpert, N.M.; Spiegel, D. Hypnotic Visual Illusion Alters Color Processing in the Brain. American Journal of Psychiatry 2000, 157, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Maquet, P.; Faymonville, M.E.; Degueldre, C.; Delfiore, G.; Franck, G.; Luxen, A.; Lamy, M. Functional neuroanatomy of hypnotic state. Biological Psychiatry 1999, 45, 327–333. [Google Scholar] [CrossRef]
- Rainville, P. Brain mechanisms of pain affect and pain modulation. Current opinion in neurobiology 2002, 12, 195–204. [Google Scholar] [CrossRef]
- Rainville, P.; Hofbauer, R.K.; Paus, T.; Duncan, G.H.; Bushnell, M.C.; Price, D.D. Cerebral mechanisms of hypnotic induction and suggestion. J Cogn Neurosci 1999, 11, 110–125. [Google Scholar] [CrossRef]
- Szechtman, H.; Woody, E.; Bowers, K.S.; Nahmias, C. Where the imaginal appears real: A positron emission tomography study of auditory hallucinations. Proceedings of the National Academy of Sciences 1998, 95, 1956–1960. [Google Scholar] [CrossRef]
- Muzur, A. Hypnosis and modern frontal-lobe concepts–a sketch for a review and an invitation to one particularly promising field. Collegium antropologicum 2006, 30, 205–211. [Google Scholar]
- Lindeløv, J.K.; Overgaard, R.; Overgaard, M. Improving working memory performance in brain-injured patients using hypnotic suggestion. Brain 2017, 140, 1100–1106. [Google Scholar] [CrossRef]
- Otto, T. Effective connectivity changes in hypnotic visual illusion.-A study carried out by Otto T, Halsband, U Goebel R. Master Thesis, University of Maastricht, 2007.
- Buchner, R.; Andrews-Hanna, J.; Schacter, D. The brain’s default network. Annals of the New York Academy ofSciences 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Sridharan, D.; Levitin, D.J.; Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences 2008, 105, 12569–12574. [Google Scholar] [CrossRef]
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience 2007, 8, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Adachi, T.; Hakimian, S. Brain Oscillations, Hypnosis, and Hypnotizability. American Journal of Clinical Hypnosis 2015, 57, 230–253. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.G.; Faerber, K.A.; Rummel, C.; Halsband, U.; Campus, G. Functional Changes in Brain Activity Using Hypnosis: A Systematic Review. Brain Sciences 2022, 12, 108. [Google Scholar] [CrossRef]
- Faymonville, M.E.; Boly, M.; Laureys, S. Functional neuroanatomy of the hypnotic state. Journal of Physiology-Paris 2006, 99, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Rainville, P.; Carrier, B.t.; Hofbauer, R.K.; Bushnell, M.C.; Duncan, G.H. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 1999, 82, 159–171. [Google Scholar] [CrossRef]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Daselaar, S.M.; Porat, Y.; Huijbers, W.; Pennartz, C.M.A. Modality-specific and modality-independent components of the human imagery system. NeuroImage 2010, 52, 677–685. [Google Scholar] [CrossRef]
- Zvyagintsev, M.; Clemens, B.; Chechko, N.; Mathiak, K.A.; Sack, A.T.; Mathiak, K. Brain networks underlying mental imagery of auditory and visual information. European Journal of Neuroscience 2013, 37, 1421–1434. [Google Scholar] [CrossRef]
- Lynn, S.J.; Laurence, J.-R.; Kirsch, I. Hypnosis, Suggestion, and Suggestibility: An Integrative Model. American Journal of Clinical Hypnosis 2015, 57, 314–329. [Google Scholar] [CrossRef]
- Dienes, Z.; Hutton, S. Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. Cortex 2013, 49, 386–392. [Google Scholar] [CrossRef]
- Jamieson, G.A.; Woody, E. Dissociated control as a paradigm for cognitive neuroscience research and theorizing in hypnosis. In Hypnosis and conscious states: The cognitive neuroscience perspective; Jamieson, G.A., Ed.; Oxford University press: NY, 2007; pp. 111–129. [Google Scholar]
- Connors, M.H. Hypnosis and belief: A review of hypnotic delusions. Consciousness and Cognition 2015, 36, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Meiron, O.; Lavidor, M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clinical Neurophysiology 2014, 125, 77–82. [Google Scholar] [CrossRef]
- Bryant, R.A.; Mallard, D. Seeing is believing: The reality of hypnotic hallucinations. Consciousness and Cognition 2003, 12, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Barnier, A.J.; Cox, R.E.; O'Connor, A.; Coltheart, M.; Langdon, R.; Breen, N.; Turner, M. Developing hypnotic analogues of clinical delusions: Mirrored-self misidentification. Cognitive Neuropsychiatry 2008, 13, 406–430. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience 2015, 16, 55–61. [Google Scholar] [CrossRef]
- Uddin, L.Q. Chapter 3—functions of the salience network. In Salience Network of the Human Brain; Uddin, L.Q., Ed.; Academic Press: San Diego, 2016; pp. 11–16. [Google Scholar]
- Smallwood, J.; Brown, K.; Baird, B.; Schooler, J.W. Cooperation between the default mode network and the frontal–parietal network in the production of an internal train of thought. Brain Research 2012, 1428, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Soddu, A.; Laureys, S. Consciousness supporting networks. Current Opinion in Neurobiology 2013, 23, 239–244. [Google Scholar] [CrossRef]
- Vanhaudenhuyse, A.; Demertzi, A.; Schabus, M.; Noirhomme, Q.; Bredart, S.; Boly, M.; Phillips, C.; Soddu, A.; Luxen, A.; Moonen, G. , et al. Two Distinct Neuronal Networks Mediate the Awareness of Environment and of Self. Journal of Cognitive Neuroscience 2011, 23, 570–578. [Google Scholar] [CrossRef]
- Tellegen, A.; Atkinson, G. Openness to absorbing and self-altering experiences ("absorption"), a trait related to hypnotic susceptibility. Journal of Abnormal Psychology 1974, 83, 268–277. [Google Scholar] [CrossRef] [PubMed]
- McGeown, W.J.; Mazzoni, G.; Vannucci, M.; Venneri, A. Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Research: Neuroimaging 2015, 231, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; Santhanam, P.; Hu, X. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. NeuroImage 2011, 54, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Biswal, B.B. Dynamic brain functional connectivity modulated by resting-state networks. Brain Structure and Function 2015, 220, 37–46. [Google Scholar] [CrossRef]
- Gu, H.; Hu, Y.; Chen, X.; He, Y.; Yang, Y. Regional excitation-inhibition balance predicts default-mode network deactivation via functional connectivity. NeuroImage 2019, 185, 388–397. [Google Scholar] [CrossRef]
- Demertzi, A.; Vanhaudenhuyse, A.; Noirhomme, Q.; Faymonville, M.-E.; Laureys, S. Hypnosis modulates behavioural measures and subjective ratings about external and internal awareness. Journal of Physiology-Paris 2015, 109, 173–179. [Google Scholar] [CrossRef]
- Jamieson, G.A. A unified theory of hypnosis and meditation states: The interoceptive predictive coding approach. In Hypnosis and Meditation: Towards an Integrative Science of Conscious Planes; Raz, A., Lifshitz, M., Eds.; Oxford University Press: New York, NY, 2016; pp. 313–342. [Google Scholar]
- Deeley, Q.; Oakley, D.A.; Toone, B.; Giampietro, V.; Brammer, M.J.; Williams, S.C.R.; Halligan, P.W. Modulating the Default Mode Network Using Hypnosis. International Journal of Clinical and Experimental Hypnosis 2012, 60, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Soddu, A.; Faymonville, M.E.; Bahri, M.A.; Gosseries, O.; Vanhaudenhuyse, A.; Phillips, C.; Maquet, P.; Noirhomme, Q.; Luxen, A., et al. Chapter 20 - Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. In Progress in Brain Research, Van Someren, E.J.W., Van Der Werf, Y.D., Roelfsema, P.R., Mansvelder, H.D., Lopes Da Silva, F.H., Eds. Elsevier: 2011; Vol. 193, pp. 309-322.
- D'Esposito, M.; Postle, B.R. The Cognitive Neuroscience of Working Memory. Annual Review of Psychology 2015, 66, 115–142. [Google Scholar] [CrossRef]
- De Benedittis, G. Neural Mechanisms of Hypnosis and Meditation-Induced Analgesia: A Narrative Review. International Journal of Clinical and Experimental Hypnosis 2021, 69, 363–382. [Google Scholar] [CrossRef]
- Lipari, S.; Baglio, F.; Griffanti, L.; Mendozzi, L.; Garegnani, M.; Motta, A.; Cecconi, P.; Pugnetti, L. Altered and asymmetric default mode network activity in a “hypnotic virtuoso”: An fMRI and EEG study. Consciousness and Cognition 2012, 21, 393–400. [Google Scholar] [CrossRef]
- Landry, M.; Raz, A. Hypnosis and Imaging of the Living Human Brain. American Journal of Clinical Hypnosis 2015, 57, 285–313. [Google Scholar] [CrossRef]
- Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Rhythms of The Brain Oxford University Press Inc.: NewYork 2006.
- Cohen, M.X. Analyzing neural time series data: theory and practice; MIT press: 2014.
- Keil, A.; Thigpen, N. From Neural Oscillations to Cognitive Processes. In The Oxford Handbook of EEG Frequency, Gable, P.A., Miller, M.W., Bernat, E.M., Eds. Oxford University Press: 2022; pp. 40-64. [CrossRef]
- Jamieson, G.A.; Kittenis, M.D.; Tivadar, R.I.; Evans, I.D. Inhibition of retrieval in hypnotic amnesia: dissociation by upper-alpha gating. Neuroscience of consciousness 2017, 2017, nix005. [Google Scholar] [CrossRef]
- De Pascalis, V. EEG oscillatory activity concomitant with hypnosis and hypnotizability. In International Handbook of Clinical Hypnosis, Julie H. Linden, G.D.B., Laurence I. Sugarman and Katalin Varga (Editors), Ed. Routledge: London In press.
- Bakan, P. Hypnotizability, Laterality of Eye-Movements and Functional Brain Asymmetry. Perceptual and Motor Skills 1969, 28, 927–932. [Google Scholar] [CrossRef]
- Edmonston, W.E.; Grotevant, W.R. Hypnosis and Alpha Density. American Journal of Clinical Hypnosis 1975, 17, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, D.R.; London, P.; Hart, J.T. Hypnotic Susceptibility increased by EEG Alpha Training. Nature 1970, 227, 1261–1262. [Google Scholar] [CrossRef]
- London, P.; Hart, J.T.; Leibovitz, M.P.; McDevitt, R.A. The psychophysiology of hypnotic susceptibility. In Proceedings of Psychophysiological Mechanisms of Hypnosis: An International Symposium sponsored by the International Brain Research Organization and the Centre de Recherche, Institut de Psychiatrie La Rochefoucauld, Paris; pp. 151-172.
- Morgan, A.H.; Macdonald, H.; Hilgard, E.R. EEG Alpha: Lateral Asymmetry Related to Task, and Hypnotizability. Psychophysiology 1974, 11, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ulett, G.A.; Akpinar, S.; Itil, T.M. Quantitative EEG analysis during hypnosis. Electroencephalography and Clinical Neurophysiology 1972, 33, 361–368. [Google Scholar] [CrossRef]
- De Pascalis, V.; Palumbo, G. EEG Alpha Asymmetry: Task Difficulty and Hypnotizability. Perceptual and Motor Skills 1986, 62, 139–150. [Google Scholar] [CrossRef]
- Graffin, N.F.; Ray, W.J.; Lundy, R. EEG concomitants of hypnosis and hypnotic susceptibility. Journal of Abnormal Psychology 1995, 104, 123–131. [Google Scholar] [CrossRef]
- MacLeod-Morgan, C. Hypnotic susceptibility, EEG theta and alpha waves, and hemispheric specificity. In Hypnosis 1979, G. D. Burrows, D.R.C., & L. Dennerstein, Ed. Elsevier: North Holland: Amsterdam, 1979.
- Williams, J.D.; Gruzelier, J.H. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. International Journal of Clinical and Experimental Hypnosis 2001, 49, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Kihlstrom, J.F. Neuro-hypnotism: Prospects for hypnosis and neuroscience. Cortex 2013, 49, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Sabourin, M.E.; Cutcomb, S.D.; Crawford, H.J.; Pribram, K. EEG correlates of hypnotic susceptibility and hypnotic trance: spectral analysis and coherence. International Journal of Psychophysiology 1990, 10, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J. Cognitive and psychophysiological correlates of hypnotic responsiveness and hypnosis. In Creative Mastery in Hypnosis and Hypnoanalysis: a Festschrift for Erika Fromm, P, F.M.L.a.B.D., Ed. Plenum Press: New York, 1990; pp. 47-54.
- De Pascalis, V.; Ray, W.J.; Tranquillo, I.; D'Amico, D. EEG activity and heart rate during recall of emotional events in hypnosis: relationships with hypnotizability and suggestibility. International Journal of Psychophysiology 1998, 29, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Tebecis, A.K.; Provins, K.A.; Farnbach, R.W.; Pentony, P. Hypnosis and the EEG: A quantitative investigation. Journal of Nervous and Mental Disease 1975, 161, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J.; Clarke, S.W.; Kitner-Triolo, M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: laterality and regional EEG activity differences. International Journal of Psychophysiology 1996, 24, 239–266. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Askew, R.L.; Fregni, F.; Witkop, G.; Gianas, A.; Howe, J.D.; Hakimian, S. Effects of non-pharmacological pain treatments on brain states. Clinical Neurophysiology 2013, 124, 2016–2024. [Google Scholar] [CrossRef]
- Freeman, R.; Barabasz, A.; Barabasz, M.; Warner, D. Hypnosis and Distraction Differ in Their Effects on Cold Pressor Pain. American Journal of Clinical Hypnosis 2000, 43, 137–148. [Google Scholar] [CrossRef]
- Galbraith, G.C.; London, P.; Leibovitz, M.P.; Cooper, L.M.; Hart, J.T. EEG and hypnotic susceptibility. Journal of Comparative and Physiological Psychology 1970, 72, 125–131. [Google Scholar] [CrossRef] [PubMed]
- De Benedittis, G. Neural mechanisms of hypnosis and meditation. Journal of Physiology-Paris 2015, 109, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Adachi, T.; Tomé-Pires, C.; Lee, J.; Osman, Z.J.; Miró, J. Mechanisms of Hypnosis: Toward the Development of a Biopsychosocial Model. International Journal of Clinical and Experimental Hypnosis 2015, 63, 34–75. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M.; Pessa, E. Hemispheric activity of 40 Hz EEG during recall of emotional events: differences between low and high hypnotizables. International Journal of Psychophysiology 1987, 5, 167–180. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M. 40-Hz EEG asymmetry during recall of emotional events in waking and hypnosis: differences between low and high hypnotizables. International Journal of Psychophysiology 1989, 7, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Schnyer, D.M.; Allen, J.J. Attention-related electroencephalographic and event-related potential predictors of responsiveness to suggested posthypnotic amnesia. International Journal of Clinical and Experimental Hypnosis 1995, 43, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J. Brain dynamics and hypnosis: attentional and disattentional processes. International Journal of Clinical and Experimental Hypnosis 1994, 42, 204–232. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, G.A.; Burgess, A.P. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals. Frontiers in Human Neuroscience 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Ciorciari, J.; Carbis, C.; Liley, D. EEG Correlates of Virtual Reality Hypnosis. International Journal of Clinical and Experimental Hypnosis 2009, 57, 94–116. [Google Scholar] [CrossRef]
- Kirenskaya, A.V.; Novototsky-Vlasov, V.Y.; Zvonikov, V.M. Waking EEG Spectral Power and Coherence Differences Between High and Low Hypnotizable Subjects. International Journal of Clinical and Experimental Hypnosis 2011, 59, 441–453. [Google Scholar] [CrossRef]
- De Pascalis, V. Psychophysiological correlates of hypnosis and hypnotic susceptibility. International Journal of Clinical and Experimental Hypnosis 1999, 47, 117–143. [Google Scholar] [CrossRef]
- Croft, R.J.; Williams, J.D.; Haenschel, C.; Gruzelier, J.H. Pain perception, hypnosis and 40 Hz oscillations. International Journal of Psychophysiology 2002, 46, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J.; Gruzelier, J.H. A midstream view of the neuropsychophysiology of hypnosis: Recent research and future directions. In Contemporary hypnosis research; Guilford Press: New York, NY, US, 1992; pp. 227–266. [Google Scholar]
- De Pascalis, V.; Cacace, I.; Massicolle, F. Perception and modulation of pain in waking and hypnosis: functional significance of phase-ordered gamma oscillations. Pain 2004, 112, 27–36. [Google Scholar] [CrossRef]
- Başar, E. Brain Function and Oscillations: II. Integrative Brain Function. Neurophysiology and Cognitive Processes; Springer-Verlag: Heidelberg, 1999. [Google Scholar]
- Başar, E.; Schürmann, M.; Başar-Eroglu, C.; Demiralp, T. Selectively distributed gamma band system of the brain. International Journal of Psychophysiology 2001, 39, 129–135. [Google Scholar] [CrossRef]
- Karakaş, S.; Başar, E. Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. International Journal of Psychophysiology 1998, 31, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Greischar, L.L.; Rawlings, N.B.; Ricard, M.; Davidson, R.J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proceedings of the national Academy of Sciences 2004, 101, 16369–16373. [Google Scholar] [CrossRef] [PubMed]
- Cardeña, E.; Jönsson, P.; Terhune, D.B.; Marcusson-Clavertz, D. The neurophenomenology of neutral hypnosis. Cortex 2013, 49, 375–385. [Google Scholar] [CrossRef]
- Hiltunen, S.; Karevaara, M.; Virta, M.; Makkonen, T.; Kallio, S.; Paavilainen, P. No evidence for theta power as a marker of hypnotic state in highly hypnotizable subjects. Heliyon 2021, 7. [Google Scholar] [CrossRef]
- Hinterberger, T.; Schöner, J.; Halsband, U. Analysis of Electrophysiological State Patterns and Changes During Hypnosis Induction. International Journal of Clinical and Experimental Hypnosis 2011, 59, 165–179. [Google Scholar] [CrossRef]
- Raz, A. Hypnosis: A twilight zone of the top-down variety: Few have never heard of hypnosis but most know little about the potential of this mind–body regulation technique for advancing science. Trends in cognitive sciences 2011, 15, 555–557. [Google Scholar] [CrossRef]
- Lynn, S.J.; Kirsch, I.; Knox, J.; Fassler, O.; Lilienfeld, S.O. Hypnosis and neuroscience: implications for the altered state debate. In Hypnosis and conscious states: The cognitive neuroscience perspective; Jamieson, G.A., Ed.; Oxford University Press: NY, 2007; pp. 145–165. [Google Scholar]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kähkönen, S. Functional connectivity in the brain—is it an elusive concept? Neuroscience & Biobehavioral Reviews 2005, 28, 827–836. [Google Scholar] [CrossRef]
- Lee, L.; Harrison, L.M.; Mechelli, A. A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 2003, 19, 457–465. [Google Scholar] [CrossRef]
- Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2001, 2, 229–239. [Google Scholar] [CrossRef]
- Tsakiris, M.; Hesse, M.D.; Boy, C.; Haggard, P.; Fink, G.R. Neural Signatures of Body Ownership: A Sensory Network for Bodily Self-Consciousness. Cerebral Cortex 2007, 17, 2235–2244. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv 2007, arXiv:0711.1455. [Google Scholar]
- Bullock, T.H.; McClune, M.C.; Enright, J.T. Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series. Neuroscience 2003, 121, 233–252. [Google Scholar] [CrossRef]
- Burgess, A. On the contribution of neurophysiology to hypnosis research: current state and future directions. In Hypnosis and conscious states: The cognitive neuroscience perspective; Jamieson, G.A., Ed.; Oxford University Press: NY, 2007; pp. 195–219. [Google Scholar]
- Pereda, E.; Quiroga, R.Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology 2005, 77, 1–37. [Google Scholar] [CrossRef]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Hardmeier, M.; Hatz, F.; Bousleiman, H.; Schindler, C.; Stam, C.J.; Fuhr, P. Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PloS one 2014, 9, e108648. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2011, 369, 3768–3784. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H. A working model of the neurophysiology of hypnosis: a review of evidence. Contemporary Hypnosis 1998, 15, 3–21. [Google Scholar] [CrossRef]
- Woody, E.Z.; Farvolden, P. Dissociation in Hypnosis and Frontal Executive Function. American Journal of Clinical Hypnosis 1998, 40, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio, S.; Revonsuo, A. Cortex functional connectivity as a neurophysiological correlate of hypnosis: An EEG case study. Neuropsychologia 2007, 45, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Miltner, W.H.; Weiss, T. Cortical mechanisms of hypnotic pain control. In Hypnosis and conscious states: The cognitive neuroscience perspective; Jamieson, G.A., Ed.; Oxford University Press: NY, 2007; pp. 51–66. [Google Scholar]
- Keshmiri, S.; Alimardani, M.; Shiomi, M.; Sumioka, H.; Ishiguro, H.; Hiraki, K. Higher hypnotic suggestibility is associated with the lower EEG signal variability in theta, alpha, and beta frequency bands. PLOS ONE 2020, 15, e0230853. [Google Scholar] [CrossRef]
- Buzsáki, G. The Hippocampo-Neocortical Dialogue. Cerebral Cortex 1996, 6, 81–92. [Google Scholar] [CrossRef]
- Bell, V.; Oakley, D.A.; W., H.P.; Deeley, Q. Dissociation in hysteria and hypnosis: evidence from cognitive neuroscience. Journal of Neurology, Neurosurgery Psychiatry 2011, 82, 332. [CrossRef]
- Posner, M.I.; Dehaene, S. Attentional networks. Trends in neurosciences 1994, 17, 75–79. [Google Scholar] [CrossRef]
- Botvinick, M.; Nystrom, L.E.; Fissell, K.; Carter, C.S.; Cohen, J.D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999, 402, 179–181. [Google Scholar] [CrossRef]
- Carter, C.S.; Macdonald, A.M.; Botvinick, M.; Ross, L.L.; Stenger, V.A.; Noll, D.; Cohen, J.D. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences 2000, 97, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Coltheart, M.; Cox, R.; Sowman, P.; Morgan, H.; Barnier, A.; Langdon, R.; Connaughton, E.; Teichmann, L.; Williams, N.; Polito, V. Belief, delusion, hypnosis, and the right dorsolateral prefrontal cortex: A transcranial magnetic stimulation study. Cortex 2018, 101, 234–248. [Google Scholar] [CrossRef]
- Perri, R.L.; Di Filippo, G. Alteration of hypnotic experience following transcranial electrical stimulation of the left prefrontal cortex. International Journal of Clinical and Health Psychology 2023, 23, 100346. [Google Scholar] [CrossRef]
- Franz, M.; Schmidt, B.; Hecht, H.; Naumann, E.; Miltner, W.H.R. Suggested visual blockade during hypnosis: Top-down modulation of stimulus processing in a visual oddball task. PLOS ONE 2021, 16, e0257380. [Google Scholar] [CrossRef]
- Schmidt, B.; Hecht, H.; Naumann, E.; Miltner, W.H.R. The Power of mind: Blocking visual perception by hypnosis. Scientific Reports 2017, 7, 4889. [Google Scholar] [CrossRef]
- Gruzelier, J.H. Redefining hypnosis: theory, methods and integration. Contemporary Hypnosis 2000, 17, 51–70. [Google Scholar] [CrossRef]
- Gruzelier, J.H. Frontal functions, connectivity and neural efficiency underpinning hypnosis and hypnotic susceptibility. Contemporary Hypnosis 2006, 23, 15–32. [Google Scholar] [CrossRef]
- Terhune, D.B.; Cardeña, E.; Lindgren, M. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 2011, 48, 1444–1447. [Google Scholar] [CrossRef]
- Isotani, T.; Lehmann, D.; Pascual-Marqui, R.D.; Kochi, K.; Wackermann, J.; Saito, N.; Yagyu, T.; Kinoshita, T.; Sasada, K. EEG Source Localization and Global Dimensional Complexity in High- and Low- Hypnotizable Subjects: A Pilot Study. Neuropsychobiology 2001, 44, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.J.; Cassidy, B.S.; Andrews-Hanna, J.R.; Lee, S.M.; Coombs, G.; Goff, D.C.; Gabrieli, J.D.; Moran, J.M. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection. Biological Psychiatry 2011, 69, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Cardeña, E. The phenomenology of deep hypnosis: quiescent and physically active. International Journal of Clinical and Experimental Hypnosis 2005, 53, 37–59. [Google Scholar] [CrossRef]
- Pekala, R.J.; Kumar, V. An empirical-phenomenological approach to quantifying consciousness and states of consciousness: With particular reference to understanding the nature of hypnosis. In Hypnosis and conscious states: The cognitive neuroscience perspective, Jamieson, G.A., Ed. Oxford University Press: NY, 2007; pp. 167-194.
- De Pascalis, V. Phase-ordered gamma oscillations and the modulation of hypnotic experience. In Hypnosis and conscious states: The cognitive neuroscience perspective, Jamieson, G.A., Ed. Oxford University Press: NY, 2007; pp. 67-89.
- Li, X.; Ma, R.; Pang, L.; Lv, W.; Xie, Y.; Chen, Y.; Zhang, P.; Chen, J.; Wu, Q.; Cui, G. , et al. Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Scientific Reports 2017, 7, 2430. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Vanhaudenhuyse, A.; Piarulli, A.; Annen, J.; Demertzi, A.; Alnagger, N.; Chennu, S.; Laureys, S.; Faymonville, M.-E.; Gosseries, O. Altered Brain Connectivity and Network Topological Organization in a Non-ordinary State of Consciousness Induced by Hypnosis. Journal of Cognitive Neuroscience 2023, 35, 1394–1409. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Ke, X.; Liu, X.; Yuan, Y.; Zhang, D.; Xiong, D.; Qiu, Y. Placebo analgesia changes alpha oscillations induced by tonic muscle pain: EEG frequency analysis including data during pain evaluation. Frontiers in computational neuroscience 2016, 10. [Google Scholar] [CrossRef]
- Derbyshire, S.W.G.; Whalley, M.G.; Stenger, V.A.; Oakley, D.A. Cerebral activation during hypnotically induced and imagined pain. NeuroImage 2004, 23, 392–401. [Google Scholar] [CrossRef]
- Cojan, Y.; Waber, L.; Schwartz, S.; Rossier, L.; Forster, A.; Vuilleumier, P. The brain under self-control: modulation of inhibitory and monitoring cortical networks during hypnotic paralysis. Neuron 2009, 62, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.J.; Oakley, D.A.; Frith, C.D. Delusions of alien control in the normal brain. Neuropsychologia 2003, 41, 1058–1067. [Google Scholar] [CrossRef]
- Deeley, Q.; Walsh, E.; Oakley, D.A.; Bell, V.; Koppel, C.; Mehta, M.A.; Halligan, P.W. Using Hypnotic Suggestion to Model Loss of Control and Awareness of Movements: An Exploratory fMRI Study. PLOS ONE 2013, 8, e78324. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, F.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S.; Haas, B.W.; Bammer, R.; Menon, V.; Spiegel, D. Functional Brain Basis of Hypnotizability. Archives of General Psychiatry 2012, 69, 1064–1072. [Google Scholar] [CrossRef]
- Oakley, D.A. Hypnosis and Conversion Hysteria: A Unifying Model. Cognitive Neuropsychiatry 1999, 4, 243–265. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
