Submitted:
04 December 2023
Posted:
05 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials and instuments
2.3. Synthesis of LMNPs
2.3. Fabrication process and test instruments
3. Results and discussion
3.1. Characterization of strain sensor based on LMNPs
3.2. Strain Sensitivity Investigation of strain sensor based on LMNPs
3.2. Strain sensor based on LMNPs for Human Motion Detection
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Zhang, Z.; Gao, F.; Zhao, X.; Xun, X.; Kang, Z.; Liao, Q.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614. [Google Scholar] [CrossRef]
- Li, L.; Sheng, S.; Liu, Y.; Wen, J.; Song, C.; Chen, Z.; Xu, W.; Zhang, Z.; Fan, W.; Chen, C. , et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX 2023, 4, 21. [Google Scholar] [CrossRef]
- Qiu, A.; Li, P.; Yang, Z.; Yao, Y.; Lee, I.; Ma, J. A path beyond metal and silicon:Polymer/nanomaterial composites for stretchable strain sensors. Advanced Functional Materials 2019, 29, 1806306. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C. , et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. Journal of Materials Chemistry C 2018, 6, 12121–12141. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, J.; Tian, X.; Yuan, Y. Ultra-highly sensitive graphene/polyaniline@epoxidized natural rubber strain sensors for human motion monitoring. Sensors and Actuators A: Physical 2023, 358, 114421. [Google Scholar] [CrossRef]
- Wang, T.; Yang, H.; Qi, D.; Liu, Z.; Cai, P.; Zhang, H.; Chen, X. Mechano-based transductive sensing for wearable healthcare. Small 2018, 14, 1702933. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Jiang, X.; Lin, S.; Lao, J.; Shi, J.; Zhen, Z.; Li, Z.; Zhu, H. Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Materials Horizons 2016, 3, 248–255. [Google Scholar] [CrossRef]
- Mohammed Ali, M.; Maddipatla, D.; Narakathu, B.B.; Chlaihawi, A.A.; Emamian, S.; Janabi, F.; Bazuin, B.J.; Atashbar, M.Z. Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable tpu substrate. Sensors and Actuators A: Physical 2018, 274, 109–115. [Google Scholar] [CrossRef]
- Zhan, Z.; Sun, Q.; Tang, C.; Wu, H.; Lu, Y. Ultra-highly sensitive and self-healing flexible strain sensor with a wide measuring range based on a bilayer structure. Sensors and Actuators A: Physical 2023, 360, 114510. [Google Scholar] [CrossRef]
- Zhou, C.-G.; Sun, W.-J.; Jia, L.-C.; Xu, L.; Dai, K.; Yan, D.-X.; Li, Z.-M. Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS Applied Materials & Interfaces 2019, 11, 37094–37102. [Google Scholar]
- Gao, Y.; Guo, F.; Cao, P.; Liu, J.; Li, D.; Wu, J.; Wang, N.; Su, Y.; Zhao, Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 2020, 14, 3442–3450. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, J.; Huang, Z.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371. [Google Scholar] [CrossRef]
- Lau, K.Y.; Qiu, J. Broad applications of sensors based on laser-scribed graphene. Light: Science & Applications 2023, 12, 168. [Google Scholar]
- Jiang, H.; Zhang, J.; Qin, M.; Zhang, J.; Zou, X.; Weng, X. A flexible piezoresistive strain sensor based on black phosphorus/gold nanocomposites interspersed sponge for motion sensing. Sensors and Actuators A: Physical 2023, 356, 114359. [Google Scholar] [CrossRef]
- Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Advanced Functional Materials 2017, 27, 1700845. [Google Scholar] [CrossRef]
- Lan, L.; Yin, T.; Jiang, C.; Li, X.; Yao, Y.; Wang, Z.; Qu, S.; Ye, Z.; Ping, J.; Ying, Y. Highly conductive 1d-2d composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2019, 62, 319–328. [Google Scholar] [CrossRef]
- Tang, L.; Yang, S.; Zhang, K.; Jiang, X. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. Advanced Science 2022, 9, 2202043. [Google Scholar] [CrossRef]
- Shao-Hui, Z.; Feng-Xia, W.; Jia-Jia, L.; Hong-Dan, P.; Jing-Hui, Y.; Ge-Bo, P. Wearable wide-range strain sensors based on ionic liquids and monitoring of human activities. Sensors 2017, 17, 2621. [Google Scholar]
- Seyedin, M.Z.; Razal, J.M.; Innis, P.C.; Wallace, G.G. Strain-responsive polyurethane/pedot:Pss elastomeric composite fibers with high electrical conductivity. Advanced Functional Materials 2014, 24, 2957–2966. [Google Scholar] [CrossRef]
- Xs, A.; Bo, Y.B.; Lei, S.A.; Wei, R.A.; Jing, L. Liquid metal enabled injectable biomedical technologies and applications. Applied Materials Today 2020, 20, 100722. [Google Scholar]
- Andreev, Y.A.; Matt, G.E.; Brabec, C.J.; Sitter, H.; Badt, D.; Seyringer, H.; Sariciftci, N.S. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar]
- Li, J.; Yan, J.; Jiang, L.; Yu, J.; Guo, H.; Qu, L. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light: Science & Applications 2023, 12, 164. [Google Scholar]
- Yao; S.; Zhu; Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. NANOSCALE -CAMBRIDGE- 2014.
- Dai, Y.-Z.; Liang, S.-Y.; Lv, C.; Wang, G.; Xia, H.; Zhang, T.; Sun, H.-B. Controllably fabricated single microwires from pd-wo3•xh2o nanoparticles by femtosecond laser for faster response ammonia sensors at room temperature. Sensors and Actuators B: Chemical 2020, 316, 128122. [Google Scholar] [CrossRef]
- Zhu, H.; Dai, Y.-Z.; Sun, X.-C.; Xia, H. A fine single pd microwire h2 sensor fabricated by using a femtosecond laser for a wide detection range at room temperature. Nanoscale Advances 2022. [Google Scholar] [CrossRef]
- Tang, N.; Zhou, C.; Qu, D.; Fang, Y.; Zheng, Y.; Hu, W.; Jin, K.; Wu, W.; Duan, X.; Haick, H. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 2020, 16, 2001363. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Liu, L.; Zhang, J.; Han, Q.; Wang, K.; Song, H.; Wang, Z.; Jiao, Z.; Niu, S.; Ren, L. High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale 2018, 10, 15178–15186. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. Acs Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Han, D.-D.; Zhang, Y.-L.; Liu, Y.; Liu, Y.-Q.; Jiang, H.-B.; Han, B.; Fu, X.-Y.; Ding, H.; Xu, H.-L.; Sun, H.-B. Bioinspired graphene actuators prepared by unilateral uv irradiation of graphene oxide papers. Advanced Functional Materials 2015, 25, 4548–4557. [Google Scholar] [CrossRef]
- Xu, X.-L.; Li, S.-X.; Yang, Y.; Sun, X.-C.; Xia, H. High-performance strain sensor for detection of human motion and subtle strain by facile fabrication. Measurement 2022, 189, 110658. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Haghniaz, R.; Rashidi, A.; Ahadian, S.; Sheikhi, A.; Chen, J.; Khademhosseini, A.; Milani, A.S.; Hoorfar, M. , et al. 3d-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring. ACS Nano 2020, 14, 1520–1532. [Google Scholar] [CrossRef] [PubMed]





| Materials | Methods | GF | Sensing | Ref. |
|---|---|---|---|---|
| MXene/CNT | Layer-by-layer spraycoating |
4.35 | 0.1-0.6% | [30] |
| 4 nm AuNPs |
Layer-by-layer spincoating and contact |
14 | 0-0.12% | [12] |
| Carbon Black and carboxymethyl cellulose |
Dip-coating | 4.3 | 0-0.6% | [13] |
| AgNW/ MoS2 |
Mix two materials | 5.96 | 0-3 | [17] |
| AuNP thin film |
Dip-coating | 19.94 | 0.1-0.5% | [31] |
| Graphene | 3D-printed | 10 | 2-10% | [32] |
| LMNPs | FsLDW | 76.18 | 0-0.48% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).