Submitted:
01 December 2023
Posted:
01 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Genes involved in PD patients’ sleep disorders
GBA
SNCA
LRRK2
“CLOCK” GENES
TEF
Preprohypocretin
Parkin
ZNF184
ANK2.CAMK2D
SYT17
USP25
miRNAs
Prions
3. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- de Lau, L.; Breteler, M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525-535. [CrossRef]
- Kalinderi, K.; Bostantjopoulou, S.; Fidani, L. The genetic background of Parkinson’s disease: current progress and future prospects. Acta. Neurol. Scand. 2016, 134, 314-326. [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Mariappan, S.; Rashmi, S.; Choeisoongnern, T.; Sittiprapaporn, P.; Chaiyasut, C. Neurological Insights into Sleep Disorders in Parkinson’s Disease. Brain Sci. 2023, 13, 1202. [CrossRef]
- 4. Riboldi GM, Di Fonzo AB. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364. [CrossRef]
- Gan-Or, Z.; Amshalom, I.; Kilarski, L.L.; Bar-Shira, A.; Gana-Weisz, M.; Mirelman, A.; Marder, K.; Bressman, S.; Giladi, N.; Orr-Urtreger, A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology. 2015, 84, 880–887. [CrossRef]
- Iranzo, A.; Tolosa, E.; Gelpi, E.; Molinuevo, J.L.; Valldeoriola, F.; Serradell, M.; Sanchez-Valle, R.; Vilaseca, I.; Lomeña, F.; Vilas, D.; Lladó, A.; Gaig, C. Santamaria J. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 2013,12:443-453. [CrossRef]
- Gan-Or, Z.; Mirelman, A.; Postuma, R.B.; Arnulf, I.; Bar-Shira, A.; Dauvilliers, Y.; Desautels, A.; Gagnon, J.F.; Leblond, C.S.; Frauscher, B.; Alcalay, R.N.; Saunders-Pullman, R.; Bressman, S.B.; Marder, K.; Monaca, C.; Högl, B.; Orr-Urtreger, A.; Dion, P.A.; Montplaisir, J.Y.; Giladi, N.; Rouleau, G.A. GBA mutations are associated with Rapid Eye Movement Sleep Behavior Disorder. Ann Clin Transl Neurol. 2015, 2, 941-945. [CrossRef]
- Jesús, S.; Huertas, I.; Bernal-Bernal, I.; Bonilla-Toribio, M.; Cáceres-Redondo, M.T.; Vargas-González, L.; Gómez-Llamas, M.; Carrillo, F.; Calderón, E.; Carballo, M.; Gómez-Garre, P.; Mir, P. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease. PLoS One. 2016, 11, e0167749. [CrossRef]
- Thaler, A.; Gurevich, T.; Bar Shira, A.; Gana Weisz, M.; Ash, E.; Shiner, T.; Orr-Urtreger, A.; Giladi, N.; Mirelman, A. A “dose” effect of mutations in the GBA gene on Parkinson’s disease phenotype. Parkinsonism Relat Disord. 2017, 36, 47-51. [CrossRef]
- De Michele, G.; Palmieri, G.R.; Pane, C.; Valente, E.M.; Palmieri, I.; Dello Iacovo, C.D.P.; Cuomo, N.; Giglio, A.; De Lucia, N.; Fico, T.; Perillo, S.; De Michele, G.; De Rosa, A. Motor and non-motor features in Parkinson’s Disease patients carrying GBA gene mutations. Acta Neurol Belg. 2023, 123, 221-226. [CrossRef]
- Thaler, A.; Bregman, N.; Gurevich, T.; Shiner, T.; Dror, Y.; Zmira, O.; Gan-Or, Z.; Bar-Shira, A.; Gana-Weisz, M.; Orr-Urtreger, A.; Giladi, N.; Mirelman, A. Parkinson’s disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism Relat Disord. 2018, 55, 45-49. [CrossRef]
- Huang, J.; Cheng, Y.; Li, C.; Shang, H. Genetic heterogeneity on sleep disorders in Parkinson’s disease: a systematic review and meta-analysis. Transl Neurodegener. 2022, 11, 21. [CrossRef]
- Perez-Lloret, S.; Chevalier, G.; Bordet, S.; Barbar, H.; Capani, F.; Udovin, L.; Otero-Losada, M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci. 2023, 13, 1146. [CrossRef]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu Rev Pathol. 2023, 18, 95-121. [CrossRef]
- Lundvig, D.; Lindersson, E.; Jensen, P. Pathogenic effects of a-synuclein aggregation. Mol Brain Res. 2005, 134, 3-17. [CrossRef]
- Bennett, C. The role of a-synuclein in neurodegenerative diseases. Pharmacol Ther. 2005, 105, 311-331. [CrossRef]
- Toffoli, M.; Dreussi, E.; Cecchin, E.; Valente, M.; Sanvilli, N.; Montico, M.; Gagno, S.; Garziera, M.; Polano, M.; Savarese, M.; Calandra-Buonaura, G.; Placidi, F.; Terzaghi, M.; Toffoli, G.; Gigli, G.L. SNCA 3’UTR genetic variants in patients with Parkinson’s disease and REM sleep behavior disorder. Neurol Sci. 2017, 38, 1233-1240. [CrossRef]
- Bjørnarå, K.A.; Pihlstrøm, L.; Dietrichs, E.; Toft, M. Risk variants of the α-synuclein locus and REM sleep behavior disorder in Parkinson’s disease: a genetic association study. BMC Neurol. 2018, 18, 20. [CrossRef]
- Simitsi, A.M.; Koros, C.; Stamelou, M.; Papadimitriou, D.; Leonardos, A.; Bougea, A.; Papagiannakis, N.; Pachi, I.; Angelopoulou, E.; Lourentzos, K.; Bonakis, A.; Stefanis, L. REM sleep behavior disorder and other sleep abnormalities in p. A53T SNCA mutation carriers. Sleep 2021, 44, zsaa248. [CrossRef]
- Li, Y.; Kang, W.; Zhang, L.; Zhou, L.; Niu, M.; Liu, J. Hyposmia Is Associated with RBD for PD Patients with Variants of SNCA. Front Aging Neurosci. 2017, 9, 303. [CrossRef]
- Ubeda-Bañon, I.; Saiz-Sanchez, D.; de la Rosa-Prieto, C.; Argandoña-Palacios, L.; Garcia-Muñozguren.; S, Martinez-Marcos, A. alpha-Synucleinopathy in the human olfactory system in Parkinson’s disease: involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathol. 2010, 119, 723-735. [CrossRef]
- Lahut, S.; Gispert, S.; Ömür, Ö.; Depboylu, C.; Seidel, K.; Domínguez-Bautista, J.A.; Brehm, N.; Tireli, H.; Hackmann, K.; Pirkevi, C.; Leube, B.; Ries, V.; Reim, K.; Brose, N.; den Dunnen, W.F.; Johnson, M.; Wolf, Z.; Schindewolf, M.; Schrempf, W.; Reetz, K.; Young, P.; Vadasz, D.; Frangakis, A.S.; Schröck, E.; Steinmetz, H.; Jendrach, M.; Rüb, U.; Başak, A.N.; Oertel, W.; Auburger, G. Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson’s disease. Dis Model Mech. 2017, 10, 619-631. [CrossRef]
- Rocha, E.M.; Keeney, M.T.; Di Maio, R.; De Miranda, B.R.; Greenamyre, J.T. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci. 2022, 45, 224-236. [CrossRef]
- Monfrini, E.; Di Fonzo, A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson’s Disease. Adv Neurobiol. 2017, 14, 3-30. [CrossRef]
- Pont-Sunyer, C.; Iranzo, A.; Gaig, C.; Fernández-Arcos, A.; Vilas, D.; Valldeoriola, F.; Compta, Y.; Fernández-Santiago, R.; Fernández, M.; Bayés, A.; Calopa, M.; Casquero, P.; de Fàbregues, O.; Jaumà, S.; Puente, V.; Salamero, M.; José Martí, M.; Santamaría, J.; Tolosa, E. Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers. PLoS One. 2015, 10, e0132368. [CrossRef]
- Mirelman, A.; Alcalay, R.N.; Saunders-Pullman, R.; Yasinovsky, K.; Thaler, A.; Gurevich, T.; Mejia-Santana, H.; Raymond, D.; Gana-Weisz, M.; Bar-Shira, A.; Ozelius, L.; Clark, L.; Orr-Urtreger, A.; Bressman, S.; Marder, K.; Giladi, N.; LRRK2 AJ consortium. Nonmotor symptoms in healthy Ashkenazi Jewish carriers of the G2019S mutation in the LRRK2 gene. Mov Disord. 2015, 30, 981-986. [CrossRef]
- Sun, Q.; Wang, T.; Jiang, T.F.; Huang, P.; Li, D.H.; Wang, Y.; Xiao, Q.; Liu, J.; Chen, S.D. Effect of a Leucine-rich Repeat Kinase 2 Variant on Motor and Non-motor Symptoms in Chinese Parkinson’s Disease Patients. Aging Dis. 2016, 7, 230-236. [CrossRef]
- De Rosa, A.; Guacci, A.; Peluso, S.; Del Gaudio, L.; Massarelli, M.; Barbato, S.; Criscuolo, C.; De Michele, G. A case of restless leg syndrome in a family with LRRK2 gene mutation. Int J Neurosci. 2013, 123, 283-285. [CrossRef]
- Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010, 72, 517–549. [CrossRef]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307-318. [CrossRef]
- Parekh, P.K.; Ozburn, A.R.; McClung, C.A. Circadian clock genes: effects on dopamine, reward and addiction. Alcohol 2015, 49, 341-349. [CrossRef]
- Kawarai, T.; Kawakami, H.; Yamamura, Y.; Nakamura, S. Structure and organization of the gene encoding human dopamine transporter Gene 1997, 195; 11–18. [CrossRef]
- Lou, F.; Li, M.; Luo, X.; Ren, Y. CLOCK 3111T/C Variant Correlates with Motor Fluctuation and Sleep Disorders in Chinese Patients with Parkinson’s Disease. Parkinsons Dis. 2018, 2018, 4670380. [CrossRef]
- Mattam, U.; Jagota, A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration, Biogerontology 2014, 16, 109–123. [CrossRef]
- Delgado-Lara, D.L.; González-Enríquez, G.V.; Torres-Mendoza, B.M.; González-Usigli, H.; Cárdenas-Bedoya, J.; Macías-Islas, M.A.; de la Rosa, A.C.; Jiménez-Delgado, A.; Pacheco-Moisés, F.; Cruz-Serrano, J.A.; Ortiz, G.G. Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed Pharmacother. 2020, 129, 110485. [CrossRef]
- Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol. 2010, 17, 550-554. [CrossRef]
- Ding, H.; Liu, S.; Yuan, Y.; Lin, Q.; Chan, P.; Cai, Y. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett. 2011, 499, 186-188. [CrossRef]
- Li, T.; Cheng, C.; Jia, C.; Leng, Y.; Qian, J.; Yu, H.; Liu, Y.; Wang, N.; Yang, Y.; Al-Nusaif, M.; Le, W. Peripheral Clock System Abnormalities in Patients With Parkinson’s Disease. Front Aging Neurosci. 2021, 13, 736026. [CrossRef]
- Ding, H.; Liu, S.; Yuan, Y.; Lin, Q.; Chan, P.; Cai, Y. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett. 2011, 499, 186-188. [CrossRef]
- Pradhan, G.; Samson, S.L, Sun, Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care 2013, 16, 619-624. [CrossRef]
- Tarianyk, K.A.; Lytvynenko, N.V.; Shkodina, A.D.; Kaidashev, I.P. THE ROLE OF CIRCADIAN REGULATION OF GHRELIN LEVELS IN PARKINSON’S DISEASE (LITERATURE REVIEW). Wiad Lek. 2021, 74, 1750-1753. [CrossRef]
- Li, Z.; Li, Y.; Xu, X.; Gu, J.; Chen, H.; Gui, Y. Exosomes rich in Wnt5 improved circadian rhythm dysfunction via enhanced PPARγ activity in the 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett. 2023, 802, 137139. [CrossRef]
- Hua, P.; Liu, W.; Zhao, Y.; Ding, H.; Wang, L.; Xiao, H. Tef polymorphism is associated with sleep disturbances in patients with Parkinson’s disease. Sleep Med. 2012, 13, 297-300. [CrossRef]
- Hua, P.; Cui, C.; Chen, Y.; Yao, Y.; Yu, C.Y.; Xu, L.G.; Liu, W.G. Thyrotroph embryonic factor polymorphism predicts faster progression of Parkinson’s disease in a longitudinal study. J Integr Neurosci. 2021, 20, 95-101. [CrossRef]
- Kalinderi, K.; Papaliagkas, V.; Fidani, L. Current genetic data on depression and anxiety in Parkinson’s disease patients. Parkinsonism Relat Disord. 2023, 105922. [CrossRef]
- Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 1998, 50, S16-22. [CrossRef]
- Korotkova, T.M.; Sergeeva, O.A.; Eriksson, K.S.; Haas, H.L.; Brown, R.E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci. 2003, 23, 7-11. [CrossRef]
- Eisensehr, I.; Linke, R.; Tatsch, K.; von Lindeiner, H.; Kharraz, B.; Gildehaus, F.J.; Eberle, R,; Pollmacher, T.; Schuld, A.; Noachtar, S. Alteration of the striatal dopaminergic system in human narcolepsy. Neurology 2003, 60, 1817-1819. [CrossRef]
- Dauvilliers, Y.; Neidhart, E.; Lecendreux, M.; Billiard, M.; Tafti, M. MAO-A and COMT polymorphisms and gene effects in narcolepsy. Mol Psychiatry 2001, 6, 367-372. [CrossRef]
- Rissling, I.; Körner, Y.; Geller, F.; Stiasny-Kolster, K.; Oertel, W.H.; Möller, J.C. Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep 2005, 28, 871-875. [CrossRef]
- Gasser T. Genetic basis of Parkinson’s dis-ease: inheritance, penetrance, and expression. Appl Clin Genet. 2011, 4, 67–80. [CrossRef]
- Abbas, N.; Lücking, C.B.; Ricard, S.; Dürr, A.; Bonifati, V.; De Michele, G.; Bouley, S.; Vaughan, J.R.; Gasser, T.; Marconi, R.; Broussolle, E.; Brefel-Courbon, C.; Harhangi, B.S.; Oostra, B.A.; Fabrizio, E.; Böhme, G.A.; Pradier, L.; Wood, N.W.; Filla, A.; Meco, G.; Denefle, P.; Agid, Y.; Brice, A. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum Mol Genet. 1999, 8, 567–574. [CrossRef]
- Hedrich, K.; Eskelson, C.; Wilmot, B.; Marder, K.; Harris, J.; Garrels, J.; Meija-Santana, H.; Vieregge, P.; Jacobs, H.; Bressman, S.B.; Lang, A.E.; Kann, M.; Abbruzzese, G.; Martinelli, P.; Schwinger, E.; Ozelius, L.J.; Pramstaller, P.P.; Klein, C.; Kramer, P. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord. 2004, 19, 1146–1157. [CrossRef]
- Farrer, M.; Chan, P.; Chen, R.; Tan, L.; Lincoln, S.; Hernandez, D.; Forno, L.; Gwinn-Hardy, K.; Petrucelli, L.; Hussey, J.; Singleton, A.; Tanner, C.; Hardy, J.; Langston, J.W. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol. 2001, 50, 293–300. [CrossRef]
- Kumru, H.; Santamaria, J.; Tolosa, E.; Valldeoriola, F.; Muñoz, E.; Marti, M.J.; Iranzo, A. Rapid eye movement sleep behavior disorder in parkinsonism with parkin mutations. Ann Neurol. 2004, 56, 599-603. [CrossRef]
- Limousin, N.; Konofal, E.; Karroum, E.; Lohmann, E.; Theodorou, I.; Dürr, A.; Arnulf, I. Restless legs syndrome, rapid eye movement sleep behavior disorder, and hypersomnia in patients with two parkin mutations. Mov Disord. 2009, 24, 1970-1976. [CrossRef]
- Goldwurm, S.; Menzies, M.L.; Banyer, J.L.; Powell, L.W.; Jazwinska, E.C. Identification of a novel Krueppel-related zinc finger gene (ZNF184) mapping to 6p21.3. Genomics 1997, 40, 486–489. [CrossRef]
- Zhang, B.; Cui, C.; Yu, H.; Li, G. Association between ZNF184 and symptoms of Parkinson’s disease in southern Chinese. Neurol. Sci. 2020, 41, 2121–2126. [CrossRef]
- Stevens, S.R.; Rasband, M.N. Ankyrins and neurological disease. Curr Opin Neurobiol. 2021, 69, 51-57. [CrossRef]
- Tone, D.; Ode, K.L.; Zhang, Q.; Fujishima, H.; Yamada, R.G.; Nagashima, Y.; Matsumoto, K.; Wen, Z.; Yoshida, S.Y.; Mitani, T.T.; et al. Distinct phosphorylation states of mammalian CaMKII_ control the induction and maintenance of sleep. PLoS Biol. 2022, 20, e3001813. [CrossRef]
- Wolfes, A.C.; Dean, C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol. 2020, 63, 198-209. [CrossRef]
- Fujioka, A.; Nagano, M.; Ikegami, K.; Masumoto, K.H.; Yoshikawa, T.; Koinuma, S.; Nakahama, K.I.; Shigeyoshi, Y. Circadian expression and specific localization of synaptotagmin17 in the suprachiasmatic nucleus, the master circadian oscillator in mammals. Brain Res. 2023, 1798, 148129. [CrossRef]
- Zhong, B.; Liu, X.; Wang, X.; Chang, S.H.; Liu, X.; Wang, A.; Reynolds, J.M.; Dong, C. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol. 2012, 13, 1110–1117. [CrossRef]
- Zheng, Q.; Li, G.; Wang, S.; Zhou, Y.; Liu, K.; Gao, Y.; Zhou, Y.; Zheng, L.; Zhu, L.; Deng, Q.; Wu, M.; Di, A.; Zhang, L.; Zhao, Y.; Zhang, H.; Sun, H.; Dong, C.; Xu, H.; Wang, X. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer’s brains is mediated by USP25. Sci Adv. 2021, 7, eabe1340. [CrossRef]
- Gan-Or, Z.; Girard, S.L.; Noreau, A.; Leblond, C.S.; Gagnon, J.F.; Arnulf, I.; Mirarchi, C.; Dauvilliers, Y.; Desautels, A.; Mitterling, T.; Cochen De Cock, V.; Frauscher, B.; Monaca, C.; Hogl, B.; Dion, P.A.; Postuma, R.B.; Montplaisir, J.Y.; Rouleau, G.A. Parkinson’s Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. J Mol Neurosci. 2015, 56, 617-262. [CrossRef]
- Do, C.B.; Tung. J.Y.; Dorfman, E.; Kiefer, A.K.; Drabant, E.M.; Francke, U.; Mountain, J.L.; Goldman, S.M.; Tanner, C.M.; Langston, J.W.; Wojcicki, A.; Eriksson, N. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011, 7, e1002141. [CrossRef]
- Nalls, M.A.; Pankratz, N.; Lill, C.M. Do, C.B.; Hernandez, D.G.; Saad, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014, 46, 989–993. [CrossRef]
- Titze-de-Almeida, R.; Titze-de-Almeida, S.S.; Ferreira, G.G.; Brito Silva, A.P.; de Paula Brandão, P.R.; Oertel, W.H.; Schenck, C.H.; Delgado Rodrigues, R.N. microRNA signatures in prodromal REM sleep behavior disorder and early Parkinson’s disease as noninvasive biomarkers. Sleep Med. 2021, 78, 160-168. [CrossRef]
- Fernández-Santiago, R.; Iranzo, A.; Gaig, C.; Serradell, M.; Fernández, M.; Tolosa, E.; Santamaría, J.; Ezquerra, M. MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann Neurol. 2015, 77, 895-901. Katunina, E.A.; Blokhin, V.; Nodel, M.R.; Pavlova, E.N.; Kalinkin, A.L.; Kucheryanu, V.G.; Alekperova, L.; Selikhova, M.V.; Martynov, M.Y.; Ugrumov, M.V. Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson’s Disease at the Prodromal Stage. Int J Mol Sci. 2023, 24, 1842. [CrossRef]
- Mays, C.E.; Soto, C. The stress of prion disease. Brain Res. 2016, 1648, 553-560. [CrossRef]
- Satoh, K. CSF biomarkers for prion diseases. Neurochem Int. 2022, 155, 105306. [CrossRef]
- Zhang, W.J.; Shang, X.L.; Peng, J.; Zhou, M.H.; Sun, W.J. Expression of prion protein inthecerebrospinal fluid of patients with Parkinson’s disease complicated with rapid eye movement sleep behavior disorder. Genet Mol Res. 2017, 16. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).