Submitted:
27 June 2023
Posted:
28 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of probable REM Sleep Behaviour Disoder
2.3. Genomic data processing
2.4. Statistical analysis
2.5. Machine-Learning models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boeve, B.F. Rem Sleep Behavior Disorder: Updated Review of the Core Features, the Rem Sleep Behavior Disorder-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions. Ann N Y Acad Sci 2010, 1184, 15–54. [Google Scholar] [PubMed]
- St Louis, E.K.; Boeve, B.F. Rem Sleep Behavior Disorder: Diagnosis, Clinical Implications, and Future Directions. Mayo Clin Proc 2017, 92, 1723–36. [Google Scholar] [PubMed]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J.; Lucas, J.A.; Parisi, J.E. Association of Rem Sleep Behavior Disorder and Neurodegenerative Disease May Reflect an Underlying Synucleinopathy. Mov Disord 2001, 16, 622–30. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F. Idiopathic Rem Sleep Behaviour Disorder in the Development of Parkinson's Disease. Lancet Neurol 2013, 12, 469–82. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A.; Santamaria, J.; Tolosa, E. The Clinical and Pathophysiological Relevance of Rem Sleep Behavior Disorder in Neurodegenerative Diseases. Sleep Med Rev 2009, 13, 385–401. [Google Scholar]
- McCarter, S.J.; Louis, E.K.S.; Boeve, B.F. Rem Sleep Behavior Disorder and Rem Sleep without Atonia as an Early Manifestation of Degenerative Neurological Disease. Curr Neurol Neurosci Rep 2012, 12, 182–92. [Google Scholar] [CrossRef]
- St Louis, E.K.; McCarter, S.J.; Boeve, B.F.; Silber, M.H.; Kantarci, K.; Benarroch, E.E.; Rando, A.; Tippmann-Peikert, M.; Olson, E.J.; Mauermann, M.L. Lesional Rem Sleep Behavior Disorder Localizes to the Dorsomedial Pons. Neurology 2014, 83, 1871–3. [Google Scholar] [CrossRef]
- Krohn, L.; Heilbron, K.; Blauwendraat, C.; Reynolds, R.H.; Yu, E.; Senkevich, K.; Rudakou, U.; Estiar, M.A.; Gustavsson, E.K.; Brolin, K.; et al. Genome-Wide Association Study of Rem Sleep Behavior Disorder Identifies Polygenic Risk and Brain Expression Effects. Nat Commun 2022, 13, 7496. [Google Scholar]
- Yu, E.; Krohn, L.; Ruskey, J.A.; Asayesh, F.; Spiegelman, D.; Shah, Z.; Chia, R.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; Gagnon, J.F.; Desautels, A.; Dauvilliers, Y.; Gigli, G.L.; Valente, M.; Janes, F.; Bernardini, A.; Högl, B.; Stefani, A.; Ibrahim, A.; Heidbreder, A.; Sonka, K.; Dusek, P.; Kemlink, D.; Oertel, W.; Janzen, A.; Plazzi, G.; Antelmi, E.; Figorilli, M.; Puligheddu, M.; Mollenhauer, B.; Trenkwalder, C.; Sixel-Döring, F.; De Cock, V.C.; Ferini-Strambi, L.; Dijkstra, F.; Viaene, M.; Abril, B.; Boeve, B.F.; Rouleau, G.A.; Postuma, R.B.; Scholz, S.W.; Gan-Or, Z. Hla in Isolated Rem Sleep Behavior Disorder and Lewy Body Dementia. medRxiv 2023. [Google Scholar] [CrossRef]
- Mufti, K.; Yu, E.; Rudakou, U.; Krohn, L.; Ruskey, J.A.; Asayesh, F.; Laurent, S.B.; Spiegelman, D.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; Gagnon, J.F.; Desautels, A.; Dauvilliers, Y.; Gigli, G.L.; Valente, M.; Janes, F.; Bernardini, A.; Högl, B.; Stefani, A.; Holzknecht, E.; Sonka, K.; Kemlink, D.; Oertel, W.; Janzen, A.; Plazzi, G.; Antelmi, E.; Figorilli, M.; Puligheddu, M.; Mollenhauer, B.; Trenkwalder, C.; Sixel-Döring, F.; De Cock, V.C.; Monaca, C.C.; Heidbreder, A.; Ferini-Strambi, L.; Dijkstra, F.; Viaene, M.; Abril, B.; Boeve, B.F.; Trempe, J.F.; Rouleau, G.A.; Postuma, R.B.; Gan-Or, Z. Novel Associations of Bst1 and Lamp3 with Rem Sleep Behavior Disorder. Neurology 2021, 96, e1402–e12. [Google Scholar] [CrossRef]
- Krohn, L.; Ruskey, J.A.; Rudakou, U.; Leveille, E.; Asayesh, F.; Hu, M.T.M.; Arnulf, I.; Dauvilliers, Y.; Högl, B.; Stefani, A.; Monaca, C.C.; Abril, B.; Plazzi, G.; Antelmi, E.; Ferini-Strambi, L.; Heidbreder, A.; Boeve, B.F.; Espay, A.J.; De Cock, V.C.; Mollenhauer, B.; Sixel-Döring, F.; Trenkwalder, C.; Sonka, K.; Kemlink, D.; Figorilli, M.; Puligheddu, M.; Dijkstra, F.; Viaene, M.; Oertel, W.; Toffoli, M.; Gigli, G.L.; Valente, M.; Gagnon, J.F.; Desautels, A.; Montplaisir, J.Y.; Postuma, R.B.; Rouleau, G.A.; Gan-Or, Z. Gba Variants in Rem Sleep Behavior Disorder: A Multicenter Study. Neurology 2020, 95, e1008–e16. [Google Scholar] [CrossRef] [PubMed]
- Ruskey, J.A.; Zhou, S.; Santiago, R.; Franche, L.A.; Alam, A.; Roncière, L.; Spiegelman, D.; Fon, E.A.; Trempe, J.F.; Kalia, L.V.; Postuma, R.B.; Dupre, N.; Rivard, G.E.; Assouline, S.; Amato, D.; Gan-Or, Z. The Gba P.Trp378gly Mutation Is a Probable French-Canadian Founder Mutation Causing Gaucher Disease and Synucleinopathies. Clin Genet 2018, 94, 339–45. [Google Scholar] [CrossRef] [PubMed]
- Thaler, A.; Bregman, N.; Gurevich, T.; Shiner, T.; Dror, Y.; Zmira, O.; Gan-Or, Z.; Bar-Shira, A.; Gana-Weisz, M.; Orr-Urtreger, A.; Giladi, N.; Mirelman, A. Parkinson's Disease Phenotype Is Influenced by the Severity of the Mutations in the Gba Gene. Parkinsonism Relat Disord 2018, 55, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Ouled Amar Bencheikh, B.; Ruskey, J.A.; Arnulf, I.; Dauvilliers, Y.; Monaca, C.C.; De Cock, V.C.; Gagnon, J.F.; Spiegelman, D.; Hu, M.T.M.; Högl, B.; Stefani, A.; Ferini-Strambi, L.; Plazzi, G.; Antelmi, E.; Young, P.; Heidbreder, A.; Mollenhauer, B.; Sixel-Döring, F.; Trenkwalder, C.; Oertel, W.; Montplaisir, J.Y.; Postuma, R.B.; Rouleau, G.A.; Gan-Or, Z. Lrrk2 Protective Haplotype and Full Sequencing Study in Rem Sleep Behavior Disorder. Parkinsonism Relat Disord 2018, 52, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Somerville, E.N.; Krohn, L.; Yu, E.; Rudakou, U.; Senkevich, K.; Ruskey, J.A.; Asayesh, F.; Ahmad, J.; Spiegelman, D.; Dauvilliers, Y.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; Gagnon, J.F.; Desautels, A.; Ibrahim, A.; Stefani, A.; Högl, B.; Gigli, G.L.; Valente, M.; Janes, F.; Bernardini, A.; Dusek, P.; Sonka, K.; Kemlink, D.; Plazzi, G.; Antelmi, E.; Biscarini, F.; Mollenhauer, B.; Trenkwalder, C.; Sixel-Doring, F.; Figorilli, M.; Puligheddu, M.; De Cock, V.C.; Oertel, W.; Janzen, A.; Ferini-Strambi, L.; Heibreder, A.; Monaca, C.C.; Abril, B.; Dijkstra, F.; Viaene, M.; Boeve, B.F.; Postuma, R.B.; Rouleau, G.A.; Gan-Or, Z. Npc1 Variants Are Not Associated with Parkinson's Disease, Rem-Sleep Behavior Disorder or Dementia with Lewy Bodies in European Cohorts. Neurobiol Aging 2023, 127, 94–98. [Google Scholar] [CrossRef]
- Rudakou, U.; Futhey, N.C.; Krohn, L.; Ruskey, J.A.; Heilbron, K.; Cannon, P.; Alam, A.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; Gagnon, J.F.; Desautels, A.; Dauvilliers, Y.; Toffoli, M.; Gigli, G.L.; Valente, M.; Högl, B.; Stefani, A.; Holzknecht, E.; Sonka, K.; Kemlink, D.; Oertel, W.; Janzen, A.; Plazzi, G.; Antelmi, E.; Figorilli, M.; Puligheddu, M.; Mollenhauer, B.; Trenkwalder, C.; Sixel-Döring, F.; De Cock, V.C.; Monaca, C.C.; Heidbreder, A.; Ferini-Strambi, L.; Dijkstra, F.; Viaene, M.; Abril, B.; Boeve, B.F.; Postuma, R.B.; Rouleau, G.A.; Gan-Or, Z. Smpd1 Variants Do Not Have a Major Role in Rapid Eye Movement Sleep Behavior Disorder. Neurobiol Aging 2020, 93, e5–e42. [Google Scholar] [CrossRef]
- Barber, T.R.; Lawton, M.; Rolinski, M.; Evetts, S.; Baig, F.; Ruffmann, C.; Gornall, A.; Klein, J.C.; Lo, C.; Dennis, G.; Bandmann, O.; Quinnell, T.; Zaiwalla, Z.; Ben-Shlomo, Y.; Hu, M.T.M. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in Rem Sleep Behavior Disorder. Sleep 2017, 40. [Google Scholar] [CrossRef]
- Fernández-Santiago, R.; Iranzo, A.; Gaig, C.; Serradell, M.; Fernández, M.; Tolosa, E.; Santamaría, J.; Ezquerra, M. Absence of Lrrk2 Mutations in a Cohort of Patients with Idiopathic Rem Sleep Behavior Disorder. Neurology 2016, 86, 1072–3. [Google Scholar] [CrossRef]
- Kestenbaum, M.; Alcalay, R.N. Clinical Features of Lrrk2 Carriers with Parkinson's Disease. Adv Neurobiol 2017, 14, 31–48. [Google Scholar]
- Zhang, J.; Xu, C.Y.; Liu, J. Meta-Analysis on the Prevalence of Rem Sleep Behavior Disorder Symptoms in Parkinson's Disease. BMC Neurol 2017, 17, 23. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.F.; Vendette, M.; Fantini, M.L.; Massicotte-Marquez, J.; Montplaisir, J. Quantifying the Risk of Neurodegenerative Disease in Idiopathic Rem Sleep Behavior Disorder. Neurology 2009, 72, 1296–300. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Cosentino, F.I.; Pizza, F.; Aricò, D.; Plazzi, G. The Timing between Rem Sleep Behavior Disorder and Parkinson's Disease. Sleep Breath 2014, 18, 319–23. [Google Scholar] [CrossRef] [PubMed]
- Neikrug, A.B.; Avanzino, J.A.; Liu, L.; Maglione, J.E.; Natarajan, L.; Corey-Bloom, J.; Palmer, B.W.; Loredo, J.S.; Ancoli-Israel, S. Parkinson's Disease and Rem Sleep Behavior Disorder Result in Increased Non-Motor Symptoms. Sleep Med 2014, 15, 959–66. [Google Scholar] [CrossRef]
- Zhu, R.L.; Xie, C.J.; Hu, P.P.; Wang, K. Clinical Variations in Parkinson's Disease Patients with or without Rem Sleep Behaviour Disorder: A Meta-Analysis. Sci Rep 2017, 7, 40779. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, M.; Szewczyk-Krolikowski, K.; Tomlinson, P.R.; Nithi, K.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T. Rem Sleep Behaviour Disorder Is Associated with Worse Quality of Life and Other Non-Motor Features in Early Parkinson's Disease. J Neurol Neurosurg Psychiatry 2014, 85, 560–6. [Google Scholar] [CrossRef]
- Parkinson Progression Marker Initiative. The Parkinson Progression Marker Initiative (Ppmi). Prog Neurobiol 2011, 95, 629–35. [Google Scholar] [CrossRef]
- Stiasny-Kolster, K.; Mayer, G.; Schäfer, S.; Möller, J.C.; Heinzel-Gutenbrunner, M.; Oertel, W.H. The Rem Sleep Behavior Disorder Screening Questionnaire--a New Diagnostic Instrument. Mov Disord 2007, 22, 2386–93. [Google Scholar] [CrossRef]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; Bras, J.; Young, E.; von Coelln, R.; Simón-Sánchez, J.; Schulte, C.; Sharma, M.; Krohn, L.; Pihlstrøm, L.; Siitonen, A.; Iwaki, H.; Leonard, H.; Faghri, F.; Gibbs, J.R.; Hernandez, D.G.; Scholz, S.W.; Botia, J.A.; Martinez, M.; Corvol, J.C.; Lesage, S.; Jankovic, J.; Shulman, L.M.; Sutherland, M.; Tienari, P.; Majamaa, K.; Toft, M.; Andreassen, O.A.; Bangale, T.; Brice, A.; Yang, J.; Gan-Or, Z.; Gasser, T.; Heutink, P.; Shulman, J.M.; Wood, N.W.; Hinds, D.A.; Hardy, J.A.; Morris, H.R.; Gratten, J.; Visscher, P.M.; Graham, R.R.; Singleton, A.B. Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson's Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet Neurol 2019, 18, 1091–102. [Google Scholar] [CrossRef]
- Högl, B.; Stefani, A. Rem Sleep Behavior Disorder (Rbd): Update on Diagnosis and Treatment. Somnologie (Berl) 2017, 21 (Suppl. 1), Suppl–1. [Google Scholar] [CrossRef]
- Szwedo, A.A.; Pedersen, C.C.; Ushakova, A.; Forsgren, L.; Tysnes, O.B.; Counsell, C.E.; Alves, G.; Lange, J.; Macleod, A.D.; Maple-Grødem, J. Association of Snca Parkinson's Disease Risk Polymorphisms with Disease Progression in Newly Diagnosed Patients. Front Neurol 2020, 11, 620585. [Google Scholar] [CrossRef]
- Höglinger, G.; Schulte, C.; Jost, W.H.; Storch, A.; Woitalla, D.; Krüger, R.; Falkenburger, B.; Brockmann, K. Gba-Associated Pd: Chances and Obstacles for Targeted Treatment Strategies. J Neural Transm (Vienna) 2022, 129, 1219–33. [Google Scholar] [CrossRef] [PubMed]
- Maple-Grødem, J.; Dalen, I.; Tysnes, O.B.; Macleod, A.D.; Forsgren, L.; Counsell, C.E.; Alves, G. Association of Gba Genotype with Motor and Functional Decline in Patients with Newly Diagnosed Parkinson Disease. Neurology 2021, 96, e1036–e44. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, G.; Greenbaum, L.; Israeli-Korn, S.; Fay-Karmon, T.; Livneh, V.; Ruskey, J.A.; Roncière, L.; Alam, A.; Gan-Or, Z.; Hassin-Baer, S. Carriers of Both Gba and Lrrk2 Mutations, Compared to Carriers of Either, in Parkinson's Disease: Risk Estimates and Genotype-Phenotype Correlations. Parkinsonism Relat Disord 2019, 62, 179–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cui, C.; Yu, H.; Li, G. Association between Znf184 and Symptoms of Parkinson's Disease in Southern Chinese. Neurol Sci 2020, 41, 2121–26. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Penzes, P. Ankyrins: Roles in Synaptic Biology and Pathology. Mol Cell Neurosci 2018, 91, 131–39. [Google Scholar] [CrossRef]
- Tone, D.; Ode, K.L.; Zhang, Q.; Fujishima, H.; Yamada, R.G.; Nagashima, Y.; Matsumoto, K.; Wen, Z.; Yoshida, S.Y.; Mitani, T.T.; Arisato, Y.; Ohno, R.I.; Ukai-Tadenuma, M.; Garçon, J.Y.; Kaneko, M.; Shi, S.; Ukai, H.; Miyamichi, K.; Okada, T.; Sumiyama, K.; Kiyonari, H.; Ueda, H.R. Distinct Phosphorylation States of Mammalian Camkiiβ Control the Induction and Maintenance of Sleep. PLoS Biol 2022, 20, e3001813. [Google Scholar] [CrossRef]
- Pandey, A.; Oliver, R.; Kar, S.K. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020, 2, 442–65. [Google Scholar] [CrossRef]
- Fujioka, A.; Nagano, M.; Ikegami, K.; Masumoto, K.H.; Yoshikawa, T.; Koinuma, S.; Nakahama, K.I.; Shigeyoshi, Y. Circadian Expression and Specific Localization of Synaptotagmin17 in the Suprachiasmatic Nucleus, the Master Circadian Oscillator in Mammals. Brain Res 2023, 1798, 148129. [Google Scholar] [CrossRef]
- Bagley, S.C.; White, H.; Golomb, B.A. Logistic Regression in the Medical Literature: Standards for Use and Reporting, with Particular Attention to One Medical Domain. J Clin Epidemiol 2001, 54, 979–85. [Google Scholar] [CrossRef]
- Kleinbaum, David G. ; Kupper, L.L.; Chambless, L.E. Logistic Regression Analysis of Epidemiologic Data: Theory and Practice. Communications in Statistics - Theory and Methods 1982, 11, 485–547. [Google Scholar] [CrossRef]
- Sperandei, S. Understanding Logistic Regression Analysis. Biochem Med (Zagreb) 2014, 24, 12–8. [Google Scholar] [CrossRef] [PubMed]
| Characteristic | Overall (N=330) |
no RBD (N=240) |
pRBD (N=90) |
p-value |
|---|---|---|---|---|
| Years of education | 0.008 | |||
| Mean (SD) | 15.6 (3.77) | 15.9 (3.59) | 14.6 (4.12) | |
| Median [Min, Max] | 16.0 [0, 26.0] | 16.0 [0, 25.0] | 15.0 [4.00, 26.0] | |
| Missing | 17 (5.1%) | 11 (4.6%) | 6 (6.7%) | |
| Sex | 0.533 | |||
| M | 143 (43.1%) | 107 (44.6%) | 36 (40.0%) | |
| F | 189 (56.9%) | 133 (55.4%) | 54 (60.0%) | |
| Age | 0.261 | |||
| Mean (SD) | 61.2 (10.9) | 61.6 (10.6) | 60.1 (11.8) | |
| Median [Min, Max] | 63.0 [31.0, 84.0] | 64.0 [31.0, 83.0] | 63.0 [31.0, 84.0] | |
| Age at PD onset | 0.050 | |||
| Mean (SD) | 57.8 (10.9) | 59.3 (11.0) | 55.2 (10.6) | |
| Median [Min, Max] | 60.0 [29.0, 80.0] | 61.0 [32.0, 80.0] | 58.5 [29.0, 70.0] | |
| Missing | 211 (63.6%) | 165 (68.8%) | 46 (51.1%) | |
| PD duration (months) | 0.028 | |||
| Mean (SD) | 37.3 (23.9) | 33.4 (23.6) | 43.2 (23.1) | |
| Median [Min, Max] | 31.0 [2.92, 85.0] | 29.0 [2.92, 80.1] | 43.1 [4.01, 85.0] | |
| Missing | 211 (63.6%) | 165 (68.8%) | 46 (51.1%) | |
| Antiparkinsonians | <0.001 | |||
| No | 198 (59.6%) | 158 (65.8%) | 40 (44.4%) | |
| Yes | 134 (40.4%) | 82 (34.2%) | 50 (55.6%) | |
| Levodopa | <0.001 | |||
| No | 241 (72.6%) | 188 (78.3%) | 53 (58.9%) | |
| Yes | 91 (27.4%) | 52 (21.7%) | 37 (41.1%) | |
| Dopamine agonists | 0.002 | |||
| No | 274 (82.5%) | 209 (87.1%) | 65 (72.2%) | |
| Yes | 58 (17.5%) | 31 (12.9%) | 25 (27.8%) | |
| MAO-B inhibitors | 0.016 | |||
| No | 240 (72.3%) | 183 (76.3%) | 56 (62.2%) | |
| Yes | 92 (27.7%) | 57 (23.8%) | 34 (37.8%) | |
| Entacapano | 0.015 | |||
| No | 310 (93.4%) | 230 (95.8%) | 79 (87.8%) | |
| Yes | 22 (6.63%) | 10 (4.17%) | 11 (12.2%) | |
| Levodopa equivalent daily dose | 0.001 | |||
| Mean (SD) | 280 (714) | 158 (323) | 564 (1170) | |
| Median [Min, Max] | 0 [0, 7630] | 0 [0, 2400] | 140 [0, 7630] | |
| Elixhauser comorbidities score | 0.186 | |||
| Mean (SD) | 1.26 (3.14) | 1.13 (2.85) | 1.64 (3.83) | |
| Median [Min, Max] | 0 [0, 20.0] | 0 [0, 20.0] | 0 [0, 19.0] | |
| MDS-UPDRS I-III | <0.001 | |||
| Mean (SD) | 18.4 (22.0) | 14.4 (17.5) | 29.5 (28.5) | |
| Median [Min, Max] | 8.00 [0, 130] | 7.00 [0, 106] | 22.0 [0, 130] | |
| Missing | 8 (2.4%) | 2 (0.8%) | 4 (4.4%) | |
| Dyskinesias | 0.84 | |||
| No | 313 (96.3%) | 230 (96.6%) | 83 (95.4%) | |
| Yes | 12 (3.69%) | 8 (3.36%) | 4 (4.60%) | |
| Missing | 7 (2.1%) | 2 (0.8%) | 3 (3.3%) | |
| Motor fluctuations | <0.001 | |||
| No | 296 (91.1%) | 226 (95.0%) | 70 (80.5%) | |
| Yes | 29 (8.92%) | 12 (5.04%) | 17 (19.5%) | |
| Missing | 7 (2.1%) | 2 (0.8%) | 3 (3.3%) | |
| MoCA score | 0.360 | |||
| Mean (SD) | 27.4 (2.76) | 27.5 (2.57) | 27.2 (3.24) | |
| Median [Min, Max] | 28.0 [11.0, 30.0] | 28.0 [11.0, 30.0] | 28.0 [12.0, 30.0] | |
| Missing | 19 (5.7%) | 12 (5.0%) | 7 (7.8%) | |
| Minimal cognitive impairment | 0.999 | |||
| No | 148 (95.5%) | 98 (95.1%) | 50 (96.2%) | |
| Yes | 7 (4.52%) | 5 (4.85%) | 2 (3.85%) | |
| Missing | 177 (53.3%) | 137 (57.1%) | 38 (42.2%) | |
| PD Dementia | 0.999 | |||
| No | 152 (98.1%) | 102 (99.0%) | 50 (96.2%) | |
| Yes | 3 (1.94%) | 1 (0.971%) | 2 (3.85%) | |
| Missing | 177 (53.3%) | 137 (57.1%) | 38 (42.2%) |
| Number of risk alleles for each SNP | Overall (N=330) |
No RBD (N=240) |
pRBD (N=90) |
Chi-sq p-value |
Additive model OR (95% CI) p-value, (AIC) |
Dominant model OR (95% CI) p-value, (AIC) |
Recessive model OR (95% CI) p-value, (AIC) |
Full modelOR (95% CI) p-value FDR p-value |
|---|---|---|---|---|---|---|---|---|
| GBA_N370S_rs76763715 | 0.004 | - | 3.22 (1.48-7.07) | - | 3.38 (1.45-7.93) | |||
| 0 | 301 (91.3%) | 226 (94.2%) | 75 (83.3%) | 0.002 (382.14) | 0.004 | |||
| 1 | 29 (8.73%) | 14 (5.83%) | 15 (16.7%) | SELECTED | 0.018 | |||
| 2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
| GBA_E365K_rs2230288 | 0.026 | - | 7.00 (1.47-49.51) | - | 5.59 (1.05-42.09) | |||
| 0 | 323 (97.9%) | 238 (99.2%) | 85 (94.4%) | 0.02 (384.69) | 0.050 | |||
| 1 | 7 (2.11%) | 2 (0.833%) | 5 (5.56%) | SELECTED | 0.084 | |||
| 2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
| ACMSD.TMEM163_rs6430538 | 0.022 | 0.64 (0.45-0.89) | 0.64 (0.39-1.06) | 0.39 (0.19-0.77) | 0.48 (0.22-0.99) | |||
| 0 | 115 (34.9%) | 77 (32.1%) | 38 (42.2%) | 0.01 (383.93) | 0.08 (387.81) | 0.009 (383.03) | 0.050 | |
| 1 | 142 (43.1%) | 101 (42.1%) | 41 (45.6%) | SELECTED | 0.084 | |||
| 2 | 73 (22.0%) | 62 (25.8%) | 11 (12.2%) | |||||
| MCCC1_rs12637471 | 0.077 | 1.07 (0.69-1.64) | 0.90 (0.54-1.48) | 3.35 (0.98-11.92) | 3.05 (0.83-11.65) | |||
| 0 | 207 (62.3%) | 149 (62.1%) | 58 (64.4%) | 0.74 (390.62) | 0.69 (390.57) | 0.05 (386.97) | 0.110 | |
| 1 | 112 (34.3%) | 86 (35.8%) | 26 (28.9%) | SELECTED | 0.110 | |||
| 2 | 11 (3.31%) | 5 (2.08%) | 6 (6.67%) | |||||
| FAM47E.STBD1_rs6812193 | 0.077 | 1.22 (0.84-1.76) | 1.02 (0.62-1.68) | 2.14 (1.05-4.27) | 1.77 (0.79-3.91) | |||
| 0 | 132 (41.9%) | 100 (41.7%) | 37 (41.1%) | 0.26 (389.49) | 0.93 (390.72) | 0.03 (386.31) | 0.150 | |
| 1 | 155 (46.7%) | 118 (49.2%) | 37 (41.1%) | SELECTED | 0.170 | |||
| 2 | 38 (11.4%) | 22 (9.17%) | 16 (17.8%) | |||||
| SNCA_A53T_rs104893877 | <0.001 | - | 7.37 (2.39-27.48) | - | 8.21 (2.26-36.34) | |||
| 0 | 312 (95.8%) | 236 (98.3%) | 80 (88.9%) | <0.001 (378.33) | 0.002 | |||
| 1 | 14 (4.22%) | 4 (1.67%) | 10 (11.1%) | SELECTED | 0.014 | |||
| 2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
| ANK2.CAMK2D_rs78738012 | 0.005 | 2.26 (1.34-3.82) | 2.47 (1.39-4.36) | 2.70 (0.32-22.81) | 2.12 (1.08-4.10) | |||
| 0 | 265 (80.1%) | 203 (84.6%) | 62 (68.9%) | 0.002 (381.38) | 0.001 (381.19) | 0.32 (389.79) | 0.030 | |
| 1 | 61 (18.7%) | 35 (14.6%) | 26 (28.9%) | SELECTED | 0.050 | |||
| 2 | 4 (1.20%) | 2 (0.833%) | 2 (2.22%) | |||||
| ZNF184_rs9468199 | 0.022 | 1.58 (1.04-2.41) | 1.92 (1.17-3.16) | 0.88 (0.19-3.04) | 1.89 (1.08-3.33) | |||
| 0 | 213 (64.8%) | 165 (68.8%) | 48 (53.3%) | 0.03 (386.15) | 0.009 (384.07) | 0.85 (390.70) | 0.030 | |
| 1 | 105 (31.6%) | 66 (27.5%) | 39 (43.3%) | SELECTED | 0.050 | |||
| 2 | 12 (3.61%) | 9 (3.75%) | 3 (3.33%) | |||||
| CTSB_rs1293298 | 0.108 | 0.96 (0.64-1.41) | 0.77 (0.47-1.25) | 1.87 (0.78-4.30) | 1.91 (0.73-4.86) | |||
| 0 | 157 (47.9%) | 110 (45.8%) | 47 (52.2%) | 0.84 (390.69) | 0.30 (389.66) | 0.14 (388.67) | 0.17 | |
| 1 | 148 (44.6%) | 115 (47.9%) | 33 (36.7%) | SELECTED | 0.17 | |||
| 2 | 25 (7.53%) | 15 (6.25%) | 10 (11.1%) | |||||
| COQ7.SYT17_rs11343 | 0.007 | 0.81 (0.57-1.15) | 1.19 (0.69-2.10) | 0.38 (0.17-0.75) | 0.36 (0.15-0.78) | |||
| 0 | 93 (28.0%) | 70 (29.2%) | 23 (25.6%) | 0.25 (389.41) | 0.51 (390.30) | 0.009 (382.81) | 0.010 | |
| 1 | 168 (50.9%) | 111 (46.3%) | 57 (63.3%) | SELECTED | 0.041 | |||
| 2 | 69 (21.1%) | 59 (24.6%) | 10 (11.1%) | |||||
| ZNF646.KAT8.BCKDK_rs14235 | 0.07 | 1.24 (0.87-1.75) | 1.73 (1.03-3.01) | 0.89 (0.45-1.69) | 1.67 (0.93-3.08) | |||
| 0 | 117 (35.5%) | 93 (38.8%) | 24 (26.7%) | 0.22 (389.23) | 0.04 (386.43) | 0.74 (390.62) | 0.09 | |
| 1 | 158 (47.9%) | 106 (44.2%) | 52 (57.8%) | SELECTED | 0.11 | |||
| 2 | 55 (16.6%) | 41 (17.1%) | 14 (15.6%) |
| Model | AUC ROC (%) | Sensitivity (%) | Specificity (%) | Calculated prevalence (%) |
|---|---|---|---|---|
| Logistic regression | 67.00 | 39 (20-61) | 95 (87-99) | 13 (7-21) |
| Bayes Naïve | 67.00 | 39 (20-61) | 95 (87-99) | 13 (7-21) |
| Decision tree | 55.27 | 13 (3-34) | 97 (91-100) | 5 (2-11) |
| Boosted Decision tree | 79.12 | 22 (7-44) | 99 (93-100) | 6 (2-12) |
| Neural Network | 80.63 | 35 (16-57) | 95 (87-99) | 12 (6-20) |
| SVM | 76.00 | 9 (1-28) | 99 (93-100) | 3 (1-8) |
| Random Forrest | 71.40 | 23 (15-32) | 96 (89-99) | 7 (3-14) |
| Logistic regression model | Only genetic |
Genetic + Clinical | Genetic+ Clinical (LOOCV) |
|---|---|---|---|
| Model variables | |||
| GBA_N370S_rs76763715 (Dominant) | 1.67 | 1.20 | 1.62 |
| GBA_E365K_rs2230288 (Dominant) | 3.15 | 4.02 | 6.45 |
| ACMSD.TMEM163_rs6430538 (Recessive) | 0.44 | 0.57* | 0.60 |
| MCCC1_rs12637471 (Recessive) | 3.31 | 2.48 | 2.34 |
| FAM47E.STBD1_rs6812193 (Recessive) | 1.91 | 1.59 | 1.62 |
| SNCA_A53T_rs104893877 (Dominant) | 6.49* | 3.32 | 3.65 |
| ANK2.CAMK2D_rs78738012 (Dominant) | 1.85 | 1.76 | 2.02 |
| ZNF184_rs9468199 (Dominant) | 1.85 | 2.01 | 2.12 |
| CTSB_rs1293298 (Recessive) | 2.07 | 2.25 | 2.19 |
| COQ7.SYT17_rs11343 (Recessive) | 0.40 | 0.38 | 0.34 |
| ZNF646.KAT8.BCKDK_rs14235 (Dominant) | 1.53 | 1.38 | 1.67 |
| Levodopa-Equivalent Daily Dose | - | 1.00 | 1.00 |
| MDS-UPDRS I+II+III | - | 1.02 | 1.02 |
| Motor Fluctuations | - | 0.89 | 1.06 |
| Model parameters | |||
| Sample Size | 101 | 97 | 324 |
| ROC (%) | 67.0 | 82.5 | 78.3 |
| Sensitivity (%) | 39 (20-61) | 48 (26-70) | 38 (28-49) |
| Specificity (%) | 95 (87-99) | 97 (91-100) | 95 (92-98) |
| Model parameters | |||
| Sample Size | 101 | 97 | 324 |
| ROC (%) | 67.0 | 82.5 | 78.3 |
| Sensitivity (%) | 39 (20-61) | 48 (26-70) | 38 (28-49) |
| Specificity (%) | 95 (87-99) | 97 (91-100) | 95 (92-98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
