Submitted:
30 November 2023
Posted:
30 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Staphylococcus aureus Strains
2.2. Antibiotic Susceptibility Testing
2.3. Detection of Penicillin-Binding Protein (PBP)2´
2.4. Enzyme Production, Nuclease Activity, and Hemolysis of Selected Strains
2.5. Biofilm Formation (Slime Production) by Qualitative and Quantitative Methods
2.6. Antibacterial and Antibiofilm Effects of Partially Purified Enterocins against Selected MRSA Strains
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. [Google Scholar] [CrossRef]
- Lozano, C.; Gharsa, H.; Ben Slama, K.; Zarazaga, M.; Torres, C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Bzdil, J.; Zouharova, M.; Nedbalcova, K.; Sladecek, V.; Senk, D.; Holy, O. Oxacillin (methicillin) resistant staphylococci in domestic animals in the Czech Republic. Pathogens 2021, 10, 1585. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Nejma, M.B.; Dallel, I.; Tobji, S.; Amor, A.B.; Janel, S.; Lafont, F.; Aouni, M.; Mastouri, M. High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. Microb. Pathog. 2016, 91, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria, FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar]
- Nes, I.F.; Holo, H. Class II antimicrobial peptidesfrom lactic acid bacteria. Biopolymers 2000, 55, 50–61. [Google Scholar] [CrossRef] [PubMed]
- van Staden, A.D.P.; van Zyl, W.F.; Trindade, M.; Dicks, L.M.T.; Smith, C. Therapeutic application of lantibiotics and other lanthipeptides: Old and new findings. Appl. Environ. Microbiol. 2021, 87, e0018621. [Google Scholar] [CrossRef] [PubMed]
- Franz, CH.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme, FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar]
- Al Atya, A.K.; Belguesmia, Y.; Chataigne, G.; Ravallec, R.; Vachée, A.; Szunerits, S.; Boukherroub, R.; Drider, D. Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front. Microbiol. 2016, 7, 192139. [Google Scholar] [CrossRef]
- Simonová, M.P.; Maďar, M.; Lauková, A. Effect of enterocins against methicillin-resistant animal-derived staphylococci. Vet. Res. Commun. 2021, 45, 467–473. [Google Scholar] [CrossRef]
- Simonová, M.; Fotta, M.; Lauková, A. Characteristics of Staphylococcus aureus isolated from rabbits. Folia Microbiol. 2007, 52, 291–296. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; The Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Semedo, T.; Santos, M.A.; Lopes, M.F.S.; Figueiredo Marques, J.J.; Barreto Crespo, M.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci: A common trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Chehab, O.; Zmantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 2003, 94, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 94, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett. Appl. Microbiol., 1993, 16, 257–260. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Ondruška, Ľ.; Jurčík, R.; Rafay, J. Enterococcus faecium CCM7420, bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. Czech J. Anim. Sci. 2009, 54, 376–386. [Google Scholar] [CrossRef]
- Strompfová, V.; Lauková, A. In vitro study on bacteriocin production of enterococci associated with chickens. Anaerobe 2007, 13, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Marciňáková, M.; Lauková, A.; Simonová, M.; Strompfová, V.; Koréneková, B.; Naď, P. A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech J. Anim. Sci. 2008, 53, 336–345. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Szabóová, R.; Kmeť, V.; Tomáška, M. Bioactive strains of Enterococcus durans isolated from ewes´ lump cheese. Slovak Vet. J. 2012, 37, 277–278. [Google Scholar]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of the antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 9, 9–20. [Google Scholar] [CrossRef]
- Jadhav, S.; Shah, R.; Bhave, M.; Palombo, E.A. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control 2013, 29, 125–130. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- De Preter, V.; Raemen, H.; Cloetens, L.; Houben, E.; Rutgeerts, P.; Verbeke, K. Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur. J. Clin. Nutr. 2008, 62, 225–231. [Google Scholar] [CrossRef]
- Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, Y.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent advances on sources and industrial applications of lipases. Biotechnol. Prog. 2018, 34, 5–28. [Google Scholar] [CrossRef]
- Gündoğan, N.; Citak, S.; Turan, E. Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurised milk and ice cream samples. Food Control 2006, 17, 389–392. [Google Scholar] [CrossRef]
- Kiedrowski, M.R.; Kavanaugh, J.S.; Malone, C.L.; Mootz, J.M.; Voyich, J.M.; Smeltzer, M.S.; Bayles, K.W.; Horswill, A.R. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e26714. [Google Scholar] [CrossRef]
- Tam, K.; Torres, V.J. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 2019, 7, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, H.; Asghari, B.; Tahmasebi, H.; Arabestani, M.R. Identification of hemolysine genes and their association with antimicrobial resistance pattern among clinical isolates of Staphylococcus aureus in West of Iran. Adv Biomed Res. 2018, 7, 153. [Google Scholar]
- Dubravka, M.; Lazić, S.; Vidić, B.; Petrovič, J.; Bugarski, D.; Šeguljev, Z. Slime production and biofilm forming ability by Staphylococcus aureus bovine mastitis isolates. Acta Vet. Beograd 2010, 60, 217–226. [Google Scholar]
- Silva, V.; Correia, L.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Biofilm formation of Staphylococcus aureus from pets, livestock, and wild animals: Relationship with clonal lineages and antimicrobial resistance. Antibiotics 2022, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Bino, E.; Lauková, A.; Ščerbová, J.; Kubašová, I.; Kandričáková, A.; Strompfová, V.; Miltko, R.; Belzecki, G. Fecal coagulase-negative staphylococci from horses, their species variability and biofilm formation. Folia Microbiol. 2019, 64, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Bino, E.; Kubašová, I.; Strompfová, V.; Miltko, R.; Belzecki, G.; Pogány Simonová, M. Characterisation of faecal staphylococci from Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus) and their susceptibility to gallidermin. Probiotics Antimicrob. Proteins 2020, 12, 302–310. [Google Scholar] [CrossRef]
- David, O.M.; Alese, M.O.; Komolafe, D.M.; Adejare, I.J.; Alese, O.O.; Omonisi, A.E. In vitro and in vivo antimicrobial activity of partially purified enterocin produced by Enterococcus faecalis and its application in wound healing. Afr. J. Clin. Exp. Microbiol. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Simonová, M.; Lauková, A. Isolation of fecal Enterococcus faecium strains from rabbits their sensitivity to antibiotics and ability to bacteriocin production. Bull. Vet. Inst. Puławy 2004, 48, 383–386. [Google Scholar]
- Hanchi, H.; Hammami, R.; Gingras, H.; Kourda, R.; Bergeron, M.G.; Ben Hamida, J.; Ouellette, M.; Fliss, I. Inhibition of MRSA and of Clostridium difficile by durancin 61A: Synergy with bacteriocins and antibiotics. Future Microbiol. 2017, 12, 205–212. [Google Scholar] [CrossRef]
- Caballero Gómez, N.; Abriouel, H.; Grande, M.J.; Pérez Pulido, R.; Gálvez, A. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. Int. J. Food Microbiol. 2013, 163, 96–100. [Google Scholar] [CrossRef]
- Molham, F.; Khairalla, A.S.; Azmy, A.F.; El-Gebaly, E.; El-Gendy, A.O.; AbdelGhani, S. Anti-proliferative and anti-biofilm potentials of bacteriocins produced by non-pathogenic Enterococcus sp. Probiotics Antimicrbo. Prot. 2021, 13, 571–585. [Google Scholar] [CrossRef] [PubMed]
| MRSA | ALP | E | EL | L | LA | VA | CA | T | CHT | |
| 2A/2 | 5 | 10 | 10 | 5 | 10 | 5 | 5 | 5 | 5 | |
| 5A/2 | 5 | 20 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| 5B/1 | 5 | 20 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| 6A/1 | 5 | 20 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| 6A/2 | 5 | 20 | 10 | 5 | 10 | 10 | 5 | 5 | 5 | |
| Nip | 5 | 20 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| RUM1 | 10 | 20 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| K/2 | 5 | 10 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | |
| MRSA | ACP | N | AGA | BGA | BGLR | AGL | BGL | NABGL | AM | AF |
| 2A/2 | 10 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 5A/2 | 10 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 5B/1 | 10 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6A/1 | 5 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6A/2 | 10 | 10 | 5 | 5 | 5 | 10 | 5 | 5 | 5 | 5 |
| Nip | 5 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| RUM1 | 5 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| K/2 | 10 | 10 | 5 | 5 | 5 | 10 | 5 | 5 | 5 | 5 |
| MRSA | PBP2´Test | Hemolysis | DNase Activity | Slime Production/Biofilm Formation | |||
|---|---|---|---|---|---|---|---|
| CRA-24 h | CRA-48 h | CRA-72 h | Plate Assay (A570) | ||||
| 2A/2 | + | γ | - | + | + | + | 0.546 |
| 5A/2 | + | β | + | + | + | + | 0.606 |
| 5B/1 | + | β | + | + | + | + | 0.556 |
| 6A/1 | + | γ | + | + | + | + | 0.556 |
| 6A/2 | + | β | - | - | + | + | 0.526 |
| Nip1 | + | β | + | - | + | + | 0.546 |
| RUM1 | + | β | + | + | + | + | 0.586 |
| K/2 | + | β | + | - | - | + | 0.606 |
| MRSA | EntA/P | EntM | Ent7420 | Ent9296 | Ent55 | Ent412 | Ent4231 | DurED26E/7 |
|---|---|---|---|---|---|---|---|---|
| 2A/2 | 12800 | 6400 | 3200 | 3200 | 800 | 1600 | 0 | 800 |
| 5A/2 | 200 | 100 | 100 | 200 | 200 | 100 | 0 | 200 |
| 5B/1 | 200 | 100 | 0 | 100 | 100 | 100 | 0 | 100 |
| 6A/1 | 12800 | 6400 | 12800 | 6400 | 3200 | 6400 | 0 | 800 |
| 6A/2 | 400 | 6400 | 12800 | 400 | 400 | 200 | 0 | 200 |
| Nip1 | 12800 | 6400 | 3200 | 1600 | 1600 | 800 | 0 | 400 |
| RUM1 | 12800 | 6400 | 12800 | 6400 | 1600 | 3200 | 0 | 1600 |
| K/2 | 12800 | 6400 | 12800 | 6400 | 3200 | 3200 | 0 | 1600 |
| MRSA | EntA/P | EntM | Ent7420 | Ent9296 | Ent55 | Ent412 | Ent4231 | DurED26E/7 |
|---|---|---|---|---|---|---|---|---|
| 2A/2 | 87.6 | 88.9 | 96.8 | 90.3 | 96.1 | 90.4 | 0 | 94.7 |
| 5A/2 | 91.0 | 85.7 | 97.0 | 95.9 | 96.9 | 88.2 | 0 | 94.2 |
| 5B/1 | 86.9 | 88.4 | 96.4 | 87.0 | 94.5 | 90.4 | 0 | 93.4 |
| 6A/1 | 88.0 | 86.9 | 96.0 | 87.0 | 96.4 | 88.4 | 0 | 93.2 |
| 6A/2 | 89.5 | 81.9 | 94.8 | 93.6 | 95.2 | 90.7 | 0 | 93.4 |
| Nip1 | 90.5 | 88.0 | 96.8 | 87.1 | 94.5 | 90.7 | 0 | 95.7 |
| RUM1 | 91.2 | 84.7 | 96.8 | 91.1 | 64.9 | 90.4 | 0 | 93.2 |
| K/2 | 91.1 | 87.0 | 96.2 | 96.3 | 93.2 | 90.9 | 0 | 94.7 |
| Average | 89.5 | 86.4 | 96.4 | 91.0 | 91.5 | 90.0 | 0 | 94.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
