Submitted:
24 November 2023
Posted:
27 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Aquaporin Expression in Clinical and Experimental Models of Sepsis
3. Aquaporin Long Non-Coding RNAs and Micro RNAs in Clinical and Experimental Models of Sepsis
4. Aquaporin Regulators in Experimental Models of Sepsis
5. The Role of Aquaporin Single Nucleotide Polymorphisms in Clinical Sepsis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kreida, S.; Tornroth-Horsefield, S. Structural insights into aquaporin selectivity and regulation. Curr Opin Struct Biol 2015, 33, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Anderson, M.O.; Papadopoulos, M.C. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 2014, 13, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Agre, P.; King, L.S.; Yasui, M.; Guggino, W.B.; Ottersen, O.P.; Fujiyoshi, Y.; Engel, A.; Nielsen, S. Aquaporin water channels--from atomic structure to clinical medicine. J Physiol 2002, 542, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Yasui, M. Molecular mechanisms and drug development in aquaporin water channel diseases: structure and function of aquaporins. J Pharmacol Sci 2004, 96, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Markou, A.; Unger, L.; Abir-Awan, M.; Saadallah, A.; Halsey, A.; Balklava, Z.; Conner, M.; Tornroth-Horsefield, S.; Greenhill, S.D.; Conner, A.; et al. Molecular mechanisms governing aquaporin relocalisation. Biochim Biophys Acta Biomembr 2022, 1864, 183853. [Google Scholar] [CrossRef]
- Meli, R.; Pirozzi, C.; Pelagalli, A. New Perspectives on the Potential Role of Aquaporins (AQPs) in the Physiology of Inflammation. Front Physiol 2018, 9, 101. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Kissoon, N.; Limmathurotsakul, D.; Bory, S.; Mutahunga, B.; Seymour, C.W.; Angus, D.C.; West, T.E. The global burden of sepsis: barriers and potential solutions. Crit Care 2018, 22, 232. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: time for a reappraisal. Crit Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Vassiliou, A.G.; Maniatis, N.A.; Orfanos, S.E.; Mastora, Z.; Jahaj, E.; Paparountas, T.; Armaganidis, A.; Roussos, C.; Aidinis, V.; Kotanidou, A. Induced expression and functional effects of aquaporin-1 in human leukocytes in sepsis. Crit Care 2013, 17, R199. [Google Scholar] [CrossRef]
- Matsushima, A.; Ogura, H.; Koh, T.; Shimazu, T.; Sugimoto, H. Enhanced expression of aquaporin 9 in activated polymorphonuclear leukocytes in patients with systemic inflammatory response syndrome. Shock 2014, 42, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Rump, K.; Unterberg, M.; Dahlke, A.; Nowak, H.; Koos, B.; Bergmann, L.; Siffert, W.; Schafer, S.T.; Peters, J.; Adamzik, M.; et al. DNA methylation of a NF-kappaB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep 2019, 9, 18511. [Google Scholar] [CrossRef] [PubMed]
- Talwar, S.; Munson, P.J.; Barb, J.; Fiuza, C.; Cintron, A.P.; Logun, C.; Tropea, M.; Khan, S.; Reda, D.; Shelhamer, J.H.; et al. Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans. Physiol Genomics 2006, 25, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Varisco, B.M. The pharmacology of acute lung injury in sepsis. Adv Pharmacol Sci 2011, 2011, 254619. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Luo, J.; Hu, W.; Ye, C.; Ren, P.; Wang, Y.; Li, X. Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS. Dis Markers 2022, 2022, 1614208. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.D.; Huang, Y.L.; Guo, S.Y.; Li, N.; Yang, X.W.; Sui, A.R.; Wu, Q.; Zhang, Y.; Kong, Y.; Li, Q.F.; et al. AQP4 Aggravates Cognitive Impairment in Sepsis-Associated Encephalopathy through Inhibiting Na(v) 1.6-Mediated Astrocyte Autophagy. Adv Sci (Weinh) 2023, 10, e2205862. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Hu, J.; Wang, Z.; Zong, H.; Zhang, L.; Zhang, R.; Sun, L. LncRNA H19 functions as an Aquaporin 1 competitive endogenous RNA to regulate microRNA-874 expression in LPS sepsis. Biomed Pharmacother 2018, 105, 1183–1191. [Google Scholar] [CrossRef]
- Rump, K.; Unterberg, M.; Bergmann, L.; Bankfalvi, A.; Menon, A.; Schafer, S.; Scherag, A.; Bazzi, Z.; Siffert, W.; Peters, J.; et al. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: a prospective laboratory and patient study. J Transl Med 2016, 14, 321. [Google Scholar] [CrossRef]
- da Silva, I.V.; Cardoso, C.; Martinez-Banaclocha, H.; Casini, A.; Pelegrin, P.; Soveral, G. Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response. Cell Mol Life Sci 2021, 78, 3073–3085. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wang, G.; Dong, C.; Wang, X.; Bai, C. Expression of AQP-1, AQP-3, AQP-4 and AQP-5 in pulmonary tissues of mice with endotoxin-induced acute lung injury. Academic Journal of Second Military Medical University 2008, 29, 131–135. [Google Scholar] [CrossRef]
- Hasan, B.; Li, F.S.; Siyit, A.; Tuyghun, E.; Luo, J.H.; Upur, H.; Ablimit, A. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respir Physiol Neurobiol 2014, 200, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Rump, K.; Brendt, P.; Frey, U.H.; Schafer, S.T.; Siffert, W.; Peters, J.; Adamzik, M. Aquaporin 1 and 5 expression evoked by the beta2 adrenoreceptor agonist terbutaline and lipopolysaccharide in mice and in the human monocytic cell line THP-1 is differentially regulated. Shock 2013, 40, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, A.G.; Manitsopoulos, N.; Kardara, M.; Maniatis, N.A.; Orfanos, S.E.; Kotanidou, A. Differential Expression of Aquaporins in Experimental Models of Acute Lung Injury. In Vivo 2017, 31, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Hong-Min, F.; Chun-Rong, H.; Rui, Z.; Li-Na, S.; Ya-Jun, W.; Li, L. CGRP 8-37 enhances lipopolysaccharide-induced acute lung injury and regulating aquaporin 1 and 5 expressions in rats. J Physiol Biochem 2016, 73, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, Y.; Han, M.; Liu, J.; Sun, Y. Emodin attenuates acute lung injury in Cecal-ligation and puncture rats. Int Immunopharmacol 2020, 85, 106626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, P.; Wu, Y.; Zhu, Y.; Peng, X.Y.; Xiang, X.M.; Xue, M.Y.; Li, Q.H.; Li, J.X.; Yan, Q.G.; et al. Role of AQP3 in the Vascular Leakage of Sepsis and the Protective Effect of Ss-31. J Cardiovasc Pharmacol 2021, 78, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, W.; Yu, G.; Liu, Q.; Jin, Y. Cytoprotective effect of aquaporin 1 against lipopolysaccharide-induced apoptosis and inflammation of renal epithelial HK-2 cells. Exp Ther Med 2018, 15, 4243–4252. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, C.; Tang, K.; Dong, X.; Xue, L.; Su, G.; Zhang, W.; Jin, Y. Aquaporin-1 attenuates macrophage-mediated inflammatory responses by inhibiting p38 mitogen-activated protein kinase activation in lipopolysaccharide-induced acute kidney injury. Inflamm Res 2019, 68, 1035–1047. [Google Scholar] [CrossRef]
- Rodrigues, C.E.; Sanches, T.R.; Volpini, R.A.; Shimizu, M.H.; Kuriki, P.S.; Camara, N.O.; Seguro, A.C.; Andrade, L. Effects of continuous erythropoietin receptor activator in sepsis-induced acute kidney injury and multi-organ dysfunction. PLoS One 2012, 7, e29893. [Google Scholar] [CrossRef]
- Grinevich, V.; Knepper, M.A.; Verbalis, J.; Reyes, I.; Aguilera, G. Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int 2004, 65, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Olesen, E.T.; de Seigneux, S.; Wang, G.; Lutken, S.C.; Frokiaer, J.; Kwon, T.H.; Nielsen, S. Rapid and segmental specific dysregulation of AQP2, S256-pAQP2 and renal sodium transporters in rats with LPS-induced endotoxaemia. Nephrol Dial Transplant 2009, 24, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, C.; Summer, S.N.; Falk, S.; Wang, W.; Ljubanovic, D.; Schrier, R.W. Role of AQP1 in endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 2008, 294, F1473–F1480. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shi, H.; Gao, M.; Ma, N.; Sun, R. Long non-coding RNA CASC2 improved acute lung injury by regulating miR-144-3p/AQP1 axis to reduce lung epithelial cell apoptosis. Cell Biosci 2018, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Pei, L.; Bai, T.; Wang, J. Down-regulation of microRNA-126-5p contributes to overexpression of VEGFA in lipopolysaccharide-induced acute lung injury. Biotechnol Lett 2016, 38, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, X.; Xia, X.; Zhang, Y. Estradiol attenuates LPS-induced acute lung injury via induction of aquaporins AQP1 and AQP5. European Journal of Inflammation 2021, 19. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhou, X.; Xia, X.; Teng, W.; Sheng, L.; Ding, J. Soy isoflavone reduces LPS-induced acute lung injury via increasing aquaporin 1 and aquaporin 5 in rats. Open Life Sci 2023, 18, 20220560. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Liu, L.; Wang, N.; Wang, W.; Jiang, J.; Zhang, J. Effects of hydrogen-rich saline on aquaporin 1, 5 in septic rat lungs. J Surg Res 2016, 202, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Candan, B.; Karakuyu, N.F.; Gulle, K.; Sarman, E.; Ulusoy Karatopuk, D. Beneficial Effects of Selenium on Kidney Injury via Nf-Kb and Aquaporin-1 Levels. Biol Trace Elem Res 2023. [Google Scholar] [CrossRef]
- Liang, W.; Guo, L.; Liu, T.; Qin, S. MEF2C alleviates acute lung injury in cecal ligation and puncture (CLP)-induced sepsis rats by up-regulating AQP1. Allergol Immunopathol (Madr) 2021, 49, 117–124. [Google Scholar] [CrossRef]
- Keskinidou, C.; Lotsios, N.S.; Vassiliou, A.G.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. The Interplay between Aquaporin-1 and the Hypoxia-Inducible Factor 1alpha in a Lipopolysaccharide-Induced Lung Injury Model in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, N.; Yao, R.; Zhang, X.; Dong, X.; Feng, L. Rhein Improves Sepsis Rats by Reducing Inflammatory Reaction and Regulating AQP2 Acute Renal Injury. International Journal of Health and Pharmaceutical Medicine 2023, 4, 156–163. [Google Scholar] [CrossRef]
- Ozden, E.S.; Asci, H.; Buyukbayram, H.I.; Sevuk, M.A.; Imeci, O.B.; Dogan, H.K.; Ozmen, O. Dexpanthenol protects against lipopolysaccharide-induced acute kidney injury by restoring aquaporin-2 levels via regulation of the silent information regulator 1 signaling pathway. Korean J Anesthesiol 2023, 76, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.Y.; Tian, A.Y.; Bai, T. Protective effects of propofol on endotoxemia-induced acute kidney injury in rats. Clin Exp Pharmacol Physiol 2011, 38, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wu, D.; Shi, S.; Wang, L. miR-34b-5p promotes renal cell inflammation and apoptosis by inhibiting aquaporin-2 in sepsis-induced acute kidney injury. Ren Fail 2021, 43, 291–301. [Google Scholar] [CrossRef]
- Wang, J.J.; Kong, H.; Xu, J.; Wang, Y.L.; Wang, H.; Xie, W.P. Fasudil alleviates LPS-induced lung injury by restoring aquaporin 5 expression and inhibiting inflammation in lungs. J Biomed Res 2019, 33, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Ba, F.; Zhou, X.; Zhang, Y.; Wu, C.; Xu, S.; Wu, L.; Li, J.; Yin, Y.; Gu, X. Lipoxin A4 ameliorates alveolar fluid clearance disturbance in lipopolysaccharide-induced lung injury via aquaporin 5 and MAPK signaling pathway. J Thorac Dis 2019, 11, 3599–3608. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Zhang, Y.; Peng, P.; Li, J.; Xin, X. miR-96 and miR-330 overexpressed and targeted AQP5 in lipopolysaccharide-induced rat lung damage of disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2014, 25, 731–737. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Dong, L. Tanshinol upregulates the expression of aquaporin 5 in lung tissue of rats with sepsis. Oncol Lett 2018, 16, 3290–3296. [Google Scholar] [CrossRef]
- Wang, C.; Liang, G.; Shen, J.; Kong, H.; Wu, D.; Huang, J.; Li, X. Long Non-Coding RNAs as Biomarkers and Therapeutic Targets in Sepsis. Front Immunol 2021, 12, 722004. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012, 3, 311–330. [Google Scholar] [CrossRef]
- Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R.S.; Malakar, A.K.; Chakraborty, S. Interplay between miRNAs and human diseases. J Cell Physiol 2018, 233, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, S.M.; Pourhanifeh, M.H.; Fadaei, S.; Velayati, A.A.; Mirzaei, H.; Hamblin, M.R. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Mol Ther Nucleic Acids 2020, 21, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhong, C.; Yan, Q.; Zeng, L.H.; Gao, W.; Duan, S. miR-874: An Important Regulator in Human Diseases. Front Cell Dev Biol 2022, 10, 784968. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Sun, L.; Zhu, M.; Cheng, H. Effects and early diagnostic value of lncRNA H19 on sepsis-induced acute lung injury. Exp Ther Med 2022, 23, 279. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhao, J.; Wei, Q.; Wang, H.; Zhao, C.; Hu, C.; Han, Y.; Hui, Z.; Yang, L.; Dai, Q.; et al. Potential of circulating lncRNA CASC2 as a biomarker in reflecting the inflammatory cytokines, multi-organ dysfunction, disease severity, and mortality in sepsis patients. J Clin Lab Anal 2022, 36, e24569. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hu, S.; Zhao, N.; Shao, Q.; Li, Y.; Jiang, R.; Chen, J.; Peng, W.; Qian, K. LncRNA-5657 silencing alleviates sepsis-induced lung injury by suppressing the expression of spinster homology protein 2. Int Immunopharmacol 2020, 88, 106875. [Google Scholar] [CrossRef]
- Chaudhry, N.; Duggal, A.K. Sepsis Associated Encephalopathy. Adv Med 2014, 2014, 762320. [Google Scholar] [CrossRef]
- Mao, X.; Wu, Y.; Xu, W. miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function. Clin Respir J 2023, 17, 629–637. [Google Scholar] [CrossRef]
- Li, X.; Mo, J.; Li, J.; Chen, Y. lncRNA CASC2 inhibits lipopolysaccharide-induced acute lung injury via miR-27b/TAB2 axis. Mol Med Rep 2020, 22, 5181–5190. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shi, D.; Cao, J.; Song, L. LncRNA CASC2 Alleviates Sepsis-induced Acute Lung Injury by Regulating the miR-152-3p/PDK4 Axis. Immunol Invest 2022, 51, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.A.; Qiu, X.L.; Wang, X.Z.; Zhao, N.; Qian, K.J. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats. Neural Regen Res 2021, 16, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Lu, Q.; Wang, K.; Lu, J.; Gu, X.; Zhu, D.; Liu, F.; Guo, Z. miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol 2018, 233, 6615–6631. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, N.; Ammollo, C.T.; Semeraro, F.; Colucci, M. Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis 2010, 2, e2010024. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Paknahad, M.H.; Nemati, M.; Jafarzadeh, S.; Mahjoubin-Tehran, M.; Rajabi, A.; Shojaie, L.; Mirzaei, H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2022, 146, 112600. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.R.; Mojarrad, M.; Moghbeli, M. MicroRNA-96: A therapeutic and diagnostic tumor marker. Iran J Basic Med Sci 2022, 25, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.H.; Situ, H.L.; Chen, J.P.; Yu, R.H. Lipoxin A4 alleviates lung injury in sepsis rats through p38/MAPK signaling pathway. J Biol Regul Homeost Agents 2020, 34, 807–814. [Google Scholar] [CrossRef]
- Chiang, N.; Serhan, C.N.; Dahlen, S.E.; Drazen, J.M.; Hay, D.W.; Rovati, G.E.; Shimizu, T.; Yokomizo, T.; Brink, C. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 2006, 58, 463–487. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Luo, S.; Yang, Y.; Chen, J.; Zhong, Z.; Huang, H.; Zhang, J.; Cui, L. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish. J Orthop Translat 2016, 4, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Stompor-Goracy, M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, L.; Liu, S.; Song, J.; Cheng, J.; Liu, J. Effect of emodin on Aquaporin 5 expression in rats with sepsis-induced acute lung injury. J Tradit Chin Med 2015, 35, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Liu, Y.; Chen, K.; Dong, Y.; Liu, S.; Zhang, J. Hydrogen-rich saline regulates the polarization and apoptosis of alveolar macrophages and attenuates lung injury via suppression of autophagy in septic rats. Ann Transl Med 2021, 9, 974. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wu, T.; Zhu, H.; Gao, L. Aquaporin 4 Blockade Attenuates Acute Lung Injury Through Inhibition of Th17 Cell Proliferation in Mice. Inflammation 2019, 42, 1401–1412. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef] [PubMed]
- Kielczykowska, M.; Kocot, J.; Pazdzior, M.; Musik, I. Selenium - a fascinating antioxidant of protective properties. Adv Clin Exp Med 2018, 27, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Li-Mei, W.; Jie, T.; Shan-He, W.; Dong-Mei, M.; Peng-Jiu, Y. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice. Inflammation 2016, 39, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Kim, J.; Choi, Y.H.; Kang, N.G.; Lee, S. Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells. Curr Issues Mol Biol 2021, 43, 1361–1373. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xia, W.; Yue, W.; Peng, C.; Rahman, K.; Zhang, H. Rhein: A Review of Pharmacological Activities. Evid Based Complement Alternat Med 2015, 2015, 578107. [Google Scholar] [CrossRef]
- Mohammad, S.; O'Riordan, C.E.; Verra, C.; Aimaretti, E.; Alves, G.F.; Dreisch, K.; Evenas, J.; Gena, P.; Tesse, A.; Rutzler, M.; et al. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front Immunol 2022, 13, 900906. [Google Scholar] [CrossRef] [PubMed]
- Tesse, A.; Gena, P.; Rutzler, M.; Calamita, G. Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Adamzik, M.; Frey, U.H.; Mohlenkamp, S.; Scherag, A.; Waydhas, C.; Marggraf, G.; Dammann, M.; Steinmann, J.; Siffert, W.; Peters, J. Aquaporin 5 gene promoter--1364A/C polymorphism associated with 30-day survival in severe sepsis. Anesthesiology 2011, 114, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, L.; Nowak, H.; Siffert, W.; Peters, J.; Adamzik, M.; Koos, B.; Rahmel, T. Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Rahmel, T.; Rump, K.; Peters, J.; Adamzik, M. Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated with Pulmonary Inflammation and Survival in Acute Respiratory Distress Syndrome. Anesthesiology 2019, 130, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Rahmel, T.; Nowak, H.; Rump, K.; Siffert, W.; Peters, J.; Adamzik, M. The aquaporin 5 -1364A/C promoter polymorphism impacts on resolution of acute kidney injury in pneumonia evoked ARDS. PLoS One 2018, 13, e0208582. [Google Scholar] [CrossRef] [PubMed]
- Nomura, J.; Hisatsune, A.; Miyata, T.; Isohama, Y. The role of CpG methylation in cell type-specific expression of the aquaporin-5 gene. Biochem Biophys Res Commun 2007, 353, 1017–1022. [Google Scholar] [CrossRef]
- Rump, K.; Spellenberg, T.; von Busch, A.; Wolf, A.; Ziehe, D.; Thon, P.; Rahmel, T.; Adamzik, M.; Koos, B.; Unterberg, M. AQP5-1364A/C Polymorphism Affects AQP5 Promoter Methylation. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
| Aquaporin | Findings | References |
|---|---|---|
| AQP1 | mRNA upregulation in leukocytes of ICU septic patients | [10] |
| mRNA downregulation in serum of septic patients | [18] | |
| AQP4 | Protein upregulation in blood samples of SAE patients | [17] |
| AQP5 | mRNA expression elevated in whole blood samples of septic patients carrying the AA genotype of the 1364 A/C SNP compared to AC carriers | [19] |
| mRNA expression in non-surviving septic patients in comparison to survivors | [12] | |
| AQP9 | mRNA upregulation in healthy humans injected with LPS | [13] |
| mRNA upregulation in ARDS patients | [16] |
| Aquaporin | Experimental Models |
Findings | References |
|---|---|---|---|
| AQP1 | LPS-exposed mice | Protein downregulation in the alveoli | [22] |
| LPS-exposed mice | mRNA downregulated in the lung | [23,34] | |
| LPS-exposed mice | Protein downregulation In the lungs |
[21,35] | |
| LPS-exposed mice | mRNA and protein levels decreased in lung tissues |
[36] | |
| LPS-exposed rats | mRNA and protein levels decreased in lung tissues |
[25,37,38] | |
| LPS-exposed rats | mRNA decreased initially and presented steady increase in kidney tissue, serum protein increased initially and was downregulated in serum and kidneys |
[29] | |
| LPS-exposed rats | Protein levels decreased in the kidneys | [39] | |
| CLP-rats | mRNA and protein levels decreased in lung tissues |
[26,40] | |
| LPS-exposed HPMECs |
mRNA upregulation | [41] | |
| LPS-exposed HK2 cells |
mRNA decrease | [28] | |
| LPS-exposed PMNs |
mRNA and protein upregulation | [10] | |
| AQP2 | |||
| LPS-exposed mice | Protein downregulation in kidney | [33] | |
| LPS-exposed rats | Protein downregulation in kidney | [31,32,42] | |
| LPS-exposed rats | mRNA downregulation in kidney | [43,44] | |
| CLP-rats | Protein downregulation in kidney | [30] | |
| LPS-exposed HK2 cells |
mRNA and protein decrease | [45] | |
| LPS-exposed HK2 cells |
mRNA decrease | [28] | |
| AQP3 | |||
| LPS-exposed mice | Protein downregulation in kidney | [33] | |
| CLP-rats | mRNA and protein upregulation in lung | [27] | |
| LPS-exposed PMA-treated monocytes |
mRNA upregulation | [20] | |
| AQP4 | |||
| CLP-rats | mRNA upregulation in lung | [27] | |
| CLP-rats | Protein increases in cortical and hippocampal tissues |
[17] | |
| AQP5 | |||
| LPS-exposed mice | Protein expression decreased in the alveoli | [22] | |
| LPS-exposed mice | mRNA and protein levels decreased in lung tissues |
[24,36,46] | |
| LPS-exposed mice | Protein expression decreased in lungs | [21,47] | |
| LPS-exposed rats | mRNA and protein levels decreased in lung tissues |
[25,37,38,48] | |
| CLP-rats | mRNA and protein levels decreased in lung tissues |
[26,49] | |
| AQP9 | |||
| LPS-exposed mice | mRNA upregulated in lung tissues | [24] | |
| LPS-exposed human leukocytes |
mRNA upregulation | [20] | |
| LPS-exposed PMA-treated monocytes |
mRNA upregulation | [20] |
| Aquaporin | Experimental Models |
Findings | References |
|---|---|---|---|
| AQP1 | LPS-exposed mice | Estradiol treatment pre-LPS exposure upregulated AQP1 mRNA and protein levels reducing oxidative stress and inflammatory responses |
[36] |
| LPS-exposed rats | Pre-treatment with increasing concentrations of soy isoflavone resulted in a dose-dependent upregulation of AQP1 mRNA and protein alleviating pulmonary edema and lung damage | [37] | |
| LPS-exposed rats | Hydrogen-rich saline reverses AQP1 mRNA and protein downregulation | [38] | |
| LPS-exposed rats | Selenium treatment resulted in the upregulation of AQP1 protein expression in kidneys | [39] | |
| CLP-rats | MEF2C treatment attenuated the progress of lung injury, while upregulating AQP1 mRNA and protein expression. | [40] | |
| CLP-rats | Emodin pre-treatment increased significantly AQP1 mRNA and protein suppressing sepsis-induced pulmonary apoptosis | [26] | |
| LPS-exposed HPMECs | HIF1A expression silencing in the LPS-induced attenuated AQP1 upregulation and regulated cells’ volume increase | [41] | |
| AQP2 | |||
| LPS-exposed rats | Dexpanthenol increased AQP2 mRNA expression in kidney tissues through the SIRT1 signaling pathway | [43] | |
| LPS-exposed rats | Rhein treatment attenuated downregulation of AQP2 protein expression in kidneys | [42] | |
| LPS-exposed rats | Propofol pre-treatment protected from further kidney complications by restoring AQP2 mRNA levels | [44] | |
| AQP3 | CLP-rats | Ss-31 treatment resulted in decreased protein expression of AQP3 and pulmonary vascular permeability | [27] |
| AQP4 | |||
| LPS-exposed mice | TGN-020 treatment resulted in downregulation of AQP4, suppression of inflammatory cytokine production, and better survival rates | [75] | |
| AQP5 | LPS-exposed mice | Lipoxin A4 presents a protective role in lung injury by upregulating AQP5 protein expression in lung tissue |
[47] |
| LPS-exposed mice | Fasudil upregulates AQP5 mRNA and protein levels, while eliminating LPS-induced lung edema and preventing LPS-induced pulmonary inflammation | [46] | |
| LPS-exposed mice | Estradiol treatment pre-LPS exposure upregulated AQP5 mRNA and protein levels reducing oxidative stress and inflammatory responses |
[36] | |
| LPS-exposed rats | Hydrogen-rich saline reverses AQP5 mRNA and protein downregulation | [38] | |
| LPS-exposed rats | Pre-treatment with increasing concentrations of soy isoflavone resulted in a dose-dependent upregulation of AQP5 mRNA and protein alleviating pulmonary edema and lung damage | [37] | |
| CLP-rats | Tanshinol treatment reverses diminished AQP5 mRNA and protein levels, while simultaneously inhibiting inflammatory cytokines and p38 phosphorylation | [49] | |
| CLP-rats | Emodin pre-treatment increased significantly AQP5 mRNA and protein suppressing sepsis-induced pulmonary apoptosis | [26] | |
| AQP9 | CLP-mice | The novel inhibitor RG100204 demonstrated to present positive effects on renal and cardiac dysfunction |
[81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
