Submitted:
24 November 2023
Posted:
28 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Measurements
- Vegetative growth: From March to November, the length of 20 tagged shoots located at the four points of the horizon was measured monthly in two trees from each replicate.
- Fruit set: Fruit set was expressed as the percentage of the initial number of flowers. Four branches were taken from the middle of the crown of one tree/ plot/treatment and from the four points of the horizon. In total, 2000 buds were approximately used in each plot. Measurements were taken each month from May to November.
- Olive yield: Harvest took place in the second half of December.
- Fruit weight: The fresh weight of 100 fruits was measured from each tree in the experimental plots. Samples were taken every 15 days during November and December.
- Maturation index: Samples of 100 olives per tree were selected every 15 days during November and December and were categorized into 8 colour classes in order to determine the maturation index according to the following equation [49].where a-h, are the numbers of olives and 1-7 are the numbers of colour classes.M.I. = (αχ 0 + bχ1+cχ2+dχ3+eχ4+fχ5+gχ6+hχ7) /100
- 6.
- Canopy volume: For the determination of the canopy volume the following equation was used according to Roose et al [50]:
- 7.
- Fruit chemical analysis: Oil content was determined on a sample of about 100 fruits per tree by extracting dry material with petroleum ether at 40–60 °C using a Soxhlet apparatus. Olives were dried at 70 °C in a ventilated oven until a constant weight was measured in two successive weighing measurements. Then olives were ground in a mortar and the paste was weighed and analyzed by the Soxhlet apparatus [51]
- 8.
- Leaf analysis: Samples of 40 fully-expanded, mature leaves (5-8 months old) per tree were collected at the end of August from the middle portion of non-bearing, current-season shoots, according to the method described by Koukoulakis and Papadopoulos, [52]. Once in the laboratory, samples were washed using 1% Triton X-100, and rinsed three times with water and deionized water. Moisture was eliminated using filter paper and then the samples were dried in paper envelopes at 70 0C until they reached a constant weight. Dried samples were ground in a stainless “Fritch” pulverisette mill to pass through the 1-mm round whole sieve. Ground samples were stored at room temperature in acid-washed glass jars. Leaf samples were analyzed for total N, P, K. Total N was determined by the Kjeldahl method, using a semiautomatic analyzer Buchi, B324. Prior to the measurement of the other nutrients, leaf subsamples were subjected to dry ashing at 520◦C for 6 hours, then diluted with hydrochloric acid (HCl) in a 1:1 ratio v/v [53]. Phosphorus was determined calorimetrically in the same solution by the vanado-molybdo-phosphoric method [54] using an UV–vis spectrophotometer. Total K, through atomic absorption spectrophotometry (PerkinElmer AAnalyst 100 atomic absorption spectrometer).
4.2. Statistical analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernández-Escobar, R. Use and abuse of nitrogen in olive fertilization. Acta Hortic. 2011, 888, 249–257. [Google Scholar] [CrossRef]
- Kirkby, E. Introduction, Definition and Classification of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherland, 2012; pp. 3–5. [Google Scholar]
- Hartmann, H.; Brown, J. The effect of certain mineral deficiencies on the growth, leaf appearance, and mineral content of young olive trees. Hilgardia 1953, 22, 119–130. [Google Scholar] [CrossRef]
- Ferreira, J.; Garcı́a-Ortiz, A.; Frias, L.; Fernández, A. Los Nutrientes N, P, K en la fertilización del olivar. Olea 1986, 17, 141–152. [Google Scholar]
- Morales-Sillero, A.; Fernández, J.; Ordovás, J.; Suárez, M.; Pérez, J.A.; Liñán, J.; López, E.P.; Girón, I; Troncoso, A. Plant-soil interactions in a fertigated ‘Manzanilla de sevilla’olive orchard. Plant Soil 2009, 319, 147–162. [Google Scholar] [CrossRef]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Horti. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Garcı́a-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. An approach to nitrogen balance in olive orchards. Scientia Hortic. 2012, 135, 219–226. [Google Scholar] [CrossRef]
- Centeno, A.; Garcı́a Martos, J.M.; Gómez-del-Campo, M. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’hedgerow and ‘Picual’vase-trained orchards. Grasas Aceites 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Marin, L.; Sánchez-Zamora, M.A.; García-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. Long-term effects of N fertilization on cropping and growth of olive trees and on N accumulation in soil profile. European J. Agron. 2009, 31, 223–232. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Ben El Hadj, S.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Olive Nutritional Status and Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, 10, 1151. [Google Scholar] [CrossRef]
- Reale, L.; Nasini, L.; Cerri, M.; Regni, L.; Ferranti, F.; Proietti, P. The influence of light on olive (Olea europaea L.) fruit development is cultivar dependent. Front. Plant Sci. 2019; 10. [Google Scholar] [CrossRef]
- González García, F.; Garcia Gómez, A.M.; Chaves Sánchez, M.; Mazuelos Vela, C. Estado de nutrición, equilibrio nutritivo y rendimiento en el olivar de la provincia de Sevilla. I. Estudio sobre variedades de aceite. Anales Edafol. Agrobiol, 1967; XXVI, 733–762. [Google Scholar]
- Erel, R.; Kerem, Z.; Ben-Gal, A.; Dag, A.; Schwartz, A.; Zipori, I.; Basheer, L.; Yermiyahu, U. Olive (Olea eurpaea L.) Tree Nitrogen Status Is a Key Factor for Olive Oil Quality. J. Agric. Food Chem. 2013, 61, 11261–11272. [Google Scholar] [CrossRef] [PubMed]
- Hartman, H.T. Some responses of the olive to nitrogen fertilizers. Proc. Am. Soc. Hort. Sci. 1958, 72, 257–266. [Google Scholar]
- Androulakis, Ι.; Skilourakis, P.; Psillakis, Ν. Results of fertilization experiments on olive cultivar Koroneiki. In Proceedings of 1st Symposium of Geotechnical Research, Β-Ι, September 1974, 364-376.
- Gavalas, A.Ν. Inorganic nutrition and fertilization of Olive; Benakio Phytopathological Institute: Athens, Greece, 1978; pp. 41–48. [Google Scholar]
- Erel, R.; Dag, A.; Ben-Gal, A.; Schwartz, A.; Yermiyahu, U. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am.Soc. Hortic. Sci. 2008, 133, 639–647. [Google Scholar] [CrossRef]
- 19 Erel, R.; Yermiyahu, U.; Van Opstal, J.; Ben-Gal, A.; Schwartz, A.; Dag, A. The importance of olive (Olea europaea l.) tree nutritional status on its productivity. Scientia Hortic. 2013, 159, 8–18. [Google Scholar] [CrossRef]
- Dag, A.; Ben-David, E.; Kerem, Z.; Ben-Gal, A.; Erel, R.; Basheer, L.; Yermiyahu, U. Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. J. Sci. Food Agric. 2009, 89, 1871–1878. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Parra, M.A.; Navarro, C.; Arquero, O. Foliar diagnosis as a guide to olive fertilization. Spanish. J. Agric. Res 2009, 7, 212–223. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Marín, L. Nitrogen fertilization in olive orchards. Acta Hortic. 1999, 474, 333–336. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Álamob, S.; Garcıa-Torres, L. Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. Europ. J. Agronomy 2004, 21, 209–222. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Fertilización. In El Cultivo del olivo; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Editorial Mundi-Prensa: Madrid, Spain, 1997; pp. 239–257. [Google Scholar]
- Sfakiotakis, E. Courses in Olive Growing; Typo MAN: Thesaloniki, Greece, 1993. [Google Scholar]
- Ferreira, I.; Arrobas, M.; Moutinho Pereira, J.; Correia, C.; Rodrigues, M. The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turk J Agric For. 2020, 44, 278–289. [Google Scholar] [CrossRef]
- Brown, P.H.; Weinbaum, S.A.; Picchioni, G.A. Alternate bearing influences annual nutrient consumption and the total nutrient content of mature pistachio trees. Trees 1995, 9, 158–164. [Google Scholar] [CrossRef]
- Weinbaum, S.A.; Picchioni, G.A.; Muraoka, T.T.; Ferguson, L.; Brown, P.H. Fertilizer nitrogen and boron uptake, storage, and allocation vary during the alternate-bearing cycle in pistachio trees. J. Am. Soc. Hort. Sci. 1994, 119, 24–31. [Google Scholar] [CrossRef]
- Marın, L.; Fernández-Escobar, R. Optimization of nitrogen fertilization in olive orchards. Acta Hortic. 1997, 448, 411–414. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Benlloch, M.; Herrera, E.; Garcıa-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci Horti 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Connell, J.; Vossen, P.M. Fertility management for oil olives. In First Press, Newsletter of Olive Oil production and Evaluation; University of California Cooperative Extension: 2006; Volume 1, pp. 1–2.
- Sotiropoulos, S.; Chatzissavvidis, C.; Papadakis, I.; Kavvadias, V.; Paschalidis, C.; Antonopoulou, C.; Korik, A.i. Inorganic and organic foliar fertilization in olives. Hort. Sci. 2023, 50, 1–11. [Google Scholar] [CrossRef]
- Hartman, H.T. Olive production in California; Manual / California agricultural experiment station. Extension service. College of agriculture. University of California (no. 7), Manual 7. Publisher: Berkeley, 1953; p. 59.
- Esteban, E.; Oliveira, A.I.; Souza, M.L. Fertilization mineral en olivares de la provincia de Granada. Regultatos de 7 anos de ensayo. Agronomia. Lusit. 1965, 27, 103–122. [Google Scholar]
- Fernández-Escobar, R.; Sÿnchez-Zamora, M.A.; Uceda, M.; Beltran, G. The effect of nitrogen overfertilization on olive tree growth and oil quality. Acta Hortic. 2002, 586, 429–431. [Google Scholar] [CrossRef]
- Ângelo Rodrigues, M.; Pavão, F.; Lopes, J.I.; Gomes, V.; Arrobas, M.; Moutinho-Pereira, J.; Ruivo, S.; Cabanas, J.E.; Correia, C.M. Olive Yields and Tree Nutritional Status during a Four-Year Period without Nitrogen and Boron Fertilization. Commun Soil Sci Plant Anal 2011, 42, 803–814. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Braz Frade, R.; Lopez Campayo, M.; Beltrán Maza, G. Effect of nitrogen fertilization on fruit maturation of olive trees. Acta Hortic 2014, 1057, 101–105. [Google Scholar] [CrossRef]
- Freeman, M.; Uriu, K.; Hartmann, H.T. Diagnosing and correcting nutrient problems. In Olive Production Manual, 2nd ed.; Sibbett, G.S., Ferguson, L., Eds.; University of California Agricultural and Natural Resources Publication: 2005; Volume 3353, pp. 83–92.
- Sommaini, L. La concimazione azotata ritardada all’ olivo osservata nel tempo enello spazio. Annali Sper. Agr. 1955, 8, 1887–1927. [Google Scholar]
- Silva, E.; Gonçalves, A.; Martins, S.; Pinto, L.; Rocha, L.; Ferreira, H.; Moutinho-Pereira, J.; Rodrigues, M.Â.; Correia, C.M. Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality. Horticulturae 2023, 9, 110. [Google Scholar] [CrossRef]
- Elbadawy, N.; Hegazi, E.; Yehia, T.; Abourayya, M.; Mahmoud, T. Effect of Nitrogen Fertilizer on Yield, Fruit Quality and Oil Content in Manzanillo Olive Trees. J. Arid. Land Stud. 2016, 26, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Erel, R.; Yermiyahu, U.; Yasuor, H.; Ben-Gal, A.; Zipori, I.; Dag, A. Elevated fruit nitrogen impairs oil biosynthesis in olive (Olea europaea L.). Front. Plant Sci. 2023, 14, 1180391. [Google Scholar] [CrossRef] [PubMed]
- López-Villalta, L.C.; Muñoz-Cobo, M.P. Production techniques. In World Olive Encyclopedia; International Olive Council: Sabadell, Spain, 1996; pp. 145–190. [Google Scholar]
- Therios, I.. Olives: Crop production science in horticulture; Wallingford: CABI Publishing: 2009; p. 409.
- Almeida, F.J. Quelques carences alimentaires de l’olivier au Portugal. Infs Oleic. Int., N.S. 1964; 25, 13–20. [Google Scholar]
- Vasilaki-Stamou, V.; Prasoulidou-Bovi, Μ. Olive leaf analysis and its application on fertilization experiments in the region of Evia. Journal of Agricultural Bank 1969, 166, 24–34. [Google Scholar]
- Heckrath, G.; Brookes, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual. 1995, 24, 904–910. [Google Scholar] [CrossRef]
- Χiloyannis, C.; Celano, G.; Palese, A.M.; Dichio, B.; Nuzzo, V. Mineral nutrient uptake from the soil in irrigated olive trees, cultivar Coratina, over six years after planting. Acta Hort. 2002, 586, 453–456. [Google Scholar] [CrossRef]
- Ferreira, J. Explotacionos ollittareras colaboradoras; no. 5. Ministerio de Agricultura: Madrid, Spain, 1979. [Google Scholar]
- Roose, M.L.; Atkin, D.; Kupper, R.S. Yield and tree size of four citrus cultivars on 21 rootstocks in California. J. Am. Soc. Hort. Sci. 1989, 114, 678–684. [Google Scholar] [CrossRef]
- Donaire, J.P.; Sanchez-Raya, A.J.; Lopez-George, J.L.; Recalde, L. Etudes physiologiques et biochimiques de l’olive. I. Variation de la concentration de divers metabolites pendant son cycle evolutive. Agrochimica 1977, 21, 311–321. [Google Scholar]
- Koukoulakis, S.P.; Papadopoulos, A. The interpretation of Foliar Analysis. Stamoulis Ed., Athens. Greece, December 2003. pp. 516.
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Allen, E., Ed.; Blackwell Scientific Publications: Oxford, UK; London, UK, 1974; p. 565. [Google Scholar]
- Jackson, M.L. Phosphorus determinations for soils. Vanadomolybdo-phosphoric yellow color method in nitric acid system. In Soil chemical analysis; Jackson, M.L., Ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1970; pp. 151–154. [Google Scholar]
| Treatments | Shoot length (cm) |
|---|---|
| Control | 9.2a (1) |
| 1 kg NH4NO3/tree | 11.4b |
| 2 kg NH4NO3/tree | 12.8bc |
| 4 kg NH4NO3/tree | 19.3e |
| 5 kg NH4NO3/tree | 24.7f |
| 6 kg NH4NO3/tree | 30.2h |
| Treatments | Yield (kg/tree) |
Canopy volume (m3) | Yield (kg/m3) |
|---|---|---|---|
| Control | 37.09a (1) | 18.2a | 2.03a |
| 1 kg NH4NO3/tree | 39.2a | 19.4a | 2.02a |
| 2 kg NH4NO3/tree | 45ab | 19.8ab | 2.27a |
| 3 kg NH4NO3/tree | 54c | 21.5b | 2.51ab |
| 4 kg NH4NO3/tree | 62.5d | 21.0ab | 2.97b |
| 5 kg NH4NO3/tree | 49.0b | 24.7c | 1.98a |
| 6 kg NH4NO3/tree | 46.4ab | 25.8cd | 1.79a |
| Treatments | Initial fruit set (June) (%) | Final fruit set (November) (%) |
|---|---|---|
| Control | 3.07a (1) | 0.7a |
| 1 Kg NH4NO3/tree | 3.55a | 1.13a |
| 2 Kg NH4NO3/tree | 5.32ab | 1.79ab |
| 3 Kg NH4N03/tree | 6.09b | 2.53c |
| 4 Kg NH4N03/tree | 7.63bc | 3.03cd |
| 5 Kg NH4N03/tree | 5.91ab | 1.71ab |
| 6 Kg NH4N03/tree | 5.19ab | 1.65ab |
| 1-5 Νovember | 20-25 November | 5-10 December | 20-25 December | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| W100 | OC | M.I. | W100 | OC | M.I. | W100 | OC | M.I. | W100 | OC | M.I. | |
| Treatments | g | % | % | g | % | % | g | % | % | g | % | % |
| Control | 336a(1) | 21.8a | 2.13a | 360a | 24.2a | 3.05a | 389a | 27.1 | 3.66a | 384a | 26.2 | 3.37a |
| 1 kg NH4NO3/tree | 325ab | 21.3a | 2.10a | 353a | 23.8a | 3.15a | 375a | 26.8 | 3.75a | 375a | 26.5 | 3.44a |
| 2 kg NH4NO3/tree | 321ab | 21.2a | 2.18a | 342ab | 24.5a | 3.21a | 370ab | 27.2 | 3.82a | 369a | 26.7 | 3.48a |
| 3 kg NH4NO3/tree | 318ab | 21.0a | 2.12a | 329b | 23.7a | 3.28a | 365ab | 27.5 | 3.78a | 361ab | 26.0 | 3.51a |
| 4 kg NH4NO3/tree | 381c | 20.9a | 2.10a | 309c | 23.5a | 3.15a | 337c | 26.3 | 3.66a | 331c | 25.8 | 3.55ab |
| 5 kg NH4NO3/tree | 315d | 20.8a | 1.95ab | 345ab | 24.1a | 2.75ab | 374ab | 26.8 | 3.16a | 370ab | 25.9 | 3.00a |
| 6 kg NH4NO3/tree | 312d | 21.1a | 1.87b | 340ab | 23.7a | 2.71ab | 378a | 27.0ns | 3.11a | 373a | 26.1ns | 3.01a |
| Treatments | Ν (%, d.w.) |
Ρ (%, d.w.) |
Κ (%, d.w.) |
|---|---|---|---|
| Control | 1.23a (1) | 0.123ab | 0.78b |
| 1 kg NH4NO3/tree | 1.34a | 0.125ab | 0.75b |
| 2 kg NH4NO3/tree | 1.55b | 0.128b | 0.77b |
| 3 kg NH4NO3/tree | 1.89c | 0.131b | 0.73b |
| 4 kg NH4NO3/tree | 2.01d | 0.129b | 0.69ab |
| 5 kg NH4NO3/tree | 2.29e | 0.120a | 0.61a |
| 6 kg NH4NO3/tree | 2.38ef | 0.115a | 0.57a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
