Submitted:
22 November 2023
Posted:
23 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Study Measures and Outcomes
2.3. Statistical Analysis
3. Results
3.1. Association of Demographic, Dietary and Stress Predictors with VAI
3.2. Predictors of CVD, Stroke and Death in the CARDIA Cohort
3.2.1. Primary Outcome: CVD
3.2.2. Secondary Outcome: Stroke
3.2.3. Tertiary Outcome: Death
| Model 1 | P-value | Model 2 | P-Value | Model 3 | P-Value | |
|---|---|---|---|---|---|---|
| Primary Outcome: any CVD (fatal or non-fatal) | ||||||
| BMI | 1.065 [1.039-1.092] | <0.001 | 1.065 [1.039-1.092] | <0.001 | 1.067[1.041-1.094] | <0.001 |
| obsHBP baseline | 1.321 [0.878-1.988] | 0.182 | 1.323 [0.879-1.992] | 0.179 | 1.287 [0.855-1.938] | 0.227 |
| obsHBP Y20 | 1.037 [0.577-1.862] | 0.904 | 1.039 [0.578-1.866] | 0.898 | 1.025 [0.571-1.839] | 0.934 |
| % cal fructose Y20 | 1.051 [1.009-1.094] | 0.016 | 1.049 [1.006-1.093] | 0.024 | 1.049 [1.007-1.093] | 0.022 |
| % cal sucrose Y20 | 0.981 [0.942-1.022] | 0.369 | 0.981 [0.942-1.022] | 0.358 | 0.980 [0.941-1.021] | 0.339 |
| CES-D Y20 | 1.004 [0.983-1.025] | 0.698 | 1.004 [0.984-1.026] | 0.677 | 1.003 [0.982-1.024] | 0.779 |
| VAI | 0.999 [0.941-1.060] | 0.968 | 1.000 [0.942-1.062] | 0.998 | 0.999 [0.941-1.061] | 0.985 |
| Secondary Outcome: stroke (fatal or non-fatal) | ||||||
| BMI | 1.069 [1.025-1.115] | 0.002 | 1.068 [1.024-1.115] | 0.002 | 1.069 [1.024-1.116] | 0.002 |
| obsHBP baseline | 2.010 [1.078-3.747] | 0.028 | 2.020 [1.083-3.771] | 0.027 | 1.984 [1.061-3.711] | 0.032 |
| obsHBP Y20 | 0.382 [0.090-1.610] | 0.190 | 0.389 [0.092-1.645] | 0.199 | 0.385 [0.091-1.627] | 0.194 |
| % cal fructose Y20 | 1.046 [0.975-1.121] | 0.210 | 1.032 [0.959-1.111] | 0.399 | 1.033 [0.960-1.112] | 0.380 |
| % cal sucrose Y20 | 0.947 [0.877-1.021] | 0.156 | 0.946 [0.877-1.020] | 0.147 | 0.944 [0.875-1.018] | 0.133 |
| CES-D Y20 | 0.996 [0.960-1.033] | 0.832 | 0.998 [0.962-1.035] | 0.897 | 0.996 [0.960-1.034] | 0.845 |
| VAI | 0.857 [0.857-1.068] | 0.433 | 0.9664 [0.863-1.078] | 0.521 | 0.964 [0.861-1.079] | 0.526 |
| Tertiary Outcome: death | ||||||
| BMI | 1.036 [1.011-1.060] | 0.004 | 1.036 [1.011-1.061] | 0.004 | 1.035 [1.011-1.060] | 0.004 |
| obsHBP baseline | 1.042 [0.707-1.538] | 0.834 | 1.041 [0.705-1.536] | 0.841 | 1.047 [0.709-1.547] | 0.818 |
| obsHBP Y20 | 0.797 [0.450-1.411] | 0.436 | 0.793 [0.447-1.404] | 0.425 | 0.794 [0.448-1.406] | 0.429 |
| % cal fructose Y20 | 1.017 [0.978-1.057] | 0.406 | 1.019 [0.980-1.060] | 0.345 | 1.019 [0.980-1.060] | 0.344 |
| % cal sucrose Y20 | 0.985 [0.951-1.021] | 0.411 | 0.986 [0.952-1.021] | 0.432 | 0.986 [0.952-1.022] | 0.441 |
| CES-D Y20 | 0.997 [0.979-1.016] | 0.750 | 0.997 [0.978-1.015] | 0.718 | 0.997 [0.978-1.015] | 0.718 |
| VAI | 0.980 [0.928-1.035] | 0.466 | 0.978 [0.926-1.033] | 0.433 | 0.978 [0.926-1.034] | 0.436 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| aPWV | aortic pulse-wave velocity |
| CARDIA | Coronary Artery Risk Development in Young Adults Study |
| cfPWV | carotid-femoral pulse wave velocity |
| cIMT | carotid intima–media thickness |
| CVD | cardiovascular diseases |
| HFCS | high fructose corn syrup |
| NO | nitric oxide |
| obsHBP | observed high blood pressure (BP > 130/80 mmHg) |
| VAI | vascular aging index |
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Mikael, L.R.; Paiva, A.M.G.; Gomes, M.M.; Sousa, A.L.L.; Jardim, P.; Vitorino, P.V.O.; et al. Vascular Aging and Arterial Stiffness. Arq Bras Cardiol. 2017, 109, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Hu, M.J.; Cui, Y.J.; Liang, L.; Zhou, M.M.; Yang, Y.W.; et al. Carotid-Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology. 2018, 69, 617–629. [Google Scholar] [CrossRef]
- Nilsson Wadstrom, B.; Fatehali, A.H.; Engstrom, G.; Nilsson, P.M. A Vascular Aging Index as Independent Predictor of Cardiovascular Events and Total Mortality in an Elderly Urban Population. Angiology. 2019, 70, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ Res. 2018, 123, 849–867. [Google Scholar] [CrossRef]
- Harvey, A.; Montezano, A.C.; Lopes, R.A.; Rios, F.; Touyz, R.M. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can J Cardiol. 2016, 32, 659–668. [Google Scholar] [CrossRef]
- LaRocca, T.J.; Martens, C.R.; Seals, D.R. Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev. 2017, 39, 106–119. [Google Scholar] [CrossRef]
- Merz, A.A.; Cheng, S. Sex differences in cardiovascular ageing. Heart. 2016, 102, 825–831. [Google Scholar] [CrossRef]
- Sara, J.D.S.; Toya, T.; Ahmad, A.; Clark, M.M.; Gilliam, W.P.; Lerman, L.O.; et al. Mental Stress and Its Effects on Vascular Health. Mayo Clin Proc. 2022, 97, 951–990. [Google Scholar] [CrossRef]
- Vespa, J.; Armstrong, D.M.; Medina, L. Demographic turning points for the United States: Population projections for 2020 to 2060: US Department of Commerce, Economics and Statistics Administration, US …; 2018.
- Sabbatini, A.R.; Kararigas, G. Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF: JACC Review Topic of the Week. J Am Coll Cardiol. 2020, 75, 1074–1082. [Google Scholar] [CrossRef]
- Stanhewicz, A.E.; Wenner, M.M.; Stachenfeld, N.S. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol. 2018, 315, H1569–H1588. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.L. Modulatory influence of sex hormones on vascular aging. Am J Physiol Heart Circ Physiol. 2019, 316, H522–H526. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Kwan, A.C.; Chen, M.T.; Ouyang, D.; Ebinger, J.E.; Bell, S.P.; et al. Sex Differences in Myocardial and Vascular Aging. Circ Res. 2022, 130, 566–577. [Google Scholar] [CrossRef]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry. 2017, 4, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Hankin, B.L.; Mermelstein, R.; Roesch, L. Sex differences in adolescent depression: stress exposure and reactivity models. Child Dev. 2007, 78, 279–295. [Google Scholar] [CrossRef]
- Plaisier, I.; de Bruijn, J.G.; Smit, J.H.; de Graaf, R.; Ten Have, M.; Beekman, A.T.; et al. Work and family roles and the association with depressive and anxiety disorders: differences between men and women. J Affect Disord. 2008, 105, 63–72. [Google Scholar] [CrossRef]
- Connelly, P.J.; Azizi, Z.; Alipour, P.; Delles, C.; Pilote, L.; Raparelli, V. The Importance of Gender to Understand Sex Differences in Cardiovascular Disease. Can J Cardiol. 2021, 37, 699–710. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation. 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Rossman, M.J.; LaRocca, T.J.; Martens, C.R.; Seals, D.R. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985). 2018, 125, 1888–1900. [Google Scholar] [CrossRef]
- Nowak, K.L.; Rossman, M.J.; Chonchol, M.; Seals, D.R. Strategies for Achieving Healthy Vascular Aging. Hypertension. 2018, 71, 389–402. [Google Scholar] [CrossRef]
- D’Elia, L.; Galletti, F.; La Fata, E.; Sabino, P.; Strazzullo, P. Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens. 2018, 36, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Ezekowitz, J.A.; Colin-Ramirez, E.; Ross, H.; Escobedo, J.; Macdonald, P.; Troughton, R.; et al. Reduction of dietary sodium to less than 100 mmol in heart failure (SODIUM-HF): an international, open-label, randomised, controlled trial. Lancet. 2022, 399, 1391–1400. [Google Scholar] [CrossRef]
- McDonough, A.A.; Veiras, L.C.; Guevara, C.A.; Ralph, D.L. Cardiovascular benefits associated with higher dietary K(+) vs. lower dietary Na(+): evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017, 312, E348–E56. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.C. The importance of potassium in managing hypertension. Curr Hypertens Rep. 2011, 13, 309–317. [Google Scholar] [CrossRef]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition. 2014, 30, 928–935. [Google Scholar] [CrossRef]
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity (Silver Spring). 2011, 19, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef]
- Komnenov, D.; Levanovich, P.E.; Perecki, N.; Chung, C.S.; Rossi, N.F. Aortic Stiffness and Diastolic Dysfunction in Sprague Dawley Rats Consuming Short-Term Fructose Plus High Salt Diet. Integr Blood Press Control. 2020, 13, 111–124. [Google Scholar] [CrossRef]
- Komnenov, D.; Rossi, N.F. Fructose-induced salt-sensitive blood pressure differentially affects sympathetically mediated aortic stiffness in male and female Sprague-Dawley rats. Physiol Rep. 2023, 11, e15687. [Google Scholar] [CrossRef]
- Komnenov, D.; Levanovich, P.E.; Rossi, N.F. Hypertension Associated with Fructose and High Salt: Renal and Sympathetic Mechanisms. Nutrients. 2019, 11. [Google Scholar] [CrossRef]
- Soncrant, T.; Komnenov, D.; Beierwaltes, W.H.; Chen, H.; Wu, M.; Rossi, N.F. Bilateral renal cryodenervation decreases arterial pressure and improves insulin sensitivity in fructose-fed Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol. 2018, 315, R529–R38. [Google Scholar] [CrossRef] [PubMed]
- Levanovich, P.E.; Chung, C.S.; Komnenov, D.; Rossi, N.F. Fructose plus High-Salt Diet in Early Life Results in Salt-Sensitive Cardiovascular Changes in Mature Male Sprague Dawley Rats. Nutrients. 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Levanovich, P.E.; Daugherty, A.M.; Komnenov, D.; Rossi, N.F. Dietary fructose and high salt in young male Sprague Dawley rats induces salt-sensitive changes in renal function in later life. Physiol Rep. 2022, 10, e15456. [Google Scholar] [CrossRef]
- Jayalath, V.H.; de Souza, R.J.; Ha, V.; Mirrahimi, A.; Blanco-Mejia, S.; Di Buono, M.; et al. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr. 2015, 102, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.W.; Hao, Q.Y.; Zhang, H.F.; Li, X.Z.; Yuan, Z.M.; Guo, Y.; et al. Low-Carbohydrate Diet Score and Coronary Artery Calcium Progression: Results From the CARDIA Study. Arterioscler Thromb Vasc Biol. 2021, 41, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.J.; Gordon-Larsen, P.; Steffen, L.M.; Jacobs, D.R., Jr.; Popkin, B.M. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2010, 92, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.D.; Cutter, G.R.; Donahue, R.P.; Hughes, G.H.; Hulley, S.B.; Jacobs Jr, D.R.; et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. Journal of clinical epidemiology. 1988, 41, 1105–1116. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Yatsuya, H.; Hearst, M.O.; Thyagarajan, B.; Kalhan, R.; Rosenberg, S.; et al. Rate of decline of forced vital capacity predicts future arterial hypertension: the Coronary Artery Risk Development in Young Adults Study. Hypertension. 2012, 59, 219–225. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M. The 2017 American College of Cardiology/American Heart Association clinical practice guideline for high blood pressure in adults. JAMA cardiology. 2018, 3, 352–353. [Google Scholar] [CrossRef]
- McDonald, A.; Van Horn, L.; Slattery, M.; Hilner, J.; Bragg, C.; Caan, B.; Jacobs, D., Jr.; Liu, K.; Hubert, H.; Gernhofer, N.; et al. The CARDIA dietary history: development, implementation, and evaluation. Journal of the American Dietetic Association. 1991, 91, 1104–1112. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Applied psychological measurement. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Hahn, L.P.; Haskell, W.L.; Pirie, P.; Sidney, S. Validity and reliability of short physical activity history: CARDIA and the Minnesota Heart Health Program. Journal of Cardiopulmonary Rehabilitation and Prevention. 1989, 9, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.E.; Limberg, J.K.; Ranadive, S.M.; Joyner, M.J. Neurovascular control of blood pressure is influenced by aging, sex, and sex hormones. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2016, 311, R1271–R1275. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhu, Y.; Malik, V.; Li, X.; Peng, X.; Zhang, F.F.; et al. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Adv Nutr. 2021, 12, 89–101. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Siasos, G.; Tsigkou, V.; Coskun, A.U.; Oikonomou, E.; Zaromitidou, M.; Lerman, L.O.; et al. The Role of Shear Stress in Coronary Artery Disease. Curr Top Med Chem. 2023. [Google Scholar] [CrossRef]
- Pigeyre, M.; Yazdi, F.T.; Kaur, Y.; Meyre, D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016, 130, 943–986. [Google Scholar] [CrossRef]
- Redinger, R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterology & hepatology. 2007, 3, 856. [Google Scholar]
- Conner, M.; Norman, P. Health behaviour: Current issues and challenges. Psychol Health. 2017, 32, 895–906. [Google Scholar] [CrossRef]
| Male (n = 1159) | Female (n = 1497) | P Value | |
|---|---|---|---|
| Continuous variables, Mean (SD) | |||
| Age at baseline | 26 ± 3 | 26 ± 3 | 0.685 |
| BMI at baseline | 23.5 ± 4.6 | 23.4 ± 4.9 | 0.906 |
| % calories from sucrose at baseline | 6.11 ± 4.82 | 6.28 ± 6.14 | 0.337 |
| CES-D baseline | 1.42 ± 0.64 | 1.61 ± 0.80 | <0.001 |
| % calories from fructose at year 20 | 4.38 ± 3.05 | 4.52 ± 3.65 | 0.061 |
| % calories from sucrose at year 20 | 7.07 ± 3.66 | 7.63 ± 4.11 | 0.002 |
| Sodium (mg) at year 20 | 3679 ± 2153 | 2694 ± 1454 | <0.001 |
| Potassium (mg) at year 20 | 3318 ± 1621 | 2754 ± 1344 | <0.001 |
| CES-D scores at year 20 | 8.26 ± 6.87 | 9.35 ± 8.23 | 0.021 |
| Right carotid PWV (cm/s) at year 20 | 55.60 ± 15.92 | 58.90 ± 17.65 | <0.001 |
| Left carotid PWV (cm/s) at year 20 | 52.50 ± 15.65 | 56.80 ± 17.20 | <0.001 |
| cIMT (mm) at year 20 | 0.62 ± 0.19 | 0.57 ± 0.16 | <0.001 |
| Vascular Aging Index at year 20 | 15.00 ± 2.74 | 14.39 ± 2.33 | <0.001 |
| Categorical variables, Numbers (%) | |||
| HBP observed at baseline | 228 ± 8.6 | 111 ± 4.2 | <0.001 |
| HBP observed at year 20 | 75 ± 6.4 | 97 ± 6.5 | 0.993 |
| Baseline High Cholesterol | 24 ± 2.1 | 29 ± 1.9 | 0.669 |
| Baseline Heart Problems | 48 ± 4.1 | 102 ± 6.8 | 0.007 |
| Baseline Diabetes | 3 ± 0.2 | 9 ± 0.6 | 0.216 |
| Baseline Kidney Problems | 20 ± 1.7 | 77 ± 5.2 | <0.001 |
| On CVD Medications at Baseline | 1 ± 0.08 | 4 ± 0.2 | 0.31 |
| Run at least 1 hour/month in the past 12 months | 122 (10.5) | 83 (5.5) | <0.001 |
| Bike at least 1 hour/month in the past 12 months | 460 (17.4) | 394 (14.9) | <0.001 |
| Racket sport at least 1 hour/month in the past 12 months | 514 (19.4) | 465 (17.6) | <0.001 |
| Male | Female | |||||
|---|---|---|---|---|---|---|
| b-weight | B-weight | P Value | b-weight | B-weight | P Value | |
| Predictors measured at baseline | ||||||
| Age | 0.130 | 0.163 | <0.001 | 0.100 | 0.154 | <0.001 |
| Depression scores | 0.067 | 0.016 | 0.598 | 0.186 | 0.063 | 0.015 |
| Dietary sodium | 0.000 | 0.037 | 0.212 | 0.000 | 0.004 | 0.884 |
| % calories from sucrose | 0.016 | 0.027 | 0.363 | 0.004 | 0.012 | 0.661 |
| BMI | 0.019 | 0.032 | 0.274 | 0.005 | 0.011 | 0.678 |
| obsHBP | 0.345 | 0.050 | 0.094 | -0.039 | -0.004 | 0.866 |
| Predictors measured at year 20 of follow-up | ||||||
| Age | 0.137 | 0.171 | <0.001 | 0.079 | 0.127 | <0.001 |
| CES-D score | -0.008 | -0.021 | 0.514 | 0.009 | 0.033 | 0.236 |
| % calories from fructose | -0.028 | -0.031 | 0.349 | 0.026 | 0.042 | 0.157 |
| Dietary sodium | 0.000 | 0.145 | 0.003 | 0.000 | 0.023 | 0.575 |
| Dietary potassium | 0.000 | -0.160 | <0.001 | 0.000 | -0.059 | 0.150 |
| obsHBP | 0.110 | 0.010 | 0.757 | 0.101 | 0.011 | 0.694 |
| Aerobic activity (run/bike/racket sport) | -0.763 | -0.085 | 0.007 | -0.400 | -0.042 | 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
