Submitted:
16 November 2023
Posted:
23 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Thionins
2.1. Roles of thionins in mitigating biotic and abiotic stress
2.2. Transgenic plants with thionin genes for enhanced biotic and abiotic stress tolerance
3. Defensins
3.1. Antimicrobial activities of defensins and their roles in enhancing abiotic stress tolerance in plants
3.2. Transgenic plants with defensin genes for enhanced biotic and abiotic stress tolerance
4. Cyclotides
4.1. Antimicrobial activities of cyclotides and their roles in alleviating abiotic stress
4.2. The use of cyclotide genes in transgenic plant development to alleviate biotic and abiotic stresses
5. Hevein-like antimicrobial peptides
5.1. Antimicrobial activities and their roles in regulating abiotic stress response
5.2. The use of hevein-like antimicrobial peptide genes in transgenic plant development
6. Systemins
6.1. Roles of systemins in plant immunity
6.2. The use of systemin genes in transgenic plant development
7. Plant non-specific lipid transfer proteins
7.1. Antimicrobial activities and their roles in regulating abiotic stress response
7.2. The use of plant non-specific lipid transfer protein genes in transgenic plant development
| Gene | Origin | Transgenic organisms |
Promoter | Targeting pathogens or abiotic agents | Transformation method | References |
|---|---|---|---|---|---|---|
| Thionins | ||||||
| 𝛼-thionin | Barley (Hordeum vulgare L.) | Tobacco (N. tabacum L.) | CAMV35S |
P. syringae pv. tabaci 153 P. syringae pv. syringae |
Leaf-disc infection | Carmona et al. (1993) [159] |
| β-purothionin | Wheat (T. aestivum L.) | A. thaliana | Carbonic anhydrase (CA) promoter |
P. syringae strain DC3000 F. oxysporum f. sp. matthiolae |
Vacuum infiltration method | Oard and Enright (2006) [53] |
| Hordothionin | Barley (H. vulgare) | Apple (Malus domestica) | CaMV35S |
P. syringae pv. tobacco P. syringae pv. syringae |
Agrobacterium tumefaciens AGL0 | Krens et al. (2011) [160] |
| 𝛼-hordothionin | Barley (H. vulgare L.) | Sweet potato (Ipomoea batatas (L.) Lam.) | E12𝛺 | Ceratocystis fimbriata | A. tumefaciens | Muramoto et al. (2012) [55] |
| Modified thionin (Mthionin) | Citrus (Citrus L.) | Carrizo citrange | Double 35S (D35S) |
Candidatus Liberibacter asiaticus (Las) Xanthomonas citri |
Agrobacterium tumefaciens EHA105 | Hao et al. (2016) [58] |
| Modified thionin (Mthionin) | A. thaliana | A. thaliana | Double 35S (D35S) | Fusarium graminearum | Agrobacterium-mediated floral dip method | Hao et al. (2020) [59] |
| Thio-60 and Thio-63 | A. thaliana | Paulownia tomentosa | SP6 |
E. carotovora Pseudomonas aeruginosa |
Chitosan nanoparticles | Hussien (2020) [161] |
| Thio-60 | A. thaliana | Onion (Allium cepa L.) | SP6 | A. niger | Chitosan nanoparticles | Tawfik et al. (2022) [49] |
| Thio-60 | A. thaliana | Date palm (Phoenix dactylifera L.) | SP6 | F. oxysporum | Chitosan nanoparticles | Allah et al. (2023) [61] |
| Defensins | ||||||
| OsDEF7, OsDEF8 | Rice (O. sativa L.) | Rosetta-gami E. coli (DE3) | Tac |
Xanthomonas oryzae pv. oryzae X. oryzae pv. oryzicola E. carotovora subsp. atroseptica |
Not mentioned | Tantong et al. (2016) [162] |
| AtPDF1.1 | A. thaliana Col-0 | A. thaliana | CAMV35S | Pectobacterium carotovorum subsp. carotovorum | Agrobacterium-mediated floral dip method | Hsiao et al. (2017) [78] |
| Ca-AFP | Chickpea (Cicer arietinum L.) | A. thaliana | CAMV35S | Water-deficit stress | Agrobacterium-mediated floral dip method | Kumar et al. (2019) [34] |
| ZmDEF1 | Maize (Zea mays L.) | Maize (Z. mays L.) | pBetaPhaso | Sitophilus zeamais Motsch | A. tumefaciens C58 | Vi et al. (2019) [163] |
| PnDEFL1 | Panax notoginseng | A. cepa L., N. tabacum L. | CaMV35S |
Fusarium solani F. oxysporum Botrosphaeria dothidea S. sclerotiorum |
A. tumefaciens EHA105 | Wang et al. (2019) [164] |
| PtDef | Populus trichocarpa | Populus trichocarpa | CAMV35S | Septotis populiperda | A. tumefaciens EHA105 | Wei et al. (2019) [165] |
| MsDef1 | Medicago sativa | N. tabacum | M24 |
P. aeruginosa R. solanacearum Xanthomonas campestris A. niger Pyricularia oryzae R. solani P. syringae pv tabaci |
A. tumefaciens GV3850 | Deb et al. (2020) [166] |
| CAL2 | Rice (O. sativa L.) | O. sativa L. var. ZH11, A. thaliana | CAMV35S | Cadmium detoxification | Agrobacterium-mediated floral dip method | Luo et al. (2020) [89] |
| α-TvD1 | Shrub (Tephrosia villosa (L.) Pers) | N. tabacum | CAMV35S |
Phytophthora parasitica var. nicotianae A. alternata R. solani Spodoptera litura |
A. tumefaciens LBA4404 | Sharma et al. (2020) [167] |
| Chitinase I, defensin | Solanum tuberosum chitinase I, Vigna radiata defensin | Tea (Camellia sinensis L.) | CAMV35S | Blister blight (Exobasidium vexans) | A. tumefaciens LBA4404 | Singh et al. (2020) [168] |
| NmDef02 | Nicotiana megalosiphon | Soybean (Glycine max L.) | CAMV35S |
Phakopsora pachyrhizi Colletotrichum truncatum |
Bombardement | Soto et al. (2020) [169] |
| pgDEF | Panax ginseng | A. thaliana | CAMV35S | F. solani | A. tumefaciens AGL0 | Sun et al. (2021) [170] |
| Tfgd2-RsAFP2 | Impatiens balsamina L. | Pigeonpea (Cajanus cajan (L.) Huth) | CAMV35S | H. armigera | A. tumefaciens EHA105 | Nalluri and Karri (2023) [171] |
| NaD1 | Nicotiana alata | N. tabacum cv. Xanthi tobacco | CAMV35S | Drought stress | A. tumefaciens GV3101 | Royan et al. (2023) [87] |
| RsAFP2 | Radish (Raphanus sativus L.) | Chickpea (C. arietinum) | CAMV35S | F. oxysporum f. sp. Cicero | A. tumefaciens LBA4404 | Sadhu et al. (2023) [172] |
| Hevein-like antimicrobial peptides | ||||||
| Pn-AMP1, Pn-AMP2 | Pharbitis nil L. | Tobacco (N. tabacum) | CAMV35S | Phytophthora parasitica | A. tumefaciens EHA101 | Koo et al. (2002) [118] |
| Pro-SmAmp1 | Chickweed (Stellaria media) | A. thaliana | CAMV35S |
B. cinerea B. sorokiniana |
A. tumefaciens AGL0 | Shukurov et al. (2010) [173] |
| AMP1, AMP2 | Chickweed (S. media) | Tomato (S. lycopersicum L.) | CAMV35S | Phytophthora infestance | A. tumefaciens AGL0 | Khaliluev et al. (2011) [121] |
| Pro-SmAMP1, Pro-SmAMP2 | Chickweed (S. media) | Tobacco (N. tabacum) cv. Samsun-NN, A. thaliana Col-0 | CAMV35S |
B. sorokiniana Thielaviopsis basicola |
A. tumefaciens AGL0 | Shukurov et al. (2012) [174] |
| Pro-SmAmp2 | Chickweed (S. media) | Potato (S. tuberosum L.) var. Yubiley Zhukova | CAMV35S, pro-SmAMP2 |
Alternaria spp. Fusarium spp. |
A. tumefaciens AGL0 | Vetchinkina et al. (2016) [175] |
| Hevein-like gene | not mentioned | Asparagus (Asparagus officinalis L.) var. Jing Kang 701 | CAMV35S | Phoma asponaqi Sacc | A. tumefaciens EHA105 | Chen et al. (2019) [176] |
| Pro-SmAmp1 | Chickweed (S. media) | Potato (S. tuberosum L.) var. Zhukovsky ranny and Udacha | CAMV35S |
A. alternata Alternaria solani |
A. tumefaciens | Beliaev et al. (2021) [177] |
| Cyclotides | ||||||
| Oak1 (kalata B1), asparaginyl endopeptidase | O. affinis | Nicotiana benthamiana | CAMV35S | In planta kalata B1 production | A. tumefaciens LBA4404 | Poon et al. (2018) [178] |
| Systemins | ||||||
| Pro-systemin cDNA | not mentioned | Tomato (S. lycopersicum L.) | CAMV35S | Systemic signal propagation proteinase inhibitor accumulation |
A. tumefaciens LBA4404 | McGurl et al. (1994) [179] |
| Pro-systemin cDNA | not mentioned | Tomato (S. lycopersicum L.) cv. Red Setter | CAMV35S |
Macrosiphum euphorbiae) B. cinerea A. alternata Spodoptera littoralis |
A. tumefaciens C5851 | Coppola et al. (2015) [180] |
| Pro-systemin cDNA | not mentioned | Tomato (S. lycopersicum L.) | CAMV35S | Cucumber mosaic virus, Necrosis satRNA, Non-necrogenic mutant "NNmut-satRNA" | A. tumefaciens LBA4404 | Bubici et al. (2017) [181] |
| Pro-systemin cDNA | Tomato | A. thaliana Col-0 | Shoot- or root-specific promoter, CAMV35S | B. cinerea | Agrobacterium-mediated floral dip method | Zhang et al. (2018) [128] |
| Truncated pro-systemin CDNA | Tomato | Tomato (S. lycopersicum L.) cv. Red Setter | CAMV35S |
Spodoptera littoralis B. cinerea |
A. tumefaciens C5851 | Molisso et al. (2022) [182] |
| Non-specific lipid transfer protein genes | ||||||
| Ace-AMP1 | Allium cepa | Rice |
PAL maize ubiquitin (UbI) |
R. solani Xanthomonas oryzae Magnaporthe grisea |
Bombardment, A. tumefaciens LBA4404 | Patkar and Chattoo (2006) [183] |
| TaLTP3 | Wheat (T. aestivum L.) cv. Chinese Spring | A. thaliana | CAMV35S | Heat stress | Agrobacterium-mediated floral dip method | Wang et al. (2014) [154] |
| TaLTPIb.1, TaLTPIb.5, TaLTPId.1 | Wheat | Nicotiana benthamiana | CAMV35S | Cold, drought, wounding | Agrobacterium-mediated transformation | Yu et al. (2014) [143] |
| TdLTP4 | Durum wheat (T. turgidum L. subsp. Durum Desf.) | A. thaliana | CAMV35S |
A. solani B. cinerea |
Agrobacterium-mediated floral dip method | Safi et al. (2015) [184] |
| StnsLTP1 | Potato (S. tuberosum L.) | Potato (S. tuberosum L.) | Double 35S (D35S) | Heat, water deficit, salt stress | Agrobacterium-mediated transformation | Gangadhar et al. (2016) [158] |
| SiLTP | Foxtail millet (Setaria italica) cv. Jigu11 | A. thaliana Col-0 | SiLTP endogenous promoter | Salt and drought stress | Agrobacterium-mediated transformation | Pan et al. (2016) [144] |
| NtLTP4 | Tobacco (N. tabacum L.) | Tobacco (N. tabacum L.) | CAMV35S | Salt and drought stress | A. tumefaciens-mediated leaf disc | Xu et al. (2018) [185] |
| GmLtpI.3 | Soybean cv. Zhonghuang 39 | Soybean cv. Williams 82, Arabidopsis | CAMV35S | Salt and drought stress | Agrobacterium-mediated transformation | Zhang et al. (2022) [186] |
| NtLTPI.38 | Tobacco (N. tabacum) | Tobacco (N. tabacum) cv. K326 | Not mentioned | Heat stress | Agrobacterium-mediated transformation | Song et al. (2023) [187] |
| AT14A | A. thaliana Col-0 | Tomato (S. lycopersicum L.) cv. Yaxin 87-5 | CAMV35S | Drought stress | Agrobacterium-mediated transformation | Xin et al. (2023) [188] |
8. Conclusion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front Plant Sci 2017, 8. [Google Scholar] [CrossRef]
- Brooks, J.; Deconinck, K.; Giner, C. Three Key Challenges Facing Agriculture and How to Start Solving Them 2019.
- Gagic, V.; Holding, M.; Venables, W.N.; Hulthen, A.D.; Schellhorn, N.A. Better Outcomes for Pest Pressure, Insecticide Use, and Yield in Less Intensive Agricultural Landscapes. Proceedings of the National Academy of Sciences 2021, 118, e2018100118. [Google Scholar] [CrossRef]
- Sasakova, N.; Gregova, G.; Takacova, D.; Mojzisova, J.; Papajova, I.; Venglovsky, J.; Szaboova, T.; Kovacova, S. Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Front Sustain Food Syst 2018, 2, 42. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Boopathy, R.; Hadibarata, T. Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management. Curr Pollut Rep 2020, 6, 310–327. [Google Scholar] [CrossRef]
- FAO Water for Sustainable Food and Agriculture. FAODocuments 2017.
- Orimoloye, I.R. Agricultural Drought and Its Potential Impacts: Enabling Decision-Support for Food Security in Vulnerable Regions. Front Sustain Food Syst 2022, 6. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P.K. Soil Salinity and Food Security in India. Front Sustain Food Syst 2020, 4. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol Environ Saf 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global Predictions of Primary Soil Salinization under Changing Climate in the 21st Century. Nat Commun 2021, 12, 6663. [Google Scholar] [CrossRef]
- Salehi-Lisar, S.; Bakhshayeshan-Agdam, H. Chapter 1: Drought Stress in Plants: Causes, Consequences, and Tolerance. In Drought Stress Tolerance in Plants, Vol 1 Physiology and Biochemistry; Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Tran Phan, L.-S., Eds.; Springer, 2016; pp. 1–16 ISBN ISBN 978-3-319-28899-4.
- Sarkozi, A. New Standards to Curb the Global Spread of Plant Pests and Diseases. FAO CN - (+39) 06 570 52537 2020.
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front Microbiol 2019, 10. [Google Scholar] [CrossRef]
- Kulik, K.; Lenart-Boroń, A.; Wyrzykowska, K. Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water (Basel) 2023, 15, 975. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip Toxicol 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Onwona-Kwakye, M.; Plants-Paris, K.; Keita, K.; Lee, J.; Van den Brink, P.J.; Hogarh, J.N.; Darkoh, C. Pesticides Decrease Bacterial Diversity and Abundance of Irrigated Rice Fields. Microorganisms 2020, 8, 318. [Google Scholar] [CrossRef]
- Campos, M.L.; Liao, L.M.; Alves, E.S.; Migliolo, L.; Dias, S.C.; Franco, O.L. A Structural Perspective of Plant Antimicrobial Peptides. Biochemical Journal 2018, 475. [Google Scholar] [CrossRef]
- Bakare, O.O.; Gokul, A.; Fadaka, A.O.; Wu, R.; Niekerk, L.-A.; Barker, A.M.; Keyster, M.; Klein, A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022, 27, 3703. [Google Scholar] [CrossRef]
- Simonsen, S.M.; Sando, L.; Ireland, D.C.; Colgrave, M.L.; Bharathi, R.; Göransson, U.; Craik, D.J. A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 2005, 17, 3176–3189. [Google Scholar] [CrossRef]
- Hill, J.; Becker, H.C.; Tigerstedt, P.M.A. Breeding for Biotic and Abiotic Stress. In Quantitative and Ecological Aspects of Plant Breeding; Springer Netherlands: Dordrecht, 1998; pp. 212–234.
- Pandolfi, C.; Azzarello, E.; Mancuso, S.; Shabala, S. Acclimation Improves Salt Stress Tolerance in Zea Mays Plants. J Plant Physiol 2016, 201, 1–8. [Google Scholar] [CrossRef]
- Corbineau, F.; Taskiran-Özbingöl, N.; El-Maarouf-Bouteau, H. Improvement of Seed Quality by Priming: Concept and Biological Basis. Seeds 2023, 2, 101–115. [Google Scholar] [CrossRef]
- Aizaz, M.; Ahmad, W.; Asaf, S.; Khan, I.; Saad Jan, S.; Salim Alamri, S.; Bilal, S.; Jan, R.; Kim, K.-M.; Al-Harrasi, A. Characterization of the Seed Biopriming, Plant Growth-Promoting and Salinity-Ameliorating Potential of Halophilic Fungi Isolated from Hypersaline Habitats. Int J Mol Sci 2023, 24, 4904. [Google Scholar] [CrossRef]
- Vaishnav, A.; Shukla, A.K.; Sharma, A.; Kumar, R.; Choudhary, D.K. Endophytic Bacteria in Plant Salt Stress Tolerance: Current and Future Prospects. J Plant Growth Regul 2019, 38, 650–668. [Google Scholar] [CrossRef]
- da Silva Rodrigues-Corrêa, K.C.; Fett-Neto, A.G. Abiotic Stresses and Non-Protein Amino Acids in Plants. CRC Crit Rev Plant Sci 2019, 38, 411–430. [Google Scholar] [CrossRef]
- Maximiano, M.R.; Rios, T.B.; Campos, M.L.; Prado, G.S.; Dias, S.C.; Franco, O.L. Nanoparticles in Association with Antimicrobial Peptides (NanoAMPs) as a Promising Combination for Agriculture Development. Front Mol Biosci 2022, 9. [Google Scholar] [CrossRef]
- Kulaeva, O.; Kliukova, M.; Afonin, A.; Sulima, A.; Zhukov, V.; Tikhonovich, I. The Role of Plant Antimicrobial Peptides (AMPs) in Response to Biotic and Abiotic Environmental Factors. Biological Communications 2020, 65, 187–199. [Google Scholar] [CrossRef]
- Mulla, J.A.; Tamhane, V.A. Novel Insights into Plant Defensin Ingestion Induced Metabolic Responses in the Polyphagous Insect Pest Helicoverpa Armigera. Sci Rep 2023, 13, 3151. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Araujo, K.; Sánchez, J.N.; Kund, G.; Trumble, J.; Roper, C.; Godfrey, K.E.; Jin, H. A Stable Antimicrobial Peptide with Dual Functions of Treating and Preventing Citrus Huanglongbing. Proceedings of the National Academy of Sciences 2021, 118. [Google Scholar] [CrossRef]
- Leannec-Rialland, V.; Atanasova, V.; Chereau, S.; Tonk-Rügen, M.; Cabezas-Cruz, A.; Richard-Forget, F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. Journal of Fungi 2022, 8, 229. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; Darwish, N.I.; Garcia-Sanchez, J.; Tyagi, N.; Trick, H.N.; McCormick, S.; Dill-Macky, R.; Tumer, N.E. A Lipid Transfer Protein Has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat. Phytopathology 2021, 111, 671–683. [Google Scholar] [CrossRef]
- Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant Antimicrobial Peptides. Folia Microbiol (Praha) 2014, 59, 181–196. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant Antimicrobial Peptides: Structures, Functions, and Applications. Bot Stud 2021, 62. [Google Scholar] [CrossRef]
- Kumar, M.; Yusuf, M.A.; Yadav, P.; Narayan, S.; Kumar, M. Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis Thaliana. Front Plant Sci 2019, 10. [Google Scholar] [CrossRef]
- Mirakhorli, N.; Norolah, Z.; Foruzandeh, S.; Shafizade, F.; Nikookhah, F.; Saffar, B.; Ansari, O. Multi-Function Plant Defensin, Antimicrobial and Heavy Metal Adsorbent Peptide. Iran J Biotechnol 2019, 17, 43–49. [Google Scholar] [CrossRef]
- Rawat, S.; Ali, S.; Nayankantha, N.N.C.; Chandrashekar, N.; Mittra, B.; Grover, A. Isolation and Expression Analysis of Defensin Gene and Its Promoter from Brassica Juncea. Journal of Plant Diseases and Protection 2017, 124, 591–600. [Google Scholar] [CrossRef]
- Su, Q.; Wang, K.; Zhang, Z. Ecotopic Expression of the Antimicrobial Peptide DmAMP1W Improves Resistance of Transgenic Wheat to Two Diseases: Sharp Eyespot and Common Root Rot. Int J Mol Sci 2020, 21, 647. [Google Scholar] [CrossRef]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A. Plant Thionins: Structure, Biological Functions and Potential Use in Biotechnology. Vavilov Journal of Genetics and Breeding 2018, 22, 667–675. [Google Scholar] [CrossRef]
- Ji, H.; Gheysen, G.; Ullah, C.; Verbeek, R.; Shang, C.; De Vleesschauwer, D.; Höfte, M.; Kyndt, T. The Role of Thionins in Rice Defence against Root Pathogens. Mol Plant Pathol 2015, 16, 870–881. [Google Scholar] [CrossRef]
- Stec, B.; Markman, O.; Rao, U.; Heffron, G.; Henderson, S.; Vernon, L.P.; Brumfeld, V.; Teeter, M.M. Proposal for Molecular Mechanism of Thionins Deduced from Physico-chemical Studies of Plant Toxins. The Journal of Peptide Research 2004, 64, 210–224. [Google Scholar] [CrossRef]
- Oard, S. V. Deciphering a Mechanism of Membrane Permeabilization by α-Hordothionin Peptide. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808, 1737–1745. [Google Scholar] [CrossRef]
- Loeza-Ángeles, H.; Sagrero-Cisneros, E.; Lara-Zárate, L.; Villagómez-Gómez, E.; López-Meza, J.E.; Ochoa-Zarzosa, A. Thionin Thi2.1 from Arabidopsis Thaliana Expressed in Endothelial Cells Shows Antibacterial, Antifungal and Cytotoxic Activity. Biotechnol Lett 2008, 30, 1713–1719. [Google Scholar] [CrossRef]
- Taveira, G.B.; Carvalho, A.O.; Rodrigues, R.; Trindade, F.G.; Da Cunha, M.; Gomes, V.M. Thionin-like Peptide from Capsicum Annuum Fruits: Mechanism of Action and Synergism with Fluconazole against Candida Species. BMC Microbiol 2016, 16, 12. [Google Scholar] [CrossRef]
- Asano, T.; Miwa, A.; Maeda, K.; Kimura, M.; Nishiuchi, T. The Secreted Antifungal Protein Thionin 2.4 in Arabidopsis Thaliana Suppresses the Toxicity of a Fungal Fruit Body Lectin from Fusarium Graminearum. PLoS Pathog 2013, 9, e1003581. [Google Scholar] [CrossRef]
- Mehrabi, S.; Åhman, I.; Jonsson, L.M. V. Transcript Abundance of Resistance- and Susceptibility-Related Genes in a Barley Breeding Pedigree with Partial Resistance to the Bird Cherry-Oat Aphid (Rhopalosiphum Padi L.). Euphytica 2014, 198, 211–222. [Google Scholar] [CrossRef]
- Petitot, A.-S.; Kyndt, T.; Haidar, R.; Dereeper, A.; Collin, M.; de Almeida Engler, J.; Gheysen, G.; Fernandez, D. Transcriptomic and Histological Responses of African Rice (Oryza Glaberrima) to Meloidogyne Graminicola Provide New Insights into Root-Knot Nematode Resistance in Monocots. Ann Bot 2017, 119, 885–899. [Google Scholar] [CrossRef]
- Leybourne, D.J.; Valentine, T.A.; Binnie, K.; Taylor, A.; Karley, A.J.; Bos, J.I.B. Drought Stress Increases the Expression of Barley Defence Genes with Negative Consequences for Infesting Cereal Aphids. J Exp Bot 2022, 73, 2238–2250. [Google Scholar] [CrossRef]
- Sewelam, N.; El-Shetehy, M.; Mauch, F.; Maurino, V.G. Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection. Plants 2021, 10, 1946. [Google Scholar] [CrossRef]
- Tawfik, E.; Hammad, I.; Bakry, A. Production of Transgenic Allium Cepa by Nanoparticles to Resist Aspergillus Niger Infection. Mol Biol Rep 2022, 49, 1783–1790. [Google Scholar] [CrossRef]
- Künstler, A.; Gullner, G.; Ádám, A.L.; Kolozsváriné Nagy, J.K.; Király, L. The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense—A Road to Disease Resistance. Plants 2020, 9, 1705. [Google Scholar] [CrossRef]
- Epple, P.; Apel, K.; Bohlmann, H. Overexpression of an Endogenous Thionin Enhances Resistance of Arabidopsis against Fusarium Oxysporum. Plant Cell 1997, 9, 509–520. [Google Scholar] [CrossRef]
- Chan, Y.-L.Y.-L.; Prasad, V.; Sanjaya; Chen, K.H.; Liu, P.C.; Chan, M.-T.M.-T.; Cheng, C.-P.C.-P. Transgenic Tomato Plants Expressing an Arabidopsis Thionin (Thi2.1) Driven by Fruit-Inactive Promoter Battle against Phytopathogenic Attack. Planta 2005, 221, 386–393. [CrossRef]
- Oard, S. V.; Enright, F.M. Expression of the Antimicrobial Peptides in Plants to Control Phytopathogenic Bacteria and Fungi. Plant Cell Rep 2006, 25, 561–572. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, M.; Pan, S.; Pan, C.; Li, Y.; Tian, J. Perillaldehyde Controls Postharvest Black Rot Caused by Ceratocystis Fimbriata in Sweet Potatoes. Front Microbiol 2018, 9. [Google Scholar] [CrossRef]
- Muramoto, N.; Tanaka, T.; Shimamura, T.; Mitsukawa, N.; Hori, E.; Koda, K.; Otani, M.; Hirai, M.; Nakamura, K.; Imaeda, T. Transgenic Sweet Potato Expressing Thionin from Barley Gives Resistance to Black Rot Disease Caused by Ceratocystis Fimbriata in Leaves and Storage Roots. Plant Cell Rep 2012, 31, 987–997. [Google Scholar] [CrossRef]
- Hao, G.; Zhang, S.; Stover, E. Transgenic Expression of Antimicrobial Peptide D2A21 Confers Resistance to Diseases Incited by Pseudomonas Syringae Pv. Tabaci and Xanthomonas Citri, but Not Candidatus Liberibacter Asiaticus. PLoS One 2017, 12, e0186810. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, X.; Xu, L.; Lei, T.; Peng, A.; He, Y.; Yao, L.; Chen, S. Transgenic Citrus Expressing Synthesized Cecropin B Genes in the Phloem Exhibits Decreased Susceptibility to Huanglongbing. Plant Mol Biol 2017, 93, 341–353. [Google Scholar] [CrossRef]
- Hao, G.; Stover, E.; Gupta, G. Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB). Front Plant Sci 2016, 7. [Google Scholar] [CrossRef]
- Hao, G.; Bakker, M.G.; Kim, H.-S. Enhanced Resistance to Fusarium Graminearum in Transgenic Arabidopsis Plants Expressing a Modified Plant Thionin. Phytopathology 2020, 110, 1056–1066. [Google Scholar] [CrossRef]
- Escudero-Martinez, C.M.; Morris, J.A.; Hedley, P.E.; Bos, J.I.B. Barley Transcriptome Analyses upon Interaction with Different Aphid Species Identify Thionins Contributing to Resistance. Plant Cell Environ 2017, 40, 2628–2643. [Google Scholar] [CrossRef]
- Allah, K.W.A.; Alabasey, E.E.D.G.H.; Ahmed, K.Z.; Hussien, E.T.; Razik, A.B.A. Phoenix Dactylifera in Vitro Culture and Transformation of Thio-60 Antifungal Gene via Chitosan Nanoparticle. Plant Cell, Tissue and Organ Culture (PCTOC). [CrossRef]
- Liu, X.; Gong, X.; Zhou, D.; Jiang, Q.; Liang, Y.; Ye, R.; Zhang, S.; Wang, Y.; Tang, X.; Li, F.; et al. Plant Defensin-Dissimilar Thionin OsThi9 Alleviates Cadmium Toxicity in Rice Plants and Reduces Cadmium Accumulation in Rice Grains. J Agric Food Chem 2023, 71, 8367–8380. [Google Scholar] [CrossRef]
- Azmi, S.; Hussain, M.K. Analysis of Structures, Functions, and Transgenicity of Phytopeptides Defensin and Thionin: A Review. Beni Suef Univ J Basic Appl Sci 2021, 10, 5. [Google Scholar] [CrossRef]
- Kovaleva, V.; Bukhteeva, I.; Kit, O.Y.; Nesmelova, I. V Plant Defensins from a Structural Perspective. Int J Mol Sci 2020, 21, 5307. [Google Scholar] [CrossRef]
- Parisi, K.; Shafee, T.M.A.; Quimbar, P.; van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. The Evolution, Function and Mechanisms of Action for Plant Defensins. Semin Cell Dev Biol 2019, 88, 107–118. [Google Scholar] [CrossRef]
- Shalovylo, Y.I.; Yusypovych, Y.M.; Hrunyk, N.I.; Roman, I.I.; Zaika, V.K.; Krynytskyy, H.T.; Nesmelova, I. V.; Kovaleva, V.A. Seed-Derived Defensins from Scots Pine: Structural and Functional Features. Planta 2021, 254, 129. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Xiang, S.; Chen, Y.; Zhang, H.; Yu, D. The Transcription Factor WRKY75 Positively Regulates Jasmonate-Mediated Plant Defense to Necrotrophic Fungal Pathogens. J Exp Bot 2021, 72, 1473–1489. [Google Scholar] [CrossRef]
- Slezina, M.P.; Istomina, E.A.; Kulakovskaya, E. V; Korostyleva, T. V; Odintsova, T.I. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. Int J Mol Sci 2022, 23, 8383. [Google Scholar] [CrossRef]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T. V; Odintsova, T.I. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture. Int J Mol Sci 2023, 24, 483. [Google Scholar] [CrossRef]
- Contreras, G.; Shirdel, I.; Braun, M.S.; Wink, M. Defensins: Transcriptional Regulation and Function beyond Antimicrobial Activity. Dev Comp Immunol 2020, 104. [Google Scholar] [CrossRef]
- Mee Do, H.; Chul Lee, S.; Won Jung, H.; Hoon Sohn, K.; Kook Hwang, B. Differential Expression and in Situ Localization of a Pepper Defensin (CADEF1) Gene in Response to Pathogen Infection, Abiotic Elicitors and Environmental Stresses in Capsicum Annuum. Plant Science 2004, 166, 1297–1305. [Google Scholar] [CrossRef]
- Weerawanich, K.; Webster, G.; Ma, J.K.-C.; Phoolcharoen, W.; Sirikantaramas, S. Gene Expression Analysis, Subcellular Localization, and in Planta Antimicrobial Activity of Rice (Oryza Sativa L.) Defensin 7 and 8. Plant Physiology and Biochemistry 2018, 124, 160–166. [Google Scholar] [CrossRef]
- Tesfaye, M.; Silverstein, K.AT.; Nallu, S.; Wang, L.; Botanga, C.J.; Gomez, S.K.; Costa, L.M.; Harrison, M.J.; Samac, D.A.; Glazebrook, J.; et al. Spatio-Temporal Expression Patterns of Arabidopsis Thaliana and Medicago Truncatula Defensin-Like Genes. PLoS One 2013, 8, e58992. [Google Scholar] [CrossRef]
- Franco, O.L.; Murad, A.M.; Leite, J.R.; Mendes, P.A.M.; Prates, M. V; Bloch Jr., C. Identification of a Cowpea γ-Thionin with Bactericidal Activity. FEBS J 2006, 273, 3489–3497. [Google Scholar] [CrossRef]
- Fernández, A.; Colombo, M.L.; Curto, L.M.; Gómez, G.E.; Delfino, J.M.; Guzmán, F.; Bakás, L.; Malbrán, I.; Vairo-Cavalli, S.E. Peptides Derived From the α-Core and γ-Core Regions of a Putative Silybum Marianum Flower Defensin Show Antifungal Activity Against Fusarium Graminearum. Front Microbiol 2021, 12. [Google Scholar] [CrossRef]
- Sagaram, U.S.; Pandurangi, R.; Kaur, J.; Smith, T.J.; Shah, D.M. Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4 with Different Modes of Action against Fusarium Graminearum. PLoS One 2011, 6, e18550. [Google Scholar] [CrossRef]
- Mirouze, M.; Sels, J.; Richard, O.; Czernic, P.; Loubet, S.; Jacquier, A.; François, I.E.J.A.; Cammue, B.P.A.; Lebrun, M.; Berthomieu, P.; et al. A Putative Novel Role for Plant Defensins: A Defensin from the Zinc Hyper-accumulating Plant, Arabidopsis Halleri, Confers Zinc Tolerance. The Plant Journal 2006, 47, 329–342. [Google Scholar] [CrossRef]
- Hsiao, P.-Y.; Cheng, C.-P.; Koh, K.W.; Chan, M.-T. The Arabidopsis Defensin Gene, AtPDF1.1, Mediates Defence against Pectobacterium Carotovorum Subsp. Carotovorum via an Iron-Withholding Defence System. Sci Rep 2017, 7, 9175. [Google Scholar] [CrossRef]
- Nitnavare, R.B.; Pothana, A.; Yeshvekar, R.K.; Bhattacharya, J.; Sapara, V.; Reddy, P.S.; Ramtirtha, Y.; Tarafdar, A.; Sharma, M.; Bhatnagar-Mathur, P. Chickpea Defensin Gene Family: Promising Candidates for Resistance Against Soil-Borne Chickpea Fungal Pathogens. J Plant Growth Regul 2023, 42, 6244–6260. [Google Scholar] [CrossRef]
- Bondt, A.; Zaman, S.; Broekaert, W.; Cammue, B.; Keulemans, J. GENETIC TRANSFORMATION OF APPLE (MALUS PUMILA MILL.) FOR INCREASED FUNGAL RESISTANCE: IN VITRO ANTIFUNGAL ACTIVITY IN PROTEIN EXTRACTS OF TRANSGENIC APPLE EXPRESSING RS-AFP2 OR ACE-AMP1. Acta Hortic. [CrossRef]
- Wang, Y.; Nowak, G.; Culley, D.; Hadwiger, L.A.; Fristensky, B. Constitutive Expression of Pea Defense Gene DRR206 Confers Resistance to Blackleg (Leptosphaeria Maculans) Disease in Transgenic Canola (Brassica Napus). Molecular Plant-Microbe Interactions® 1999, 12, 410–418. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Dolgov, S.V.; Lavrova, N.; Lunin, V.G.; Naroditski, B.S. PLANT-DEFENSIN GENES INTRODUCTION FOR IMPROVEMENT OF PEAR PHYTOPATHOGEN RESISTANCE. Acta Hortic 2002, 167–172. [Google Scholar] [CrossRef]
- Cary, J.W.; Rajasekaran, K.; Jaynes, J.M.; Cleveland, T.E. Transgenic Expression of a Gene Encoding a Synthetic Antimicrobial Peptide Results in Inhibition of Fungal Growth in Vitro and in Planta. Plant Science 2000, 154, 171–181. [Google Scholar] [CrossRef]
- Park, H.C.; Hwan Kang, Y.; Jin Chun, H.; Choon Koo, J.; Hwa Cheong, Y.; Young Kim, C.; Chul Kim, M.; Sik Chung, W.; Cheol Kim, J.; Hyuk Yoo, J.; et al. Characterization of a Stamen-Specific CDNA Encoding a Novel Plant Defensin in Chinese Cabbage. Plant Mol Biol 2002, 50, 57–68. [Google Scholar] [CrossRef]
- Swathi Anuradha, T.; Divya, K.; Jami, S.K.; Kirti, P.B. Transgenic Tobacco and Peanut Plants Expressing a Mustard Defensin Show Resistance to Fungal Pathogens. Plant Cell Rep 2008, 27, 1777–1786. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Shah, D.; Abbas, D.; Madkour, M. Stable Integration and Expression of a Plant Defensin in Tomato Confers Resistance to Fusarium Wilt. GM Crops 2010, 1, 344–350. [Google Scholar] [CrossRef]
- Royan, S.; Shirzadian-Khorramabad, R.; Zibaee, A.; Bagherieh-Najjar, M.B.; Firouzabadi, F.N. Tobacco Plants Expressing the Defensin NaD1 Enhance Drought Tolerance Characteristics in Transgenic Lines. Plant Growth Regul 2023, 101, 503–518. [Google Scholar] [CrossRef]
- Luo, J.-S.; Gu, T.; Yang, Y.; Zhang, Z. A Non-Secreted Plant Defensin AtPDF2.6 Conferred Cadmium Tolerance via Its Chelation in Arabidopsis. Plant Mol Biol 2019, 100, 561–569. [Google Scholar] [CrossRef]
- Luo, J.-S.; Xiao, Y.; Yao, J.; Wu, Z.; Yang, Y.; Ismail, A.M.; Zhang, Z. Overexpression of a Defensin-Like Gene CAL2 Enhances Cadmium Accumulation in Plants. Front Plant Sci 2020, 11. [Google Scholar] [CrossRef]
- Slazak, B.; Haugmo, T.; Badyra, B.; Goransson, U. The Life Cycle of Cyclotides: Biosynthesis and Turnover in Plant Cells. Plant Cell Rep 2020, 39, 1359–1367. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Huang, Z.; Yang, B.; Zhang, X.; Li, D.; Craik, D.J.; Baker, A.J.M.; Shu, W.; Liao, B. Transcriptomic Screening for Cyclotides and Other Cysteine-Rich Proteins in the Metallophyte Viola Baoshanensis. J Plant Physiol 2015, 178, 17–26. [Google Scholar] [CrossRef]
- de Veer, S.J.; Kan, M.-W.; Craik, D.J. Cyclotides: From Structure to Function. Chem Rev 2019, 119, 12375–12421. [Google Scholar] [CrossRef]
- Saether, O.; Craik, D.J.; Campbell, I.D.; Sletten, K.; Juul, J.; Norman, D.G. Elucidation of the Primary and Three-Dimensional Structure of the Uterotonic Polypeptide Kalata B1. Biochemistry 1995, 34, 4147–4158. [Google Scholar] [CrossRef]
- Gran, L.; Sandberg, F.; Sletten, K. Oldenlandia Affinis (R&S) DC: A Plant Containing Uteroactive Peptides Used in African Traditional Medicine. J Ethnopharmacol 2000, 70, 197–203. [Google Scholar] [CrossRef]
- Jennings, C.; West, J.; Waine, C.; Craik, D.; Anderson, M. Biosynthesis and Insecticidal Properties of Plant Cyclotides: The Cyclic Knotted Proteins from Oldenlandia Affinis. Proceedings of the National Academy of Sciences 2001, 98, 10614–10619. [Google Scholar] [CrossRef]
- Jennings, C. V.; Rosengren, K.J.; Daly, N.L.; Plan, M.; Stevens, J.; Scanlon, M.J.; Waine, C.; Norman, D.G.; Anderson, M.A.; Craik, D.J. Isolation, Solution Structure, and Insecticidal Activity of Kalata B2, a Circular Protein with a Twist: Do Möbius Strips Exist in Nature?, Biochemistry 2005, 44, 851–860. [Google Scholar] [CrossRef]
- Barbeta, B.L.; Marshall, A.T.; Gillon, A.D.; Craik, D.J.; Anderson, M.A. Plant Cyclotides Disrupt Epithelial Cells in the Midgut of Lepidopteran Larvae. Proceedings of the National Academy of Sciences 2008, 105, 1221–1225. [Google Scholar] [CrossRef]
- English, L.; Slatin, S.L. Mode of Action of Delta-Endotoxins from Bacillus Thuringiensis: A Comparison with Other Bacterial Toxins. Insect Biochem Mol Biol 1992, 22, 1–7. [Google Scholar] [CrossRef]
- Tan, Y.; Khoo, S.Q.; Tan, S. Acute Metaldehyde Poisoning from Ingestion: Clinical Features and Implications for Early Treatment. Acute Medicine & Surgery 2022, 9, e766. [Google Scholar] [CrossRef]
- Plan, M.R.R.; Saska, I.; Cagauan, A.G.; Craik, D.J. Backbone Cyclised Peptides from Plants Show Molluscicidal Activity against the Rice Pest Pomacea Canaliculata (Golden Apple Snail). J Agric Food Chem 2008, 56, 5237–5241. [Google Scholar] [CrossRef]
- Oguis, G.K.; Gilding, E.K.; Jackson, M.A.; Craik, D.J. Butterfly Pea (Clitoria Ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. Front Plant Sci 2019, 10. [Google Scholar] [CrossRef]
- Shu; Zhang; Liu; Bian; Liang; Liang; Liang; Lin; Shu; Li; et al. Comparative Transcriptomic Studies on a Cadmium Hyperaccumulator Viola Baoshanensis and Its Non-Tolerant Counterpart V. Inconspicua. Int J Mol Sci 2019, 20, 1906. [CrossRef]
- Liu, W.; Shu, W.; Lan, C. Viola Baoshanensis, a Plant That Hyperaccumulates Cadmium. Chinese Science Bulletin 2004, 49, 29–32. [Google Scholar] [CrossRef]
- Zhang, J.; Liao, B.; Craik, D.J.; Li, J.-T.; Hu, M.; Shu, W.-S. Identification of Two Suites of Cyclotide Precursor Genes from Metallophyte Viola Baoshanensis: CDNA Sequence Variation, Alternative RNA Splicing and Potential Cyclotide Diversity. Gene 2009, 431, 23–32. [Google Scholar] [CrossRef]
- Salehi, H.; Bahramnejad, B.; Majdi, M. Induction of Two Cyclotide-like Genes Zmcyc1 and Zmcyc5 by Abiotic and Biotic Stresses in Zea Mays. Acta Physiol Plant 2017, 39, 131. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, M.; Li, J.-T.; Guan, J.-P.; Yang, B.; Shu, W.-S.; Liao, B. A Transcriptional Profile of Metallophyte Viola Baoshanensis Involved in General and Species-Specific Cadmium-Defense Mechanisms. J Plant Physiol 2009, 166, 862–870. [Google Scholar] [CrossRef]
- Cai, X.-H.; Brown, C.; Adhiya, J.; Traina, S.J.; Sayre, R.T. Growth and Heavy Metal Binding Properties of Transgenic Chlamydomonas Expressing a Foreign Metallothionein Gene. Int J Phytoremediation 1999, 1, 53–65. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lai, K.S. Generation of Transgenic Rice Expressing Cyclotide Precursor Oldenlandia Affinis Kalata B1 Protein. The Journal of Animal & Plant Sciences 2017, 27, 667–671. [Google Scholar]
- Van Parijs, J.; Broekaert, W.F.; Goldstein, I.J.; Peumans, W.J. Hevein: An Antifungal Protein from Rubber-Tree (Hevea Brasiliensis) Latex. Planta 1991, 183, 258–264. [Google Scholar] [CrossRef]
- Slavokhotova, A.A.; Shelenkov, A.A.; Andreev, Ya.A.; Odintsova, T.I. Hevein-like Antimicrobial Peptides of Plants. Biochemistry (Moscow) 2017, 82, 1659–1674. [Google Scholar] [CrossRef]
- Koo, J.C.; Lee, S.Y.; Chun, H.J.; Cheong, Y.H.; Choi, J.S.; Kawabata, S.; Miyagi, M.; Tsunasawa, S.; Ha, K.S.; Bae, D.W.; et al. Two Hevein Homologs Isolated from the Seed of Pharbitis Nil L. Exhibit Potent Antifungal Activity. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1998, 1382, 80–90. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, Y.; Pan, Y.-H.; Zhang, C.-H.; Yuan, W.-X. A Hevein-like Protein and a Class I Chitinase with Antifungal Activity from Leaves of the Paper Mulberry. Biomedical Chromatography 2011, 25, 908–912. [Google Scholar] [CrossRef]
- Andreev, Y.A.; Korostyleva, T. V.; Slavokhotova, A.A.; Rogozhin, E.A.; Utkina, L.L.; Vassilevski, A.A.; Grishin, E. V.; Egorov, T.A.; Odintsova, T.I. Genes Encoding Hevein-like Defense Peptides in Wheat: Distribution, Evolution, and Role in Stress Response. Biochimie 2012, 94, 1009–1016. [Google Scholar] [CrossRef]
- Andreev, Y.A.; Korostyleva, T. V; Slavokhotova, A.A.; Rogozhin, E.A.; Utkina, L.L.; Vassilevski, A.A.; Grishin, E. V; Egorov, T.A.; Odintsova, T.I. Genes Encoding Hevein-like Defense Peptides in Wheat: Distribution, Evolution, and Role in Stress Response. Biochimie 2012, 94, 1009–1016. [Google Scholar] [CrossRef]
- Slavokhotova, A.A.; Naumann, T.A.; Price, N.P.; Rogozhin, E.A.; Andreev, Y.A.; Vassilevski, A.A.; Odintsova, T.I. Novel Mode of Action of Plant Defense Peptides – Hevein-like Antimicrobial Peptides from Wheat Inhibit Fungal Metalloproteases. FEBS J 2014, 281, 4754–4764. [Google Scholar] [CrossRef]
- Odintsova, T.; Shcherbakova, L.; Slezina, M.; Pasechnik, T.; Kartabaeva, B.; Istomina, E.; Dzhavakhiya, V. Hevein-Like Antimicrobial Peptides Wamps: Structure–Function Relationship in Antifungal Activity and Sensitization of Plant Pathogenic Fungi to Tebuconazole by WAMP-2-Derived Peptides. Int J Mol Sci 2020, 21, 7912. [Google Scholar] [CrossRef]
- Wong, K.H.; Tan, W.L.; Serra, A.; Xiao, T.; Sze, S.K.; Yang, D.; Tam, J.P. Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo Biloba. Front Plant Sci 2016, 7. [Google Scholar] [CrossRef]
- Choon Koo, J.; Jin Chun, H.; Cheol Park, H.; Chul Kim, M.; Duck Koo, Y.; Cheol Koo, S.; Mi Ok, H.; Jeong Park, S.; Lee, S.-H.; Yun, D.-J.; et al. Over-Expression of a Seed Specific Hevein-like Antimicrobial Peptide from Pharbitis Nil Enhances Resistance to a Fungal Pathogen in Transgenic Tobacco Plants. Plant Mol Biol 2002, 50, 441–452. [Google Scholar] [CrossRef]
- Kiba, A.; Saitoh, H.; Nishihara, M.; Omiya, K.; Yamamura, S. C-Terminal Domain of a Hevein-Like Protein from Wasabia Japonica Has Potent Antimicrobial Activity. Plant Cell Physiol 2003, 44, 296–303. [Google Scholar] [CrossRef]
- Odintsova, T.I.; Vassilevski, A.A.; Slavokhotova, A.A.; Musolyamov, A.K.; Finkina, E.I.; Khadeeva, N. V.; Rogozhin, E.A.; Korostyleva, T. V.; Pukhalsky, V.A.; Grishin, E. V.; et al. A Novel Antifungal Hevein-type Peptide from Triticum Kiharae Seeds with a Unique 10-cysteine Motif. FEBS J 2009, 276, 4266–4275. [Google Scholar] [CrossRef]
- Khaliluev, M.R.; Mamonov, A.G.; Smirnov, A.N.; Kharchenko, P.N.; Dolgov, S. V. Expression of Genes Encoding Chitin-Binding Proteins (PR-4) and Hevein-like Antimicrobial Peptides in Transgenic Tomato Plants Enhanced Resistanse to Phytophthora Infestance. Russ Agric Sci 2011, 37, 297–302. [Google Scholar] [CrossRef]
- Chen, H.; Guo, A.; Lu, Z.; Tan, S.; Wang, J.; Gao, J.; Zhang, S.; Huang, X.; Zheng, J.; Xi, J.; et al. Agrobacterium Tumefaciens-Mediated Transformation of a Hevein-like Gene into Asparagus Leads to Stem Wilt Resistance. PLoS One 2019, 14, e0223331. [Google Scholar] [CrossRef]
- Murata, M.; Konno, K.; Wasano, N.; Mochizuki, A.; Mitsuhara, I. Expression of a Gene for an MLX56 Defense Protein Derived from Mulberry Latex Confers Strong Resistance against a Broad Range of Insect Pests on Transgenic Tomato Lines. PLoS One 2021, 16, e0239958. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Lin, J. Systemin-mediated Long-distance Systemic Defense Responses. New Phytologist 2020, 226, 1573–1582. [Google Scholar] [CrossRef]
- Mucha, P.; Ruczynski, J.; Dobkowski, M.; Backtrog, E.; Rekowski, P. Capillary Electrophoresis Study of Systemin Peptides Spreading in Tomato Plant. Electrophoresis 2019, 40, 336–342. [Google Scholar] [CrossRef]
- Pastor-Fernández, J.; Gamir, J.; Pastor, V.; Sanchez-Bel, P.; Sanmartín, N.; Cerezo, M.; Flors, V. Arabidopsis Plants Sense Non-Self Peptides to Promote Resistance Against Plectosphaerella Cucumerina. Front Plant Sci 2020, 11. [Google Scholar] [CrossRef]
- Lin, W.; Li, B.; Lu, D.; Chen, S.; Zhu, N.; He, P.; Shan, L. Tyrosine Phosphorylation of Protein Kinase Complex BAK1/BIK1 Mediates Arabidopsis Innate Immunity. Proceedings of the National Academy of Sciences 2014, 111, 3632–3637. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, P.; Zhao, J.; Jiang, H.; Wang, H.; Zhu, Y.; Botella, M.A.; Samaj, J.; Li, C.; Lin, J.; et al. Expression of Tomato Prosystemin Gene in Arabidopsis Reveals Systemic Translocation of Its MRNA and Confers Necrotrophic Fungal Resistance. New Phytologist 2018, 217, 799–812. [Google Scholar] [CrossRef]
- Coppola; Lelio; Romanelli; Gualtieri; Molisso; Ruocco; Avitabile; Natale; Cascone; Guerrieri; et al. Tomato Plants Treated with Systemin Peptide Show Enhanced Levels of Direct and Indirect Defense Associated with Increased Expression of Defense-Related Genes. Plants 2019, 8, 395. [CrossRef]
- Molisso, D.; Coppola, M.; Buonanno, M.; Di Lelio, I.; Monti, S.M.; Melchiorre, C.; Amoresano, A.; Corrado, G.; Delano-Frier, J.P.; Becchimanzi, A.; et al. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. Biology (Basel) 2022, 11, 124. [Google Scholar] [CrossRef]
- Pearce, G.; Strydom, D.; Johnson, S.; Ryan, C.A. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science (1979) 1991, 253, 895–897. [Google Scholar] [CrossRef]
- Pearce, G.; Ryan, C.A. Systemic Signaling in Tomato Plants for Defense against Herbivores-ISOLATION AND CHARACTERIZATION OF THREE NOVEL DEFENSE-SIGNALING GLYCOPEPTIDE HORMONES CODED IN A SINGLE PRECURSOR GENE. J Biol Chem 2003, 278, 30044–30050. [Google Scholar] [CrossRef]
- Pearce, G.; Siems, W.F.; Bhattacharya, R.; Chen, Y.-C.; Ryan, C.A. Three Hydroxyproline-Rich Glycopeptides Derived from a Single Petunia Polyprotein Precursor Activate Defensin I, a Pathogen Defense Response Gene. Journal of Biological Chemistry 2007, 282, 17777–17784. [Google Scholar] [CrossRef]
- Corrado, G.; Arena, S.; Araujo-Burgos, T.; Coppola, M.; Rocco, M.; Scaloni, A.; Rao, R. The Expression of the Tomato Prosystemin in Tobacco Induces Alterations Irrespective of Its Functional Domain. Plant Cell, Tissue and Organ Culture (PCTOC) 2016, 125, 509–519. [Google Scholar] [CrossRef]
- Al-Whaibi, M.H. Plant Heat-Shock Proteins: A Mini Review. J King Saud Univ Sci 2011, 23, 139–150. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in Plants: Biosynthesis and Physiological Role in Environmental Stress Tolerance. Physiology and Molecular Biology of Plants 2017, 23, 249–268. [Google Scholar] [CrossRef]
- Rehman, S.; Jørgensen, B.; Rasmussen, S.K.; Aziz, E.; Akhtar, W.; Mahmood, T. Expression Analysis of Proteinase Inhibitor-II under OsRGLP2 Promoter in Response to Wounding and Signaling Molecules in Transgenic Nicotiana Benthamiana. 3 Biotech 2018, 8, 51. [Google Scholar] [CrossRef]
- Hamza, R.; Pérez-Hedo, M.; Urbaneja, A.; Rambla, J.L.; Granell, A.; Gaddour, K.; Beltrán, J.P.; Cañas, L.A. Expression of Two Barley Proteinase Inhibitors in Tomato Promotes Endogenous Defensive Response and Enhances Resistance to Tuta Absoluta. BMC Plant Biol 2018, 18, 24. [Google Scholar] [CrossRef]
- Gullner, G.; Komives, T.; Király, L.; Schröder, P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Front Plant Sci 2018, 9. [Google Scholar] [CrossRef]
- ul Haq; Khan; Ali; Khattak; Gai; Zhang; Wei; Gong Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019, 20, 5321. [CrossRef]
- Zeng, H.; Xu, L.; Singh, A.; Wang, H.; Du, L.; Poovaiah, B.W. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses. Front Plant Sci 2015, 6. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, W.; Chi, F.; Li, C. Identification of Non-Specific Lipid Transfer Protein-1 as a Calmodulin-Binding Protein in Arabidopsis. FEBS Lett 2005, 579, 1683–1687. [Google Scholar] [CrossRef]
- Yu, G.; Hou, W.; Du, X.; Wang, L.; Wu, H.; Zhao, L.; Kong, L.; Wang, H. Identification of Wheat Non-Specific Lipid Transfer Proteins Involved in Chilling Tolerance. Plant Cell Rep 2014, 33, 1757–1766. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Jiao, L.; Li, C.; Zhu, D.; Yu, J. A Non-Specific Setaria Italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress. Front Plant Sci 2016, 7. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Govers, F. The Mysterious Route of Sterols in Oomycetes. PLoS Pathog 2021, 17, e1009591. [Google Scholar] [CrossRef]
- Buhot, N.; Douliez, J.-P.; Jacquemard, A.; Marion, D.; Tran, V.; Maume, B.F.; Milat, M.-L.; Ponchet, M.; Mikès, V.; Kader, J.-C.; et al. A Lipid Transfer Protein Binds to a Receptor Involved in the Control of Plant Defence Responses. FEBS Lett 2001, 509, 27–30. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J.; Zhang, X.; Yang, Y.; Zhou, D.; Yu, Q.; Que, Y.; Xu, L.; Guo, J. A Novel Non-Specific Lipid Transfer Protein Gene from Sugarcane (NsLTPs), Obviously Responded to Abiotic Stresses and Signaling Molecules of SA and MeJA. Sugar Tech 2017, 19, 17–25. [Google Scholar] [CrossRef]
- Schmitt, A.J.; Sathoff, A.E.; Holl, C.; Bauer, B.; Samac, D.A.; Carter, C.J. The Major Nectar Protein of Brassica Rapa Is a Non-Specific Lipid Transfer Protein, BrLTP2.1, with Strong Antifungal Activity. J Exp Bot. [CrossRef]
- Akhiyarova, G.R.; Ivanov, R.S.; Ivanov, I.I.; Finkina, E.I.; Melnikova, D.N.; Bogdanov, I. V.; Nuzhnaya, T.; Ovchinnikova, T. V.; Veselov, D.S.; Kudoyarova, G.R. Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. Membranes (Basel) 2021, 11, 762. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, C.; Shan, R.; Li, X.; Tseke Inkabanga, A.; Li, L.; Jiang, H.; Chai, Y. Genome-Wide Identification and Expression Analysis of NsLTP Gene Family in Rapeseed (Brassica Napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022, 23, 8372. [Google Scholar] [CrossRef]
- Jülke, S.; Ludwig-Müller, J. Response of Arabidopsis Thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress. Plants 2015, 5, 2. [Google Scholar] [CrossRef]
- Gao, S.; Guo, W.; Feng, W.; Liu, L.; Song, X.; Chen, J.; Hou, W.; Zhu, H.; Tang, S.; Hu, J. LTP3 Contributes to Disease Susceptibility in Arabidopsis by Enhancing Abscisic Acid (ABA) Biosynthesis. Mol Plant Pathol 2016, 17, 412–426. [Google Scholar] [CrossRef]
- Akhiyarova, G.R.; Finkina, E.I.; Ovchinnikova, T. V.; Veselov, D.S.; Kudoyarova, G.R. Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Biomolecules 2019, 10, 15. [Google Scholar] [CrossRef]
- Wang, F.; Zang, X.; Kabir, M.R.; Liu, K.; Liu, Z.; Ni, Z.; Yao, Y.; Hu, Z.; Sun, Q.; Peng, H. A Wheat Lipid Transfer Protein 3 Could Enhance the Basal Thermotolerance and Oxidative Stress Resistance of Arabidopsis. Gene 2014, 550, 18–26. [Google Scholar] [CrossRef]
- Missaoui, K.; Gonzalez-Klein, Z.; Pazos-Castro, D.; Hernandez-Ramirez, G.; Garrido-Arandia, M.; Brini, F.; Diaz-Perales, A.; Tome-Amat, J. Plant Non-Specific Lipid Transfer Proteins: An Overview. Plant Physiology and Biochemistry 2022, 171, 115–127. [Google Scholar] [CrossRef]
- Wang, F.; Zang, X.; Kabir, M.R.; Liu, K.; Liu, Z.; Ni, Z.; Yao, Y.; Hu, Z.; Sun, Q.; Peng, H. A Wheat Lipid Transfer Protein 3 Could Enhance the Basal Thermotolerance and Oxidative Stress Resistance of Arabidopsis. Gene 2014, 550, 18–26. [Google Scholar] [CrossRef]
- Safi, H.; Saibi, W.; Alaoui, M.M.; Hmyene, A.; Masmoudi, K.; Hanin, M.; Brini, F. A Wheat Lipid Transfer Protein (TdLTP4) Promotes Tolerance to Abiotic and Biotic Stress in Arabidopsis Thaliana. Plant Physiology and Biochemistry 2015, 89, 64–75. [Google Scholar] [CrossRef]
- Gangadhar, B.H.; Sajeesh, K.; Venkatesh, J.; Baskar, V.; Abhinandan, K.; Yu, J.W.; Prasad, R.; Mishra, R.K. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-Specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses. Front Plant Sci 2016, 7. [Google Scholar] [CrossRef]
- Carmona, M.J.; Molina, A.; Fernández, J.A.; López-Fando, J.J.; García-Olmedo, F. Expression of the A-thionin Gene from Barley in Tobacco Confers Enhanced Resistance to Bacterial Pathogens. The Plant Journal 1993, 3, 457–462. [Google Scholar] [CrossRef]
- Krens, F.A.; Schaart, J.G.; Groenwold, R.; Walraven, A.E.; Hesselink, T.; Thissen, J.T. Performance and Long-Term Stability of the Barley Hordothionin Gene in Multiple Transgenic Apple Lines. Transgenic Res 2011, 20, 11123–11133. [Google Scholar] [CrossRef]
- Hussein, E. Production of Transgenic Paulownia Tomentosa (Thunb.) Steud. Using Chitosan Nanoparticles to Express Antimicrobial Genes Resistant to Bacterial Infection. Mol Biol Res Commun 2020, 9, 55–62. [Google Scholar]
- Tantong, S.; Pringsulaka, O.; Weerawanich, K.; Meeprasert, A.; Rungrotmongkol, T.; Sarnthima, R.; Roytrakul, S.; Sirikantaramas, S. Two Novel Antimicrobial Defensins from Rice Identified by Gene Coexpression Network Analyses. Peptides (N.Y.) 2016, 84, 7–16. [Google Scholar] [CrossRef]
- Vi, T.X.T.; Nguyen, T.N.L.; Pham, T.T.N.; Nguyen, H.Q.; Nguyen, T.H.Y.; Tu, Q.T.; Le, V.S.; Chu, H.M. Overexpression of the ZmDEF1 Gene Increases the Resistance to Weevil Larvae in Transgenic Maize Seeds. Mol Biol Rep 2019, 46, 2177–2185. [Google Scholar] [CrossRef]
- WANG, Q.; QIU, B.L.; LI, S.; ZHANG, Y.P.; CUI, X.M.; GE, F.; LIU, D.Q. A Methyl Jasmonate Induced Defensin like Protein from Panax Notoginseng Confers Resistance against Fusarium Solani in Transgenic Tobacco. Biol Plant 2019, 63, 797–807. [Google Scholar] [CrossRef]
- Wei, H.; Movahedi, A.; Xu, C.; Sun, W.; Li, L.; Li, D.; Zhuge, Q. Characterization, Expression Profiling, and Functional Analysis of a Populus Trichocarpa Defensin Gene and Its Potential as an Anti-Agrobacterium Rooting Medium Additive. Sci Rep 2019, 9, 15359. [Google Scholar] [CrossRef]
- Deb, D.; Shrestha, A.; Sethi, L.; Das, N.C.; Rai, V.; Das, A.B.; Maiti, I.B.; Dey, N. Transgenic Tobacco Expressing Medicago Sativa Defensin (Msdef1) Confers Resistance to Various Phyto-Pathogens. The Nucleus 2020, 63, 179–190. [Google Scholar] [CrossRef]
- Sharma, A.; Sambasivam, V.; Shukla, P.; Rampuria, S.; Kirti, P.B. An in Vitro Generated Variant of Tephrosia Villosa Defensin (α-TvD1) Enhances Biotic Stress Tolerance in Transgenic Tobacco. Journal of Plant Pathology 2020, 102, 1133–1143. [Google Scholar] [CrossRef]
- Singh, H.R.; Hazarika, P.; Deka, M.; Das, S. Study of Agrobacterium-Mediated Co-Transformation of Tea for Blister Blight Disease Resistance. J Plant Biochem Biotechnol 2020, 29, 24–35. [Google Scholar] [CrossRef]
- Soto, N.; Hernández, Y.; Delgado, C.; Rosabal, Y.; Ortiz, R.; Valencia, L.; Borrás-Hidalgo, O.; Pujol, M.; Enríquez, G.A. Field Resistance to Phakopsora Pachyrhizi and Colletotrichum Truncatum of Transgenic Soybean Expressing the NmDef02 Plant Defensin Gene. Front Plant Sci 2020, 11. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.; Wang, Q.; Jiang, Y.; Li, H.; Ma, R.; Wang, S.; Zhao, Y. Overexpression of Panax Ginseng Defensin Enhances Resistance to Fusarium Solani in Transgenic Arabidopsis Thaliana. Australasian Plant Pathology 2021, 50, 705–714. [Google Scholar] [CrossRef]
- Nalluri, N.; Karri, V. Over-Expression of Trigonella Foenum-Graecum Defensin (Tfgd2) and Raphanus Sativus Antifungal Protein (RsAFP2) in Transgenic Pigeonpea Confers Resistance to the Helicoverpa Armigera. Plant Cell, Tissue and Organ Culture (PCTOC) 2023, 152, 569–582. [Google Scholar] [CrossRef]
- Sadhu, S.; Jogam, P.; Gande, K.; Marapaka, V.; Penna, S.; Peddaboina, V. Expression of Radish Defensin (RsAFP2) Gene in Chickpea (Cicer Arietinum L.) Confers Resistance to Fusarium Wilt Disease. Mol Biol Rep 2023, 50, 11–18. [Google Scholar] [CrossRef]
- Shukurov, R.R.; Voblikova, V.D.; Nikonorova, A.K.; Egorov, Ts.A.; Grishin, E. V.; Babakov, A. V. Increase of Resistance of Arabidopsis Thaliana Plants to Phytopathogenic Fungi Expressing Hevein-like Peptides from Weed Plant Stellaria Media. Russ Agric Sci 2010, 36, 265–267. [Google Scholar] [CrossRef]
- R. Shukurov, R.; D. Voblikova, V.; Nikonorova, A.K.; Komakhin, R.A.; V. Komakhina, V.; A. Egorov, T.; V. Grishin, E.; V. Babakov, A. Transformation of Tobacco and Arabidopsis Plants with Stellaria Media Genes Encoding Novel Hevein-like Peptides Increases Their Resistance to Fungal Pathogens. Transgenic Res 2012, 21, 313–325. [Google Scholar] [CrossRef]
- Vetchinkina, E.M.; Komakhina, V. V.; Vysotskii, D.A.; Zaitsev, D. V.; Smirnov, A.N.; Babakov, A. V.; Komakhin, R.A. Expression of Plant Antimicrobial Peptide Pro-SmAMP2 Gene Increases Resistance of Transgenic Potato Plants to Alternaria and Fusarium Pathogens. Russ J Genet 2016, 52, 939–951. [Google Scholar] [CrossRef]
- Chen, H.; Guo, A.; Lu, Z.; Tan, S.; Wang, J.; Gao, J.; Zhang, S.; Huang, X.; Zheng, J.; Xi, J.; et al. Agrobacterium Tumefaciens-Mediated Transformation of a Hevein-like Gene into Asparagus Leads to Stem Wilt Resistance. PLoS One 2019, 14, e0223331. [Google Scholar] [CrossRef]
- Beliaev, D. V.; Yuorieva, N.O.; Tereshonok, D. V.; Tashlieva, I.I.; Derevyagina, M.K.; Meleshin, A.A.; Rogozhin, E.A.; Kozlov, S.A. High Resistance of Potato to Early Blight Is Achieved by Expression of the Pro-SmAMP1 Gene for Hevein-Like Antimicrobial Peptides from Common Chickweed (Stellaria Media). Plants 2021, 10, 1395. [Google Scholar] [CrossRef]
- Poon, S.; Harris, K.S.; Jackson, M.A.; McCorkelle, O.C.; Gilding, E.K.; Durek, T.; van der Weerden, N.L.; Craik, D.J.; Anderson, M.A. Co-Expression of a Cyclizing Asparaginyl Endopeptidase Enables Efficient Production of Cyclic Peptides in Planta. J Exp Bot 2018, 69, 633–641. [Google Scholar] [CrossRef]
- McGurl, B.; Orozco-Cardenas, M.; Pearce, G.; Ryan, C.A. Overexpression of the Prosystemin Gene in Transgenic Tomato Plants Generates a Systemic Signal That Constitutively Induces Proteinase Inhibitor Synthesis. Proceedings of the National Academy of Sciences 1994, 91, 9799–9802. [Google Scholar] [CrossRef]
- Coppola, M.; Corrado, G.; Coppola, V.; Cascone, P.; Martinelli, R.; Digilio, M.C.; Pennacchio, F.; Rao, R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. Plant Mol Biol Report 2015, 33, 1270–1285. [Google Scholar] [CrossRef]
- Bubici, G.; Carluccio, A.V.; Stavolone, L.; Cillo, F. Prosystemin Overexpression Induces Transcriptional Modifications of Defense-Related and Receptor-like Kinase Genes and Reduces the Susceptibility to Cucumber Mosaic Virus and Its Satellite RNAs in Transgenic Tomato Plants. PLoS One 2017, 12, e0171902. [Google Scholar] [CrossRef]
- Molisso, D.; Coppola, M.; Buonanno, M.; Di Lelio, I.; Aprile, A.M.; Langella, E.; Rigano, M.M.; Francesca, S.; Chiaiese, P.; Palmieri, G.; et al. Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. Front Plant Sci 2022, 13. [Google Scholar] [CrossRef]
- Patkar, R.N.; Chattoo, B.B. Transgenic Indica Rice Expressing Ns-LTP-Like Protein Shows Enhanced Resistance to Both Fungal and Bacterial Pathogens. Molecular Breeding 2006, 17, 159–171. [Google Scholar] [CrossRef]
- Safi, H.; Saibi, W.; Alaoui, M.M.; Hmyene, A.; Masmoudi, K.; Hanin, M.; Brini, F. A Wheat Lipid Transfer Protein (TdLTP4) Promotes Tolerance to Abiotic and Biotic Stress in Arabidopsis Thaliana. Plant Physiology and Biochemistry 2015, 89, 64–75. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Song, Y.; Zhu, L.; Yu, Z.; Gan, L.; Zhou, S.; Liu, H.; Wen, F.; Zhu, C. NtLTP4, a Lipid Transfer Protein That Enhances Salt and Drought Stresses Tolerance in Nicotiana Tabacum. Sci Rep 2018, 8, 8873. [Google Scholar] [CrossRef]
- Zhang, P.-G.; Hou, Z.-H.; Chen, J.; Zhou, Y.-B.; Chen, M.; Fang, Z.-W.; Ma, Y.-Z.; Ma, D.-F.; Xu, Z.-S. The Non-Specific Lipid Transfer Protein GmLtpI.3 Is Involved in Drought and Salt Tolerance in Soybean. Environ Exp Bot 2022, 196, 104823. [Google Scholar] [CrossRef]
- Song, H.; Yao, P.; Zhang, S.; Jia, H.; Yang, Y.; Liu, L. A Non-Specific Lipid Transfer Protein, NtLTPI.38, Positively Mediates Heat Tolerance by Regulating Photosynthetic Ability and Antioxidant Capacity in Tobacco. Plant Physiology and Biochemistry 2023, 200, 107791. [Google Scholar] [CrossRef]
- Xin, H.; Li, Q.; Wu, X.; Yin, B.; Li, J.; Zhu, J. The Arabidopsis Thaliana Integrin-like Gene AT14A Improves Drought Tolerance in Solanum Lycopersicum. J Plant Res 2023, 136, 563–576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
