Submitted:
22 March 2024
Posted:
27 March 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
1.1. Analogical Insights and Limitations of Energy Conservation
2. Evaluating the Evolution of Efforts to Contest the Law of Energy Conservation
2.1. Scientific Perspective
2.2. Philosophical Perspective
2.3. Historical and Modern Shifts
2.4. The Need for a New Approach
3. Breaking the Law of Energy Conservation-A Simulated Approach
3.1. The Energy Circuit-Unleashing the Power of Electrical Short Circuits
3.2. Design of the Proposed Energy Circuit (The Main Energy Circuit Operational Units)
3.2.1. Circuit Component 1 (Power Source)
- ID is the diode current.
- IS is the reverse saturation current.
- VD is the voltage across the diode.
- n is the ideality factor (typically around 1 for ideal diodes).
- VT is the thermal voltage, approximately 0.0259V at room temperature.
3.2.2. Operation Principles of “Circuit Block 1” (Establishing Higher Resistive Circuit Element)
3.3. Harnessing the Short Circuit Power (“Circuit Block 2”):
3.3.1. Description of “Circuit Block 2” Components
3.4. Advancing Energy Transformation (“Circuit Block 3”):
3.4.1. Load Component_CB3:
3.4.2. Boost Converter (“Load Component_CB3”) Design Mathematical Description
3.4.3. Overview of “Load Component_CB3” (Constant Current Boost Converter) Major Elements
- L is the inductor value.
- Vout is the desired output voltage.
- Vin is the input voltage.
- D is the duty cycle of the converter.
- fS is the switching frequency.
- ∆IL is the peak-to-peak inductor ripple current.
3.5. Post Energy Generation-Energy Storage Component (“Circuit Block 4”):
3.5.1. The Choice for “Circuit Block 4” Unit
3.6. Automation and Safety Control (“Circuit Block 5”):
3.6.1. Design and Operation of the Sensing Element in “Circuit Block 5”
3.6.2. The Sensing Element Operation Mechanism
3.7. Overall Energy Circuit Representation
3.8. Interpretation and Simulation of the Proposed Energy Circuit Blocks
3.8.1. Simulated Results and Analysis
3.8.2. Description of Main Sections of the Simulation
3.8.3. Analysis of Simulation Results
3.8.4. Power Output from “Circuit Block 3”
3.9. How the Energy Circuit Breaks the Law of Energy Conservation
3.9.1. Power Transitions Between Circuit Block 1 and Circuit Block 2
4. Discussion and Implications
4.1. Breaking Misconceptions and Limitations in Energy Conservation
4.2. Contributions to Addressing the Global Energy Crisis
4.3. Solutions to Noise Pollution and Innovations in Electric Vehicles
4.4. Greenhouse Gas Reduction and Addressing Current Clean Energy Systems
4.5. Innovations in Electronic Materials and Semiconductor Development
4.6. Challenging Philosophical Assumptions and Scientific Thinking
4.7. Merits over Current Systems-A Paradigm Shift in Energy Conservation
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgements
Conflicts of Interest
Appendix A. Energy Circuit Simulation and Interpretation
Appendix B. The Modified Ohm’s Law and Its Application in Breaking the Law of Energy Conservation (Reflecting Real-World Scenarios)
- Short circuit effect current is the short circuit effect current.
- a is the current scaling factor.
- Rshort is the resistance change due to the short circuit.
- R0 is the reference resistance.
Appendix C. Possible Applications of the Energy Circuit-Addressing Some Critical Challenges
References
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: a review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef]
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- Gupta, I.; Gupta, O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. Membranes 2023, 13, 108. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Liobikienė, G.; Matiiuk, Y.; Krikštolaitis, R. The concern about main crises such as the Covid-19 pandemic, the war in Ukraine, and climate change’s impact on energy-saving behavior. Energy Policy 2023, 180, 113678. [Google Scholar] [CrossRef]
- Singh, S.; Ru, J. Accessibility, affordability, and efficiency of clean energy: a review and research agenda. Environ. Sci. Pollut. Res. 2022, 29, 18333–18347. [Google Scholar] [CrossRef]
- Woodcock, J.; Banister, D.; Edwards, P.; Prentice, A.M.; Roberts, I. Energy and transport. Lancet Lond. Engl. 2007, 370, 1078–1088. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Adebayo, T.S.; Nakorji, M.; Mwakapwa, W.; Inusa, E.M.; Izuchukwu, O.-O. Impacts of globalization and energy consumption on environmental degradation: what is the way forward to achieving environmental sustainability targets in Nigeria? Environ. Sci. Pollut. Res. Int. 2022, 29, 60426–60439. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9. [Google Scholar] [CrossRef]
- Mach, E. On the Principle of the Conservation of Energy. The Monist 1894, 5, 22–54. [Google Scholar] [CrossRef]
- Innocenzi, P. Perpetuum Mobile. In The Innovators Behind Leonardo; Springer International Publishing: Cham, 2019; pp. 165–180. ISBN 978-3-319-90448-1. [Google Scholar]
- Davis, M. No Perpetual Motion Machine. Science 1995, 268, 624. [Google Scholar] [CrossRef]
- School Adviser of Natural Science Teachers of Ioannina8 Seferi street, Eleoussa, 455 00,Ioannina Hellas; Tsaousis, D. Perpetual Motion Machine. J. Eng. Sci. Technol. Rev. 2008, 1, 53–57. [Google Scholar] [CrossRef]
- Wisniak, J. Conservation of Energy Readings on the Origins of the First Law of Thermodynamics. Part II. Educ. Quím. 2011, 19, 216. [Google Scholar] [CrossRef]
- Coppedge, N. TOP PERPETUAL MOTION MACHINES. 2022.
- David, A.P. ELECTRO-MAGNETIC INDUCTION: FREE ELECTRICITY GENERATOR; 2017.
- Mohammad Noor Hidayat, S.P.C. Design and Analysis of A Perpetual Motion Machine Using Neodymium Magnets as A Prime Mover. J. Southwest Jiaotong Univ. 2021, 56. [Google Scholar]
- Khatri, S. Design and analysis of Free Energy Generator system by balancing of flywheel. Turk. Online J. Qual. Inq. 2022, 13, 298–309. [Google Scholar]
- Rodríguez-León, J.F.; Cervantes, I.; Castillo-Castañeda, E.; Carbone, G.; Cafolla, D. Design and Preliminary Testing of a Magnetic Spring as an Energy-Storing System for Reduced Power Consumption of a Humanoid Arm. Actuators 2021, 10, 136. [Google Scholar] [CrossRef]
- 21. Satellite Research & Development Center/SUPARCO, Lahore 54000, Pakistan; Khan, I.; Amin, M.; Masood, M.I.; Asadullah, A. Analysis of ‘free energy’ perpetual motion machine system based on permanent magnets. Int. J. Smart Grid Clean Energy. [CrossRef]
- Mahesh, B. Self Flowing Generator. Int. J. Sci. Res. IJSR 2018, 7, 259–261. [Google Scholar] [CrossRef]
- Hidayat, M.N.; Chairandy, S.P.; Ronilaya, F. Design and Analysis of A Perpetual Motion Machine Using Neodymium Magnets as A Prime Mover. J. Southwest Jiaotong Univ. 2021, 56, 211–219. [Google Scholar] [CrossRef]
- Kukhlevsky, S.V. Breaking of Energy Conservation Law: Creating and Destroying of Energy by Subwavelength Nanosystems 2006. [CrossRef]
- Abdollahi, S. Hypothesis of Nothingness. 2021, 10, 43–49. [CrossRef]
- Shanta, B.N. Life and consciousness - The Vedāntic view. Commun. Integr. Biol. 2015, 8, e1085138. [Google Scholar] [CrossRef]
- Paulson, S.; Albert, D.; Holt, J.; Turok, N. The origins of the universe: why is there something rather than nothing? Ann. N. Y. Acad. Sci. 2015, 1361, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S. Why Is There Something, Rather Than Nothing? 2018.
- Mongan, T.R. Origin of the Universe, Dark Energy, and Dark Matter. J. Mod. Phys. 2018, 9, 832–850. [Google Scholar] [CrossRef]
- Lincoln, M.; Wasser, A. Spontaneous creation of the Universe Ex Nihilo. Phys. Dark Universe 2013, 2, 195–199. [Google Scholar] [CrossRef]
- Rangel-Abundis, A. [Shunt and short circuit]. Cir. Cir. 2006, 74, 69–70. [Google Scholar]
- Wisniak, J. Conservation of Energy: Readings on the Origins of the First Law of Thermodynamics. Part I. Educ. Quím. 2008, 19, 159–171. [Google Scholar] [CrossRef]
- Kimuya, A. THE MODIFIED OHM’S LAW AND ITS IMPLICATIONS FOR ELECTRICAL CIRCUIT ANALYSIS. Eurasian J. Sci. Eng. Technol. 2023. [Google Scholar] [CrossRef]
- Chen, D.H. Can Law of Conservation of Energy Be Broken? Appl. Mech. Mater. 2012, 192, 420–424. [Google Scholar] [CrossRef]
- Kerremans, T.; Samuelsson, P.; Potts, P.P. Probabilistically Violating the First Law of Thermodynamics in a Quantum Heat Engine. SciPost Phys. 2022, 12, 168. [Google Scholar] [CrossRef]
- N. , J.V. Particle Creation in a Big-bang Universe. Nature 1973, 246, 378–378. [Google Scholar] [CrossRef]
- Anjum, R.L.; Mumford, S. A Powerful Theory of Causation. 2010, 9780203851289. [CrossRef]
- Mumford, S.; Anjum, R.L. Fundamentals of causality. Inf.-Knowl.-Syst. Manag. 2011, 10, 75–84. [Google Scholar] [CrossRef]
- Coelho, R.L. On the Concept of Energy. In Adapting Historical Knowledge Production to the Classroom; Kokkotas, P.V., Malamitsa, K.S., Rizaki, A.A., Eds.; SensePublishers: Rotterdam, 2010; pp. 85–101. ISBN 978-94-6091-349-5. [Google Scholar]
- Qian, W. A Physical Interpretation of Mass-Energy Equivalence Based on the Orthogonal Collision. J. Mod. Phys. 2023, 14, 1067–1086. [Google Scholar] [CrossRef]
- Kalies, G. Matter-Energy Equivalence. Z. Für Phys. Chem. 2020, 234, 1567–1602. [Google Scholar] [CrossRef]
- Kimuya, A. Proving the Law of Energy Conservation from Mathematical and Scientific Perspectives; 2022.
- Lee, H.; Chow, W.; Hung, H. A Study on Residential Fires due to Electrical Faults in Hong Kong.; 2016.
- Kim, J.-H.; Park, B.-K.; Song, J.-H.; Jung, K.-C. A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence. J. Korean Soc. Saf. 2007, 22. [Google Scholar]
- Buica, G.; Anca Elena, A.; Beiu, C.; Risteiu, M.; Pasculescu, D. Aspects of the earthing and short-circuit device’s safety quality. MATEC Web Conf. 2022, 373. [Google Scholar] [CrossRef]
- Salvaraji, L.; Jeffree, M.S.; Awang Lukman, K.; Saupin, S.; Avoi, R. Electrical safety in a hospital setting: A narrative review. Ann. Med. Surg. 2022, 78, 103781. [Google Scholar] [CrossRef]
- Szultka, S.; Czapp, S.; Tomaszewski, A.; Ullah, H. Evaluation of Fire Hazard in Electrical Installations Due to Unfavorable Ambient Thermal Conditions. Fire 2023, 6, 41. [Google Scholar] [CrossRef]
- Gao, D.; Liu, Q. Review of the Research on the Identification of Electrical Fire Trace Evidence. Procedia Eng. 2016, 135, 29–32. [Google Scholar] [CrossRef]
- Pannebakker, B.B.; de Waal, A.C.; van Sark, W.G.J.H.M. Photovoltaics in the shade: one bypass diode per solar cell revisited. Prog. Photovolt. Res. Appl. 2017, 25, 836–849. [Google Scholar] [CrossRef]
- Fadliondi, F.; Isyanto, H.; Budiyanto, B. Bypass Diodes for Improving Solar Panel Performance. Int. J. Electr. Comput. Eng. IJECE 2018, 8, 2703. [Google Scholar] [CrossRef]
- Sofyan, M.; Sara, I.; Suriadi, S. The effect of bypass diode installation on partially covered solar panel output power; 2021; Vol. 1087;
- Lee, J.H.; Lee, B.H.; Kang, J.; Diware, M.; Jeon, K.; Jeong, C.; Lee, S.Y.; Kim, K.H. Characteristics and Electronic Band Alignment of a Transparent p-CuI/n-SiZnSnO Heterojunction Diode with a High Rectification Ratio. Nanomaterials 2021, 11, 1237. [Google Scholar] [CrossRef]
- SHARMA, C. Solar Panel Mathematical Modeling Using Simulink. Int. J. Eng. Res. Appl. 2014, 4, 67–72. [Google Scholar]
- Chen, Z.; Xiong, R.; Tian, J.; Shang, X.; Lu, J. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles. Appl. Energy 2016, 184, 365–374. [Google Scholar] [CrossRef]
- Xia, B.; Chen, Z.; Mi, C.; Robert, B. External short circuit fault diagnosis for lithium-ion batteries. In Proceedings of the 2014 IEEE Transportation Electrification Conference and Expo (ITEC); IEEE: Dearborn, MI, 2014; pp. 1–7. [Google Scholar]
- Chaves, F.A.; Feijoo, P.C.; Jiménez, D. 2D pn junctions driven out-of-equilibrium. Nanoscale Adv. 2020, 2, 3252. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.K.; Sharma, M. Analysis of the forward and reverse bias I-V and C-V characteristics on Al/PVA:n-PbSe polymer nanocomposites Schottky diode. J. Appl. Phys. 2012, 111, 074513. [Google Scholar] [CrossRef]
- Sadaf, J.R.; Israr, M.Q.; Kishwar, S.; Nur, O.; Willander, M. Forward- and reverse-biased electroluminescence behavior of chemically fabricated ZnO nanotubes/GaN interface. Semicond. Sci. Technol. 2011, 26, 075003. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Gao, L.; Yu, H.; Liu, X.; Du, J.; Xiao, J.; Liu, Y.; Gu, L.; Liao, Q.; et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 2021, 12, 1522. [Google Scholar] [CrossRef] [PubMed]
- Subhani, N.; May, Z.; Alam, M.K.; Mamun, S. An enhanced gain non-isolated quadratic boost DC-DC converter with continuous source current. PLOS ONE 2023, 18, e0293097. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, J.; Zhang, Y.; Zeng, Y. A 7.5-mV Input and 88%-Efficiency Single-Inductor Boost Converter with Self-Startup and MPPT for Thermoelectric Energy Harvesting. Micromachines 2023, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Botao, Z.; Qi, W.; Min, Z.; Huan, H. Analytical solution for the inductor current of BOOST converter. IET Power Electron. 2019, 12, 2424–2432. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhao, L.; Chi, F.; Gao, C.; Wang, Y.; Yan, M.; Zhou, Q.; Zhao, M.; Wang, X.; et al. Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 2022, 13, 6359. [Google Scholar] [CrossRef]
- Xia, P.; Zhang, Z.; Tang, Z.; Xue, Y.; Li, J.; Yang, G. Preparation and Electrochemical Performance of Three-Dimensional Vertically Aligned Graphene by Unidirectional Freezing Method. Molecules 2022, 27, 376. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, C.; Lei, K.; Li, H.; Li, F.; Chen, J. Sodium-Ion Hybrid Capacitor of High Power and Energy Density. ACS Cent. Sci. 2018, 4, 1261–1265. [Google Scholar] [CrossRef]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef]
- Zhu, Q.; Ma, J.; Li, S.; Mao, D. Solid-State Electrolyte for Lithium-Air Batteries: A Review. Polymers 2023, 15, 2469. [Google Scholar] [CrossRef]
- Lai, P.; Deng, X.; Zhang, Y.; Li, J.; Hua, H.; Huang, B.; Zhang, P.; Zhao, J. Bifunctional Localized High-Concentration Electrolyte for the Fast Kinetics of Lithium Batteries at Low Temperatures. ACS Appl. Mater. Interfaces 2023, 15, 31020–31031. [Google Scholar] [CrossRef]
- Lim, J.M.; Jang, Y.S.; Van, T. Nguyen, H.; Kim, J.S.; Yoon, Y.; Park, B.J.; Seo, D.H.; Lee, K.-K.; Han, Z.; Ostrikov, K. (Ken); et al. Advances in high-voltage supercapacitors for energy storage systems: materials and electrolyte tailoring to implementation. Nanoscale Adv. 5. [CrossRef]
- Yang, P.; Chao, D.; Zhu, C.; Xia, X.; Zhang, Y.; Wang, X.; Sun, P.; Tay, B.K.; Shen, Z.X.; Mai, W.; et al. Ultrafast-Charging Supercapacitors Based on Corn-Like Titanium Nitride Nanostructures. Adv. Sci. 2015, 3, 1500299. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, W.; Li, R.; Qiao, Z.; Fang, J.; Yang, Q.; Xiong, C. High Performance Supercapacitors Based on Mesopore Structured Multiwalled Carbon Nanotubes. ChemistryOpen 2021, 10, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Tomczewski, A. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy. ScientificWorldJournal 2014, 2014, 643769. [Google Scholar] [CrossRef] [PubMed]
- Wicki, S.; Hansen, E.G. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage. J. Clean. Prod. 2017, 162, 1118–1134. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.; Cavallaro, F.; Khalifah, Z. Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef]
- Zohuri, B.; McDaniel, P. First Law of Thermodynamics. In Thermodynamics in Nuclear Power Plant Systems; Springer International Publishing: Cham, 2019; pp. 99–148. ISBN 978-3-319-93918-6. [Google Scholar]
- A.Kutty, A.; Al-Jondob, R.; Abdella, G.; El-Mekkawy, T. A Frontier Based Eco-Efficiency Assessment of Electric Vehicles: The Case of European Union Countries Using Mixed and Renewable Sources of Energy; 2021.
- Costa, C.; Barbosa, J.; Castro, H.; Gonçalves, R.; Lanceros-Méndez, S. Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries. Renew. Sustain. Energy Rev. 2021, 151, 111548. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Sbordone, D.; Bertini, I.; Di Pietra, B.; Falvo, M.C.; Genovese, A.; Martirano, L. EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 2015, 120, 96–108. [Google Scholar] [CrossRef]
- Rajendran Pillai, V.; Rajasekharan Nair Valsala, R.; Raj, V.; Petra, M.; Krishnan Nair, S.; Mathew, S. Exploring the Potential of Microgrids in the Effective Utilisation of Renewable Energy: A Comprehensive Analysis of Evolving Themes and Future Priorities Using Main Path Analysis. Designs 2023, 7, 58. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Uddin, M.; Mo, H.; Dong, D.; Elsawah, S.; Zhu, J.; Guerrero, J.M. Microgrids: A review, outstanding issues and future trends. Energy Strategy Rev. 2023, 49, 101127. [Google Scholar] [CrossRef]
- Mojumder, M.R.H.; Ahmed Antara, F.; Hasanuzzaman, M.; Alamri, B.; Alsharef, M. Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery. Sustainability 2022, 14, 13856. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Chen, Z.; Abdelhaleem, A.; Ihara, I.; Mohamed, I.M.A.; Yap, P.-S.; Rooney, D.W. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environ. Chem. Lett. 2023, 21, 1381–1418. [Google Scholar] [CrossRef]
- Takase, M.; Kipkoech, R.; Essandoh, P.K. A comprehensive review of energy scenario and sustainable energy in Kenya. Fuel Commun. 2021, 7, 100015. [Google Scholar] [CrossRef]










| Supply Voltage (V) | Diode Forward Voltage (V) | R0 (Ohms) | Ideality Factor (n) | ) (A) |
(W) |
(A) |
(W) |
(W) |
|---|---|---|---|---|---|---|---|---|
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 | ||||||||
| 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).