Submitted:
18 November 2023
Posted:
20 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Type of Study
2.2. Review Question
2.3. Protocol and Registration
2.4. Eligibility Criteria
2.5. Sources of Information and Search Strategy
2.6. Process of Study Selection
2.7. Process of Data Extraction from Selected Studies
2.8. Risk of Bias Assessment or Quality Assessment
2.9. Data Synthesis
3. Results
3.1. Oxidative Stress
3.1.1. Mitochondrial Dysfunction
| KL1333 | Increases mitochondrial activity and reduces oxidative stress in fibroblasts in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like events. It also increases NAD+ levels and stimulates sirtuin 1/AMP-activated protein kinase/peroxisome proliferator-activated receptor-gamma coactivator 1alphasignaling [52]. |
| KH176 | By interacting with the thioredoxin system and the enzymatic mechanism of peroxiredoxin, the drug KH176 can effectively reduce elevated cellular levels of reactive oxygen species and protect primary cells deficient in oxidative phosphorylation from redox disorders [28,53]. |
| Ru360 | The study of Pool et al. demonstrated that Ru360 prevents mitochondrial overload of Ca2+, dysfunction of this organelle, and, consequently, contractile dysfunction. However, it is used only in preclinical settings [37]. |
| Antioxidant SS31 | The antioxidant SS31, currently tested in clinical trials, improves the coupling of electron transport chain complexes, and thus enhances mitochondrial bioenergetics and suppresses the abundance of ROS and oxidative stress [37]. |
| NAD+ supplementation | It is a possibility for preserving mitochondrial function since homeostasis of NAD+ improves function by reducing oxidative stress and DNA damage [37]. |
| L-glutamine | It has nutraceutical potential for the treatment of AF, as it stabilizes the microtubular network, increases the expression of heat shock protein in degenerative and inflammatory diseases, and contributes to the suppression of ROS and DNA damage induced by ROS due to its antioxidant activity [37]. |
3.1.2. Electrical and Arrhythmogenic Array
3.1.3. Structural Rearrangement and Myocardial Fibrosis
3.2. OS Modulators
3.2.1. Inflammation
| Therapeutic possibilities | Main effects |
|---|---|
| Statins | Reduction of C-reactive protein (CRP); prevention of inflammation, consequently preventing electrical and structural remodeling; prevention of oxygen free radical (ROS) synthesis induced by NADPH oxidase. |
| Steroids | Anti-inflammatory activity, indirect antioxidant, and immunomodulatory properties. Promotes reduction of atrial endothelial protein nitric oxide synthase levels and CRP levels. |
| Carvedilol | α1 blocking and antioxidant properties, anti-oxidation effects, in addition to exerting modulating effects on ionic channels and currents. |
| Dipeptidyl Peptidase-4 inhibitors | Reduction of ROS, promoting improvement of mitochondrial oxidative stress; improvement of mitochondrial function; preservation of mitochondrial biogenesis; and reduction of inflammation. |
| Selective Sodium-Glucose Cotransporter 2 Inhibitors | Reduction of arterial resistance, improving endothelial function; normalization of sodium and calcium cytosolic concentrations; reduction of ROS synthesis, promoting prevention of atrial remodeling and reduction of atrial fibrillation (AF) burden; promotion of less systemic inflammation; inhibition of atrial fibrosis and cardiomyocyte hypertrophy. In addition, it promotes a 19% reduction in AF in patients with diabetes, regardless of pre-existing AF or heart failure. In addition, they are suspected of promoting the reduction of pro-inflammatory molecules, increasing adiponectin, and suppressing inflammatory markers in the myocardium. |
| Ubiquinone | Anti-inflammatory, antioxidant activity has a beneficial effect on mitochondrial function and significantly suppresses DNA damage. |
| Thiazolidinediones | Reduction of atrial remodeling. They prevent the recurrence of AF after electrical cardioversion, reduce cardiac risk factors and surrogate indicators of cardiovascular disease, and reduce the frequency of cardiac events in individuals with diabetes. |
| Trimetazidine | Reduction of ROS synthesis by acting directly on the activity of the respiratory chain. In addition, it prevents structural atrial remodeling, reduces the inducibility of AF, and shortens the duration of AF. |
| Ranolazine | Reduction of oxidative stress, improvement of mitochondrial function, suppression of apoptosis, and reduction of the likelihood of developing AF by approximately 50%. In addition, it increases the success rate of amiodarone cardioversion. |
| A diet rich in antioxidants | Vitamins E and C are antioxidants and eliminate ROS, such as O2, OH, peroxynitrite, sulfhydryl radicals, and oxidized low-density lipoprotein. |
| Mitochondrial transcription factor A (TFAM) | It increases ATP content by upregulating NADH 1 mitochondrial-coded dehydrogenase and cytochrome c oxidase one mitochondrially coded expression levels. |
|
Relaxin-2 |
Reduction of oxidative stress (decrease in plasma levels of hydrogen peroxide and ROS), inhibition of profibrotic molecules, and suppression of inflammation, with a decrease in gene expression of inflammatory markers. In vitro, treatment with relaxin-2 inhibited the migration of normal human atrial cardiac fibroblasts. Furthermore, it reduced mRNA and protein levels of the profibrotic molecule, transforming growth factor-beta1 (TGF-β1). |
|
Costunolide |
Reduces inflammation and fibrosis induced by angiotensin II, improves mitochondrial function, alleviates oxidative stress by countering excessive ROS production, and activates the factor-2-related erythroid nuclear signaling pathway. |
|
Febuxostat |
Reduces the production of ROS, inhibits xanthine oxidase, and combats oxidative stress and inflammation, showing a decrease in inflammatory markers and the activity of antioxidant enzymes. Additionally, it positively influences AF by regulating the TGF-β1/Smad signaling pathway, which plays a role in collagen production and fibrosis. |
|
Aliskiren |
Attenuates electrical and structural atrial remodeling induced by rapid atrial pacing, reducing inflammation and oxidative stress. Furthermore, it regulates the PI3K/Akt signaling pathway. |
|
Wenxin Keli |
Antiarrhythmic properties and selective inhibition of atrial sodium current. It improves mitochondrial function by increasing respiration and reducing ROS production. In diabetic rats, Wenxin Keli prevents AF by enhancing atrial remodeling and restoring mitochondrial function. |
|
Hydrogen sulfide |
Activation of the PI3K/Akt/eNOS signaling pathway is associated with a reduction in the production of ROS. H2S can reduce diabetes-induced AF, decreasing the incidence and persistence of AF without affecting glucose metabolism. |
|
Andrographolide |
Reduction of cardiac cell apoptosis, improvement of mitochondrial function, antioxidant role, regulation of calcium homeostasis genes, and influence on transcription factors like factor-2-related erythroid nuclear. |
|
Metformin |
Activation of AMPK Src kinase, normalization of connective tissue expression, and prevention of atrial remodeling via the AMPK/PGC-1/PPAR pathway. Preserves mitochondrial function, improving oxygenation and activity of complexes I, II, and IV. Increases PGC-1 and Coenzyme Q10 expression, providing antioxidant benefits and membrane stabilization. |
|
Fibrates |
Impact mitochondrial function through the PPAR/PGC-1 pathway, potentially mitigating metabolic remodeling by regulating the PPAR/sirtuin route 1/PGC-1, thereby reversing the shortening of the atrial refractory period. |
|
Elamipretide |
It improves mitochondrial efficiency and reduces the production of ROS by stabilizing the mitochondrial membrane and cytochrome C, increasing ATP production, normalizing the ATP/ADP ratio, and reducing TNF and CRP levels. |
|
Genetic therapy |
Restores average heart rate and improves heart rate control in animal models of AF. However, they have not yet reached the phase of widespread clinical use. |
3.2.2. Genetics
3.2.3. Damage to Mitochondrial DNA
3.2.4. Aging and Comorbidities
3.3. NF-κB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, R.M.; Michaud, G.F.; Stevenson, W.G. Atrial fibrillation hospitalization, mortality, and therapy. Eur. Hear. J. 2018, 39, 3958–3960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, L.; Hao, M.; Li, X.; Zou, T. CXCR4 and TYROBP mediate the development of atrial fibrillation via inflammation. J. Cell. Mol. Med. 2022, 26, 3557–3567. [Google Scholar] [CrossRef] [PubMed]
- Baman, J.R.; Passman, R.S. Atrial Fibrillation. JAMA 2021, 325, 2218–2218. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, V.; Caprio, A.; Doshi, T.; Jang, S.-J.; Liu, C.F.; Mosadegh, B.; Dunham, S. Multilayer fabrication of durable catheter-deployable soft robotic sensor arrays for efficient left atrial mapping. Sci. Adv. 2020, 6, eabc6800. [Google Scholar] [CrossRef]
- Su, K.N.; Ma, Y.; Cacheux, M.; Ilkan, Z.; Raad, N.; Muller, G.K.; Wu, X.; Guerrera, N.; Thorn, S.L.; Sinusas, A.J.; et al. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. J. Clin. Investig. 2022, 7. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-H.; Akazawa, H.; Tamagawa, M.; Ito, K.; Yasuda, N.; Kudo, Y.; Yamamoto, R.; Ozasa, Y.; Fujimoto, M.; Wang, P.; et al. Cardiac mast cells cause atrial fibrillation through PDGF-A–mediated fibrosis in pressure-overloaded mouse hearts. J. Clin. Investig. 2010, 120, 242–253. [Google Scholar] [CrossRef]
- Moukabary, T.; Gonzalez, M.D. Management of Atrial Fibrillation. Med Clin. North Am. 2015, 99, 781–794. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Z.; Kolwicz, S.C., Jr.; Abell, L.; Roe, N.D.; Kim, M.; Zhou, B.; Cao, Y.; Ritterhoff, J.; Gu, H.; et al. Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metab. 2017, 25, 374–385. [Google Scholar] [CrossRef]
- Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiol. Rev. 2011, 91, 265–325. [Google Scholar] [CrossRef]
- Opacic, D.; van Bragt, K.A.; Nasrallah, H.M.; Schotten, U.; Verheule, S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc. Res. 2016, 109, 527–541. [Google Scholar] [CrossRef]
- Chen, J.Q.; Guo, Y.S.; Chen, Q.; Cheng, X.L.; Xiang, G.J.; Chen, M.Y.; Wu, H.L.; Huang, Q.L.; Zhu, P.L.; Zhang, J.C. TGFbeta1 and HGF regulate CTGF expression in human atrial fibroblasts and are involved in atrial remodelling in patients with rheumatic heart disease. J. Cell. Mol. Med. 2019, 23, 3032–3039. [Google Scholar] [CrossRef] [PubMed]
- Mihm, M.J.; Yu, F.; Carnes, C.A.; Reiser, P.J.; McCarthy, P.M.; Van Wagoner, D.R.; Bauer, J.A. Impaired Myofibrillar Energetics and Oxidative Injury During Human Atrial Fibrillation. Circ. 2001, 104, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, Y.; Sun, A.; Peng, Y.; Hou, W.; Xiang, C.; Zhang, G.; Lai, B.; Hou, X.; Zheng, F.; et al. The coupling of mitoproteolysis and oxidative phosphorylation enables tracking of an active mitochondrial state through MitoTimer fluorescence. Redox Biol. 2022, 56, 102447. [Google Scholar] [CrossRef]
- Wang Q.; Sun Z.; Cao S.; Lin X.; Wu M.; Li Y.; Yin J.; Zhou W.; Huang S.; Zhang A.; et al. Reduced immunity regulator MAVS contributes to non-hypertrophic cardiac dysfunction by disturbing energy metabolism and mitochondrial homeostasis. Front. Immunol. 2022a, 13, 919038. [CrossRef]
- Emelyanova, L.; Ashary, Z.; Cosic, M.; Negmadjanov, U.; Ross, G.; Rizvi, F.; Olet, S.; Kress, D.; Sra, J.; Tajik, A.J.; et al. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation. Am. J. Physiol. Circ. Physiol. 2016, 311, H54–H63. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Van Wagoner, D.R.; Nattel, S. Role of Inflammation in Atrial Fibrillation Pathophysiology and Management. Circ. J. 2015, 79, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Zakkar, M.; Ascione, R.; James, A.; Angelini, G.; Suleiman, M. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ng, C.Y.; Liu, T.; Li, H.; Li, G. Relaxin as novel strategy in the management of atrial fibrillation: Potential roles and future perspectives. Int. J. Cardiol. 2014, 171, e72–e73. [Google Scholar] [CrossRef]
- Pinho-Gomes, A.C.; Reilly, S.; Brandes, R.P.; Casadei, B. Targeting Inflammation and Oxidative Stress in Atrial Fibrillation: Role of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Inhibition with Statins. Antioxidants Redox Signal. 2014, 20, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Dudley S.C., Jr.; Hoch, N.E.; McCann, L.A.; Honeycutt, C.; Diamandopoulos, L.; Fukai, T.; Harrison, D.G.; Dikalov, S.I.; Langberg, J. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation 2005, 112, 1266–1273. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.P.; Liu, T. Xanthine Oxidase and Uric Acid in Atrial Fibrillation. Front. Physiol. 2012, 3, 150. [Google Scholar] [CrossRef]
- Hou, M.; Hu, Q.; Chen, Y.; Zhao, L.; Zhang, J.; Bache, R.J. Acute effects of febuxostat, a nonpurine selective inhibitor of xanthine oxidase, in pacing induced heart failure. J. Cardiovasc. Pharmacol. 2006, 48, 255–263. [Google Scholar] [CrossRef]
- Lee, T.M.; Lin, S.Z.; Chang, N.C. Effects of urate-lowering agents on arrhythmia vulnerability in post-infarcted rat hearts. J. Pharmacol. Sci. 2016, 131, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, F.; Deng, L.; Lin, K.; Shi, X.; Zhaoliang, S.; Wang, Y. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction. Thromb. Res. 2017, 149, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sakabe, M.; Fujiki, A.; Sakamoto, T.; Nakatani, Y.; Mizumaki, K.; Inoue, H. Xanthine Oxidase Inhibition Prevents Atrial Fibrillation in a Canine Model of Atrial Pacing-Induced left Ventricular Dysfunction. J. Cardiovasc. Electrophysiol. 2012, 23, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Tascanov, M.B.; Tanriverdi, Z.; Gungoren, F.; Besli, F.; Erkus, M.E.; Altiparmak, İ.H.; Gonel, A.; Koyuncu, I.; Demirbag, R.; Begenc, A.F.; et al. Relationships between paroxysmal atrial fibrillation, total oxidant status, and DNA damage. Rev. Port. Cardiol. (Engl Ed) 2021, 40, 5–10. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.; Fragakis, N.; Tse, G.; Liu, T. Oxidative stress and atrial fibrillation: an update. Free. Radic. Res. 2018, 52, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Muszyński, P.; Bonda, T.A. Mitochondrial Dysfunction in Atrial Fibrillation—Mechanisms and Pharmacological Interventions. J. Clin. Med. 2021, 10, 2385. [Google Scholar] [CrossRef]
- Ren, X.; Wang, X.; Yuan, M.; Tian, C.; Li, H.; Yang, X.; Li, X.; Li, Y.; Yang, Y.; Liu, N.; et al. Mechanisms and treatments of oxidative stress in atrial fibrillation. Curr. Pharm. Des. 2018, 24, 3062–3071 [. [Google Scholar] [CrossRef] [PubMed]
- Korantzopoulos, P.; Kolettis, T.M.; Galaris, D.; Goudevenos, J.A. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int. J. Cardiol. 2007, 115, 135–143. [Google Scholar] [CrossRef]
- Schillinger, K.J.; Patel, V.V. Atrial fibrillation in the elderly: The potential contribution of reactive oxygen species. J. Geriatr. Cardiol. 2012, 9, 379–388 [. [Google Scholar] [CrossRef]
- Mason, F.E.; Pronto, J.R.D.; Alhussini, K.; Maack, C.; Voigt, N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res. Cardiol. 2020, 115, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Santulli, G.; Reiken, S.R.; Yuan, Q.; Osborne, B.W.; Chen, B.X.; Marks, A.R. Mitochondrial oxidative stress promotes atrial fibrillation. Sci. Rep. 2015, 5, 11427. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, Annamaria; et al. Correction to: Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation? Heart failure reviews 2020, 25.5, 897. [Google Scholar] [CrossRef] [PubMed]
- Shahid, F.; Lip, G.Y.H.; Shantsila, E. Renin-angiotensin blockade in atrial fibrillation: Where are we now? J. Hum. Hypertens. 2017, 31, 425–426 [. [Google Scholar] [CrossRef]
- Tribulova, N.; Benova, T.E.; Bacova, B.S.; Viczenczova, C.; Barancik, M. New aspects of pathogenesis of atrial fibrillation: remodelling of intercalated discs. J. Physiol. Pharmacol. 2015, 66, 625–34. [Google Scholar] [PubMed]
- Pool, L.; Wijdeveld, L.F.J.M.; de Groot, N.M.S.; Brundel, B.J.J.M. The role of mitochondrial dysfunction in atrial fibrillation: Translation to druggable target and biomarker discovery. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lim, D.S.; Lee, J.H.; Shim, W.J.; Ro, Y.M.; Park, G.H.; Becker, K.G.; Cho-Chung, Y.S.; Kim, M.K. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp. Mol. Med. 2003, 35, 336–349 [. [Google Scholar] [CrossRef]
- Van Wagoner, D.R. Oxidative stress and inflammation in atrial fibrillation: Role in pathogenesis and potential as a therapeutic target. J. Cardiovasc. Pharmacol. 2008, 52, 306–313 [. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shao, Q.; Korantzopoulos, P.; Liu, E.; Xu, G.; Li, G. Serum levels of nicotinamide-adenine dinucleotide phosphate oxidase 4 are associated with non-valvular atrial fibrillation. Biomed. Rep. 2015, 3, 864–868 [. [Google Scholar] [CrossRef]
- Cangemi, R.; Celestini, A.; Calvieri, C.; Carnevale, R.; Pastori, D.; Nocella, C.; Vicario, T.; Pignatelli, P.; Violi, F. Different behaviour of NOX2 activation in patients with paroxysmal/persistent or permanent atrial fibrillation. Heart 2012, 98, 1063–1066. [Google Scholar] [CrossRef]
- Bode, D.; Semmler, L.; Oeing, C.U.; Alogna, A.; Schiattarella, G.G.; Pieske, B.M.; Heinzel, F.R.; Hohendanner, F. Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation. Int. J. Mol. Sci. 2021, 22, 5937. [Google Scholar] [CrossRef] [PubMed]
- Nishinarita, R.; Niwano, S.; Niwano, H.; Nakamura, H.; Saito, D.; Sato, T.; Matsuura, G.; Arakawa, Y.; Kobayashi, S.; Shirakawa, Y.; et al. Canagliflozin Suppresses Atrial Remodeling in a Canine Atrial Fibrillation Model. J. Am. Hear. Assoc. 2021, 10, e017483. [Google Scholar] [CrossRef]
- Koizumi, T.; Watanabe, M.; Yokota, T.; Tsuda, M.; Handa, H.; Koya, J.; Nishino, K.; Tatsuta, D.; Natsui, H.; Kadosaka, T.; et al. Empagliflozin suppresses mitochondrial reactive oxygen species generation and mitigates the inducibility of atrial fibrillation in diabetic rats. Front. Cardiovasc. Med. 2023, 10, 1005408. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; de la Cruz-Ares, S.; Torres-Peña, J.D.; Alcalá-Diaz, J.F.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 and cardiovascular diseases. Antioxidants (Basel) 2021, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Herrera, A.; Couselo-Seijas, M.; Feijóo-Bandín, S.; Anido-Varela, L.; Moraña-Fernández, S.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Martínez-Sande, J.L.; García-Seara, J.; et al. Relaxin-2 plasma levels in atrial fibrillation are linked to inflammation and oxidative stress markers. Sci. Rep. 2022, 12, 22287. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Jin, Y.; Sun, G.; Lou, Q.; Wang, H.; Li, W. Costunolide ameliorates angiotensin II-induced atrial inflammation and fibrosis by regulating mitochondrial function and oxidative stress in mice: A possible therapeutic approach for atrial fibrillation. Microvasc. Res. 2023, 151, 104600. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.Z.; Murakoshi, N.; Tajiri, K.; Duo, F.; Okabe, Y.; Murakata, Y.; Yuan, Z.; Li, S.; Aonuma, K.; Song, Z.; et al. Xanthine oxidase inhibitor febuxostat reduces atrial fibrillation susceptibility by inhibition of oxidized CaMKII in Dahl salt-sensitive rats. Clin. Sci. (Lond) 2021, 135, 2409–2422. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Xu, F.; Zhu, C.; Cheng, W.K.; Li, J.; Shan, Z.L.; Li, Y.; Wang, Y.T. Effects of febuxostat on atrial remodeling in a rabbit model of atrial fibrillation induced by rapid atrial pacing Yong-Yan, et al. J. Geriatr. Cardiol. 2019, 16, 540–551. [Google Scholar] [PubMed]
- Gong, M.; Yuan, M.; Meng, L.; Zhang, Z.; Tse, G.; Zhao, Y.; Zhang, Y.; Yuan, M.; Liang, X.; Fan, G.; et al. Wenxin Keli regulates mitochondrial oxidative stress and homeostasis and improves atrial remodeling in diabetic rats. Oxid. Med. Cell. Longev. 2020, 2020, 2468031. [Google Scholar] [CrossRef]
- Yu, P.; Cao, J.; Sun, H.; Gong, Y.; Ying, H.; Zhou, X.; Wang, Y.; Qi, C.; Yang, H.; Lv, Q.; et al. Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics. J. Zhejiang Univ. Sci. B 2023, 24, 632–649. [Google Scholar] [CrossRef]
- Seo, K.-S.; Kim, J.H.; Min, K.N.; Moon, J.A.; Roh, T.C.; Lee, M.J.; Lee, K.W.; Min, J.E.; Lee, Y.M. KL1333, a novel NAD+ modulator, improves energy metabolism and mitochondrial dysfunction in MELAS fibroblasts. Front. Neurol. 2018, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Beyrath, J.; Pellegrini, M.; Renkema, H.; Houben, L.; Pecheritsyna, S.; van Zandvoort, P.; Broek, P.v.D.; Bekel, A.; Eftekhari, P.; Smeitink, J.A.M. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, A.; Schild, L.; Keilhoff, G.; Hirte, D.; Neumann, M.; Gardemann, A.; Neumann, K.H.; Röhl, F.-W.; Huth, C.; Goette, A.; et al. Mitochondrial Dysfunction and Redox Signaling in Atrial Tachyarrhythmia. Exp. Biol. Med. 2008, 233, 558–574. [Google Scholar] [CrossRef]
- Hadi, H.A.; Alsheikh-Ali, A.A.; Mahmeed, W.A.; Suwaidi, J.M. M. An Inflammatory cytokines and atrial fibrillation: Current and prospective views. J. Inflamm. Res. 2010, 3, 75–97 [. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, R.; Wang, X.; Li, J.; Yuan, M.; Liu, E.; Liu, T.; Li, G. Attenuation of atrial remodeling by aliskiren via affecting oxidative stress, inflammation and PI3K/Akt signaling pathway. Cardiovasc. Drugs Ther. 2021, 35, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Dudley S.C., Jr. Redox regulation, NF-kappaB, and atrial fibrillation. Antioxid. Redox Signal. 11, 2265–2277. [CrossRef] [PubMed]
- Youn, J.-Y.; Zhang, J.; Zhang, Y.; Chen, H.; Liu, D.; Ping, P.; Weiss, J.N.; Cai, H. Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J. Mol. Cell. Cardiol. 2013, 62, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Pauklin, P.; Zilmer, M.; Eha, J.; Tootsi, K.; Kals, M.; Kampus, P. Markers of Inflammation, Oxidative Stress, and Fibrosis in Patients with Atrial Fibrillation. Oxidative Med. Cell. Longev. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Xue, X.; Ling, X.; Xi, W.; Wang, P.; Sun, J.; Yang, Q.; Xiao, J. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway. Mol. Med. Rep. 2020, 22, 1759–1766. [Google Scholar] [CrossRef]
- Bell, D.S.H.; Jerkins, T. In praise of pioglitazone: An economically efficacious therapy for Type 2 diabetes and other manifestations of the metabolic syndrome. Diabetes Obes. Metab. August 2023, 25, 3093–3102 [. [Google Scholar] [CrossRef]
- Li, J.; Solus, J.; Chen, Q.; Rho, Y.H.; Milne, G.; Stein, C.M.; Darbar, D. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm 2010, 7, 438–444 [. [Google Scholar] [CrossRef]
- Andelova, K.; Bacova, B.S.; Sykora, M.; Hlivak, P.; Barancik, M.; Tribulova, N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2022, 23, 1416. [Google Scholar] [CrossRef]
- Han, W.; Fu, S.; Wei, N.; Xie, B.; Li, W.; Yang, S.; Li, Y.; Liang, Z.; Huo, H. Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation. Int. J. Cardiol. 2008, 130, 165–173 [. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, A.; Röcken, C.; Erxleben, M.; Röhl, F.-W.; Hammwöhner, M.; Huth, C.; Ebert, M.P.; Lendeckel, U.; Goette, A. Atrial expression of endothelial nitric oxide synthase in patients with and without atrial fibrillation. Cardiovasc. Pathol. 2009, 19, e51–e60. [Google Scholar] [CrossRef] [PubMed]
- Neuman, R.B.; Bloom, H.L.; Shukrullah, I.; A Darrow, L.; Kleinbaum, D.; Jones, D.P.; Dudley, S.C. Oxidative Stress Markers Are Associated with Persistent Atrial Fibrillation. Clin. Chem. 2007, 53, 1652–1657. [Google Scholar] [CrossRef]
- Barros J.G. The Role of Adenosine as a Regulator of Blood Flow in Spontaneously Hypertensive Young and Adult Rats: Effects of Physical Training in São Paulo, 2009, pp. 1–77.
- Godoy-Marín, H.; Duroux, R.; Jacobson, K.A.; Soler, C.; Colino-Lage, H.; Jiménez-Sábado, V.; Montiel, J.; Hove-Madsen, L.; Ciruela, F. Adenosine A2A Receptors Are Upregulated in Peripheral Blood Mononuclear Cells from Atrial Fibrillation Patients. Int. J. Mol. Sci. 2021, 22, 3467. [Google Scholar] [CrossRef] [PubMed]
- Avula, U.M.R.; Dridi, H.; Chen, B.-X.; Yuan, Q.; Katchman, A.N.; Reiken, S.R.; Desai, A.D.; Parsons, S.; Baksh, H.; Ma, E.; et al. Attenuating persistent sodium current–induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. J. Clin. Investig. 2021, 6. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Tang, R.; Jiang, X.; Wang, Y.; Gu, T. Effect of TFAM on ATP content in tachypacing primary cultured cardiomyocytes and atrial fibrillation patients. Mol. Med. Rep. 2020, 22, 5105–5112. [Google Scholar] [CrossRef]
- Lin, P.H.; Lee, S.H.; Su, C.P.; Wei, Y.H. Oxidative damage to mitochondrial DNA in atrial muscle of patients with atrial fibrillation. Free Radic. Biol. Med. 2003, 35, 1310–1318. [Google Scholar] [CrossRef]
- Istratoaie, S.; Boroş, B.; Vesa, Ş.C.; Maria Pop, R.; Cismaru, G.; Pop, D.; Vasile Milaciu, M.; Ciumărnean, L.; Văcăraş, V.; Dana Buzoianu, A. Paraoxonase 1 and atrial fibrillation: Is there a relationship? Medicine (United States) 2022, 101, e31553. [Google Scholar] [CrossRef]
- Tahhan, A.S.; Sandesara, P.B.; Hayek, S.S.; Alkhoder, A.; Chivukula, K.; Hammadah, M.; Mohamed-Kelli, H.; O’Neal, W.T.; Topel, M.; Ghasemzadeh, N.; et al. Association between oxidative stress and atrial fibrillation. Hear. Rhythm. 2017, 14, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Source: Liu, D.; Han, X.; Zhang, Z.; Tse, G.; Shao, Q.; Liu, T. Role of heat shock proteins in atrial fibrillation: From molecular mechanisms to diagnostic and therapeutic opportunities. Cells 12, 151. [CrossRef] [PubMed]
- Beneke, K.; Molina, C.E. Molecular Basis of Atrial Fibrillation Initiation and Maintenance. Hearts 2021, 2, 170–187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
