Submitted:
08 November 2023
Posted:
09 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study population
2.2. Polysomnography
2.3. Heart rate variability
2.4. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive Sleep Apnea in Cardiovascular Disease: A Review of the Literature and Proposed Multidisciplinary Clinical Management Strategy. J Am Heart Assoc 2019, 8, e010440. [Google Scholar] [CrossRef] [PubMed]
- Roux, F.; D'Ambrosio, C.; Mohsenin, V. Sleep-related breathing disorders and cardiovascular disease. Am J Med 2000, 108, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. New Engl J Med 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Bauters, F.; Rietzschel, E.R.; Hertegonne, K.B.C.; Chirinos, J.A. The Link Between Obstructive Sleep Apnea and Cardiovascular Disease. Current Atherosclerosis Reports 2016, 18. [Google Scholar] [CrossRef]
- Parish, J.M.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease. Mayo Clin Proc 2004, 79, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Durgan, D.J.; Bryan, R.M., Jr. Cerebrovascular consequences of obstructive sleep apnea. J Am Heart Assoc 2012, 1, e000091. [Google Scholar] [CrossRef] [PubMed]
- Dewan, N.A.; Nieto, F.J.; Somers, V.K. Intermittent hypoxemia and OSA: implications for comorbidities. Chest 2015, 147, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, C.D. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea. J Thorac Dis 2018, 10, S33–S39. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, H.U.; Bin, Y.S.; Sutherland, K.; Ucak, S.; de Chazal, P.; Cistulli, P.A. The effect of obstructive sleep apnea therapy on cardiovascular autonomic function: a systematic review and meta-analysis. Sleep 2022, 45. [Google Scholar] [CrossRef]
- Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart rate variability in normal and pathological sleep. Front Physiol 2013, 4, 294. [Google Scholar] [CrossRef]
- Koizumi, K.; Terui, N.; Kollai, M. Neural control of the heart: significance of double innervation re-examined. J Auton Nerv Syst 1983, 7, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, C.; Poyares, D.; Rosa, A.; Huang, Y.S. Heart rate variability, sympathetic and vagal balance and EEG arousals in upper airway resistance and mild obstructive sleep apnea syndromes. Sleep Med 2005, 6, 451–457. [Google Scholar] [CrossRef]
- Bisogni, V.; Pengo, M.F.; Maiolino, G.; Rossi, G.P. The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J Thorac Dis 2016, 8, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: a review. Med Biol Eng Comput 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Pumprla, J.; Howorka, K.; Groves, D.; Chester, M.; Nolan, J. Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol 2002, 84, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Roche, F.; Gaspoz, J.M.; Court-Fortune, I.; Minini, P.; Pichot, V.; Duverney, D.; Costes, F.; Lacour, J.R.; Barthelemy, J.C. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation 1999, 100, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- Gula, L.J.; Krahn, A.D.; Skanes, A.; Ferguson, K.A.; George, C.; Yee, R.; Klein, G.J. Heart rate variability in obstructive sleep apnea: a prospective study and frequency domain analysis. Ann Noninvasive Electrocardiol 2003, 8, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Lado, M.J.; Mendez, A.J.; Rodriguez-Linares, L.; Otero, A.; Vila, X.A. Nocturnal evolution of heart rate variability indices in sleep apnea. Comput Biol Med 2012, 42, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Chemla, D.; Roisman, G.; Mao, W.; Bazizi, S.; Lefevre, A.; Escourrou, P. Overnight heart rate variability in patients with obstructive sleep apnoea: a time and frequency domain study. Clin Exp Pharmacol Physiol 2012, 39, 901–908. [Google Scholar] [CrossRef]
- Park, D.H.; Shin, C.J.; Hong, S.C.; Yu, J.; Ryu, S.H.; Kim, E.J.; Shin, H.B.; Shin, B.H. Correlation between the severity of obstructive sleep apnea and heart rate variability indices. Journal of Korean Medical Science 2008, 23, 226–231. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, S.Y.; Park, D.Y.; Wu, H.W.; Hwang, G.S.; Kim, H.J. Clinical Implication of Heart Rate Variability in Obstructive Sleep Apnea Syndrome Patients. J Craniofac Surg 2015, 26, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Narkiewicz, K.; Montano, N.; Cogliati, C.; van de Borne, P.J.; Dyken, M.E.; Somers, V.K. Altered cardiovascular variability in obstructive sleep apnea. Circulation 1998, 98, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Altin, R.; Ozeren, A.; Kart, L.; Bilge, M.; Unalacak, M. Cardiac autonomic activity in obstructive sleep apnea: time-dependent and spectral analysis of heart rate variability using 24-hour Holter electrocardiograms. Tex Heart Inst J 2004, 31, 132–136. [Google Scholar] [PubMed]
- Sun, J.; Li, X.; Guo, J.; Han, F.; Zhang, H. Identification of obstructive sleep apnea syndrome by ambulatory electrocardiography: clinical evaluation of time-domain and frequency-domain analyses of heart rate variability in Chinese patients. Cell Biochem Biophys 2011, 59, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Jurysta, F.; Lanquart, J.P.; van de Borne, P.; Migeotte, P.F.; Dumont, M.; Degaute, J.P.; Linkowski, P. The link between cardiac autonomic activity and sleep delta power is altered in men with sleep apnea-hypopnea syndrome. Am J Physiol Regul Integr Comp Physiol 2006, 291, R1165–R1171. [Google Scholar] [CrossRef] [PubMed]
- Hilton, M.F.; Chappell, M.J.; Bartlett, W.A.; Malhotra, A.; Beattie, J.M.; Cayton, R.M. The sleep apnoea/hypopnoea syndrome depresses waking vagal tone independent of sympathetic activation. Eur Respir J 2001, 17, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Covassin, N.; Zhou, J.; Zhang, Y.; Ren, R.; Yang, L.; Tan, L.; Li, T.; Xue, P.; Tang, X. Interaction effect of obstructive sleep apnea and periodic limb movements during sleep on heart rate variability. J Sleep Res 2019, 28, e12861. [Google Scholar] [CrossRef]
- Palma, J.A.; Urrestarazu, E.; Lopez-Azcarate, J.; Alegre, M.; Fernandez, S.; Artieda, J.; Iriarte, J. Increased sympathetic and decreased parasympathetic cardiac tone in patients with sleep related alveolar hypoventilation. Sleep 2013, 36, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Lee, S.D.; Ju, G.; Kim, J.W.; Ha, K.; Yoon, I.Y. Enhanced cardiorespiratory coupling in patients with obstructive sleep apnea following continuous positive airway pressure treatment. Sleep Med 2013, 14, 1132–1138. [Google Scholar] [CrossRef]
- Khoo, M.C.; Kim, T.S.; Berry, R.B. Spectral indices of cardiac autonomic function in obstructive sleep apnea. Sleep 1999, 22, 443–451. [Google Scholar] [CrossRef]
- Wiklund, U.; Olofsson, B.O.; Franklin, K.; Blom, H.; Bjerle, P.; Niklasson, U. Autonomic cardiovascular regulation in patients with obstructive sleep apnoea: a study based on spectral analysis of heart rate variability. Clin Physiol 2000, 20, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.Y.; Su, M.C.; Wu, H.T.; Su, T.J.; Lin, M.C.; Sun, C.K. Multiscale entropic assessment of autonomic dysfunction in patients with obstructive sleep apnea and therapeutic impact of continuous positive airway pressure treatment. Sleep Med 2016, 20, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Roche, F.; Gaspoz, J.M.; Court-Fortune, I.; Costes, F.; Geyssant, A.; Duverney, D.; Pichot, V.; Barthelemy, J.C. Alteration of QT rate dependence reflects cardiac autonomic imbalance in patients with obstructive sleep apnea syndrome. Pacing Clin Electrophysiol 2003, 26, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Palma, J.A.; Iriarte, J.; Fernandez, S.; Alegre, M.; Valencia, M.; Artieda, J.; Urrestarazu, E. Long-term continuous positive airway pressure therapy improves cardiac autonomic tone during sleep in patients with obstructive sleep apnea. Clin Auton Res 2015, 25, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Aytemir, K.; Deniz, A.; Yavuz, B.; Ugur Demir, A.; Sahiner, L.; Ciftci, O.; Tokgozoglu, L.; Can, I.; Sahin, A.; Oto, A. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome. Respir Med 2007, 101, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Salsone, M.; Vescio, B.; Quattrone, A.; Roccia, F.; Sturniolo, M.; Bono, F.; Aguglia, U.; Gambardella, A.; Quattrone, A. Cardiac parasympathetic index identifies subjects with adult obstructive sleep apnea: A simultaneous polysomnographic-heart rate variability study. PLoS One 2018, 13, e0193879. [Google Scholar] [CrossRef] [PubMed]
- Coruzzi, P.; Gualerzi, M.; Bernkopf, E.; Brambilla, L.; Brambilla, V.; Broia, V.; Lombardi, C.; Parati, G. Autonomic cardiac modulation in obstructive sleep apnea: effect of an oral jaw-positioning appliance. Chest 2006, 130, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Dal-Fabbro, C.; Garbuio, S.; D'Almeida, V.; Cintra, F.D.; Tufik, S.; Bittencourt, L. Mandibular advancement device and CPAP upon cardiovascular parameters in OSA. Sleep Breath 2014, 18, 749–759. [Google Scholar] [CrossRef]
- Roche, F.; Court-Fortune, I.; Pichot, V.; Duverney, D.; Costes, F.; Emonot, A.; Vergnon, J.M.; Geyssant, A.; Lacour, J.R.; Barthelemy, J.C. Reduced cardiac sympathetic autonomic tone after long-term nasal continuous positive airway pressure in obstructive sleep apnoea syndrome. Clin Physiol 1999, 19, 127–134. [Google Scholar] [CrossRef]
- Tasali, E.; Chapotot, F.; Leproult, R.; Whitmore, H.; Ehrmann, D.A. Treatment of obstructive sleep apnea improves cardiometabolic function in young obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 2011, 96, 365–374. [Google Scholar] [CrossRef]
- Salsone, M.; Marelli, S.; Vescio, B.; Quattrone, A.; Gambardella, A.; Castelnuovo, A.; Quattrone, A.; Ferini Strambi, L. Usefulness of cardiac parasympathetic index in CPAP-treated patients with obstructive sleep apnea: A preliminary study. J Sleep Res 2020, 29, e12893. [Google Scholar] [CrossRef]
- Kuramoto, E.; Kinami, S.; Ishida, Y.; Shiotani, H.; Nishimura, Y. Continuous positive nasal airway pressure decreases levels of serum amyloid A and improves autonomic function in obstructive sleep apnea syndrome. Int J Cardiol 2009, 135, 338–345. [Google Scholar] [CrossRef]
- Efazati, N.; Rahimi, B.; Mirdamadi, M.; Edalatifard, M.; Tavoosi, A. Changes in heart rate variability (HRV) in patients with severe and moderate obstructive sleep apnea before and after acute CPAP therapy during nocturnal polysomnography. Sleep Sci 2020, 13, 97–102. [Google Scholar] [CrossRef]
- Chrysostomakis, S.I.; Simantirakis, E.N.; Schiza, S.E.; Karalis, I.K.; Klapsinos, N.C.; Siafakas, N.M.; Vardas, P.E. Continuous positive airway pressure therapy lowers vagal tone in patients with obstructive sleep apnoea-hypopnoea syndrome. Hellenic J Cardiol 2006, 47, 13–20. [Google Scholar] [PubMed]
- Shiina, K.; Tomiyama, H.; Takata, Y.; Yoshida, M.; Kato, K.; Saruhara, H.; Hashimura, Y.; Matsumoto, C.; Asano, K.; Usui, Y.; Yamashina, A. Effects of CPAP therapy on the sympathovagal balance and arterial stiffness in obstructive sleep apnea. Resp Med 2010, 104, 911–916. [Google Scholar] [CrossRef]
- Glos, M.; Penzel, T.; Schoebel, C.; Nitzsche, G.R.; Zimmermann, S.; Rudolph, C.; Blau, A.; Baumann, G.; Jost-Brinkmann, P.G.; Rautengarten, S.; et al. Comparison of effects of OSA treatment by MAD and by CPAP on cardiac autonomic function during daytime. Sleep Breath 2016, 20, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Ferland, A.; Poirier, P.; Series, F. Sibutramine versus continuous positive airway pressure in obese obstructive sleep apnoea patients. Eur Respir J 2009, 34, 694–701. [Google Scholar] [CrossRef]
- Miglis, M.G. Autonomic dysfunction in primary sleep disorders. Sleep Med 2016, 19, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J Clin Sleep Med 2017, 13, 665–666. [Google Scholar] [CrossRef]
- Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef]
- Guo, W.; Lv, T.; She, F.; Miao, G.; Liu, Y.; He, R.; Xue, Y.; Nu, N.K.; Yang, J.; Li, K.; Zhang, P. The impact of continuous positive airway pressure on heart rate variability in obstructive sleep apnea patients during sleep: A meta-analysis. Heart Lung 2018, 47, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Berntson, G.G.; Cacioppo, J.T.; Quigley, K.S. Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychol Rev 1991, 98, 459–487. [Google Scholar] [CrossRef] [PubMed]
- Paton, J.F.; Boscan, P.; Pickering, A.E.; Nalivaiko, E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev 2005, 49, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Cabiddu, R.; Cerutti, S.; Viardot, G.; Werner, S.; Bianchi, A.M. Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration. Front Physiol 2012, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Otzenberger, H.; Gronfier, C.; Simon, C.; Charloux, A.; Ehrhart, J.; Piquard, F.; Brandenberger, G. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol 1998, 275, H946–H950. [Google Scholar] [CrossRef] [PubMed]
- Vanoli, E.; Adamson, P.B.; Ba, L.; Pinna, G.D.; Lazzara, R.; Orr, W.C. Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation 1995, 91, 1918–1922. [Google Scholar] [CrossRef] [PubMed]
- Zemaityte, D.; Varoneckas, G.; Sokolov, E. Heart rhythm control during sleep. Psychophysiology 1984, 21, 279–289. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol 1997, 102, 390–396. [Google Scholar] [CrossRef]
- Gammoudi, N.; Ben Cheikh, R.; Saafi, M.A.; Sakly, G.; Dogui, M. Cardiac autonomic control in the obstructive sleep apnea. Libyan J Med 2015, 10, 26989. [Google Scholar] [CrossRef]
- da Silva, S.P.; Hulce, V.D.; Backs, R.W. Effects of obstructive sleep apnea on autonomic cardiac control during sleep. Sleep Breath 2009, 13, 147–156. [Google Scholar] [CrossRef]
- Remsburg, S.; Launois, S.H.; Weiss, J.W. Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol 1999, 87, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Sato, F.; Nishimura, M.; Shinano, H.; Saito, H.; Miyamoto, K.; Kawakami, Y. Heart rate during obstructive sleep apnea depends on individual hypoxic chemosensitivity of the carotid body. Circulation 1997, 96, 274–281. [Google Scholar] [PubMed]
- Yamaguchi, K.; Ohki, N.; Kobayashi, M.; Satoya, N.; Inoue, Y.; Onizawa, S.; Maeda, Y.; Sekiguchi, H.; Suzuki, M.; Tsuji, T.; et al. Estimation of parasympathetic nerve function during sleep in patients with obstructive sleep apnea by instantaneous time-frequency analysis. Sleep Med 2014, 15, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Drager, L.F.; McEvoy, R.D.; Barbe, F.; Lorenzi-Filho, G.; Redline, S.; Initiative, I. Sleep Apnea and Cardiovascular Disease: Lessons From Recent Trials and Need for Team Science. Circulation 2017, 136, 1840–1850. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Valham, F.; Mooe, T.; Rabben, T.; Stenlund, H.; Wiklund, U.; Franklin, K.A. Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up. Circulation 2008, 118, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Sethi, R.; Li, R.; Ho, H.H.; Hein, T.; Jim, M.H.; Loo, G.; Koo, C.Y.; Gao, X.F.; Chandra, S.; et al. Obstructive Sleep Apnea and Cardiovascular Events After Percutaneous Coronary Intervention. Circulation 2016, 133, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Uchoa, C.H.G.; Danzi-Soares, N.J.; Nunes, F.S.; de Souza, A.A.L.; Nerbass, F.B.; Pedrosa, R.P.; Cesar, L.A.M.; Lorenzi-Filho, G.; Drager, L.F. Impact of OSA on cardiovascular events after coronary artery bypass surgery. Chest 2015, 147, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Parker, J.D.; Newton, G.E.; Floras, J.S.; Mak, S.; Chiu, K.L.; Ruttanaumpawan, P.; Tomlinson, G.; Bradley, T.D. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol 2007, 49, 1625–1631. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M.; Mehra, R.; Patel, S.R.; Quan, S.F.; Babineau, D.C.; Tracy, R.P.; Rueschman, M.; Blumenthal, R.S.; Lewis, E.F.; et al. CPAP versus oxygen in obstructive sleep apnea. N Engl J Med 2014, 370, 2276–2285. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunstrom, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am J Respir Crit Care Med 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Hedner, J.; Darpo, B.; Ejnell, H.; Carlson, J.; Caidahl, K. Reduction in sympathetic activity after long-term CPAP treatment in sleep apnoea: cardiovascular implications. Eur Respir J 1995, 8, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kohler, M.; Pepperell, J.C.; Casadei, B.; Craig, S.; Crosthwaite, N.; Stradling, J.R.; Davies, R.J. CPAP and measures of cardiovascular risk in males with OSAS. Eur Respir J 2008, 32, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Riedl, M.; Gapelyuk, A.; Suhrbier, A.; Bretthauer, G.; Malberg, H.; Schobel, C.; Fietze, I.; Heitmann, J.; Kurths, J.; Wessel, N. Effect of CPAP therapy on daytime cardiovascular regulations in patients with obstructive sleep apnea. Comput Biol Med 2012, 42, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, W.T.; bin Nasir, U.; Alqalyoobi, S.; O'Neal, W.T.; Mawri, S.; Sabbagh, S.; Soliman, E.Z.; Al-Mallah, M.H. Meta-Analysis of Continuous Positive Airway Pressure as a Therapy of Atrial Fibrillation in Obstructive Sleep Apnea. Am J Cardiol 2015, 116, 1767–1773. [Google Scholar] [CrossRef]
- Wang, X.; Luo, J.; Huang, R.; Xiao, Y. The Elevated Central Chemosensitivity in Obstructive Sleep Apnea Patients with Hypertension. Nat Sci Sleep 2022, 14, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Peltier, A.C.; Bagai, K.; Artibee, K.; Diedrich, A.; Garland, E.; Elasy, T.; Shi, Y.; Wang, L.; Feldman, E.L.; Robertson, D.; Malow, B.A. Effect of mild hyperglycemia on autonomic function in obstructive sleep apnea. Clin Auton Res 2012, 22, 1–8. [Google Scholar] [CrossRef]
- Reynolds, E.B.; Seda, G.; Ware, J.C.; Vinik, A.I.; Risk, M.R.; Fishback, N.F. Autonomic function in sleep apnea patients: increased heart rate variability except during REM sleep in obese patients. Sleep Breath 2007, 11, 53–60. [Google Scholar] [CrossRef]
| Clinical characteristics | |
|---|---|
| Male: Female, n (%) | 320 (79.6 %): 82 (20.4 %) |
| Age, years | 52.0 ± 11.8 (range = 16–81) |
| BMI (kg/m2) | 28.8 ± 4.4 (range = 19–48.9) |
| Moderate: Severe OSA, n (%) | 132 (32.8 %): 270 (67.2 %) |
| Hypertension, n (%) | 228 (56.7 %) |
| Diabetes mellitus, n (%) | 77 (19.2 %) |
| Current smoker, n (%) | 91 (22.6 %) |
| ESS score | 8.3 ± 4.6 (range = 0–24) |
| PSQI | 7.5 ± 4.6 (range = 0–22) |
| SF-36 | 68.2 ± 19.4 (range = 15–98) |
| PSG parameters | |||
|---|---|---|---|
| Baseline | During CPAP | p Value | |
| Total sleep time (min) | 349.0 ± 48.8 | 349.8 ± 46.5 | 0.737 |
| Sleep efficiency (%) | 84.6 ± 10.7 | 86.7 ± 10.1 | < 0.001 |
| WASO (min) | 53.3 ± 40.9 | 45.1 ± 38.1 | < 0.001 |
| N1 (min) | 127.2 ± 56.3 | 68.2 ± 33.5 | < 0.001 |
| N2 (min) | 126.5 ± 88.7 | 162.5 ± 45.2 | < 0.001 |
| N3 (min) | 11.3 ± 19.2 | 15.6 ± 23.5 | < 0.001 |
| REM (min) | 86.7 ± 33.3 | 103.5 ± 37.6 | < 0.001 |
| AHI | 43.9 ± 22.0 | 2.6 ± 3.1 | < 0.001 |
| ODI | 41.0 ± 22.3 | 3.5 ± 5.8 | < 0.001 |
| AI | 50.7 ± 22.7 | 15.1 ± 12.4 | < 0.001 |
| Mean SaO2 (%) | 93.7 ± 2.5 | 95.8 ± 1.2 | < 0.001 |
| Frequency domain HRV parameters | |||
| Baseline | During CPAP | p Value | |
| TP (ms2) | 39,836 ± 20,001 | 35,672 ± 17,055 | < 0.001 |
| VLF (ms2) | 21,184 ± 12,586 | 18,494 ± 10,006 | < 0.001 |
| LF (ms2) | 12,472 ± 7,636 | 11,560 ± 7,157 | 0.003 |
| HF (ms2) | 5,380 ± 2,917 | 4,920 ± 2,507 | < 0.001 |
| LF/HF ratio | 2.9 ± 2.3 | 2.8 ± 2.2 | 0.395 |
| Frequency domain HRV parameters | ||||||
|---|---|---|---|---|---|---|
| Male (n = 320) | Female (n = 82) | |||||
| Baseline | During CPAP | p Value | Baseline | During CPAP | p Value | |
| TP (ms2) | 42,847 ± 20,249 | 38,191 ± 17,164 | < 0.001 | 28,088 ± 13,788 | 25,843 ± 12,524 | 0.039 |
| VLF (ms2) | 22,987 ± 12,866 | 19,914 ± 10,050 | < 0.001 | 14,147 ± 8,327 | 12,953 ± 7,674 | 0.068 |
| LF (ms2) | 13,581 ± 7,722 | 12,559 ± 7,312 | 0.005 | 8,140 ± 5,474 | 7,658 ± 4,866 | 0.317 |
| HF (ms2) | 5,478 ± 2,937 | 5,033 ± 2,601 | < 0.001 | 4,996 ± 2,824 | 4,482 ± 2,059 | 0.018 |
| LF/HF ratio | 3.1 ± 2.4 | 3.0 ± 2.3 | 0.545 | 2.1 ± 2.1 | 2.0 ± 1.4 | 0.396 |
| Moderate OSA (n = 132) | Severe OSA (n = 270) | |||||
| Baseline | During CPAP | p Value | Baseline | During CPAP | p Value | |
| TP (ms2) | 36,916 ± 17,479 | 35,765 ± 16,710 | 0.271 | 41,264 ± 21,007 | 35,626 ± 17,252 | < 0.001 |
| VLF (ms2) | 18,987 ± 10,003 | 18,127 ± 9,143 | 0.149 | 22,258 ± 13,561 | 18,673 ± 10,414 | < 0.001 |
| LF (ms2) | 11,524 ± 7,296 | 11,775 ± 7,646 | 0.563 | 12,935 ± 7,768 | 11,454 ± 6,918 | < 0.001 |
| HF (ms2) | 5,674 ± 2,967 | 5,191 ± 2,669 | 0.010 | 5,236 ± 2,887 | 4,788 ± 2,418 | 0.001 |
| LF/HF ratio | 2.4 ± 2.0 | 2.7 ± 2.5 | 0.082 | 3.1 ± 2.5 | 2.8 ± 2.0 | 0.073 |
| Multivariate linear regression analysis | ||||
|---|---|---|---|---|
| Independent variables | ∆ VLF | ∆ LF | ∆HF | ∆TP |
| Age | 0.129* | 0.052 | –0.119* | 0.086 |
| Sex | –0.078 | –0.015 | 0.007 | –0.056 |
| BMI | 0.061 | 0.150** | 0.084 | 0.112* |
| ∆ AHI | 0.188* | 0.166* | –0.025 | 0.186* |
| ∆ AI | –0.070 | –0.047 | –0.038 | –0.069 |
| ∆ mean SaO2 | –0.021 | –0.038 | 0.312*** | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).