Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An AIE Metal Iridium Complex: Photophysical Properties and Singlet Oxygen Generation Capacity

Version 1 : Received: 7 November 2023 / Approved: 7 November 2023 / Online: 7 November 2023 (09:27:21 CET)

A peer-reviewed article of this Preprint also exists.

Zhu, W.; Liu, S.; Wang, Z.; Shi, C.; Zhang, Q.; Wu, Z.; Li, G.; Zhu, D. An AIE Metal Iridium Complex: Photophysical Properties and Singlet Oxygen Generation Capacity. Molecules 2023, 28, 7914. Zhu, W.; Liu, S.; Wang, Z.; Shi, C.; Zhang, Q.; Wu, Z.; Li, G.; Zhu, D. An AIE Metal Iridium Complex: Photophysical Properties and Singlet Oxygen Generation Capacity. Molecules 2023, 28, 7914.

Abstract

Photodynamic therapy (PDT) has garnered significant attention in the fields of cancer treatment and drug-resistant bacteria eradication due to its non-invasive nature and spatiotemporal controllability. Iridium complexes have captivated researchers owing to their tunable structure, exceptional optical properties, and substantial Stokes displacement. However, most of these complexes suffer from aggregation-induced quenching, leading to diminished luminous efficiency. In contrast to conventional photosensitizers, photosensitizers exhibiting aggregation-induced luminescence (AIE) properties retain the ability to generate a large number of reactive oxygen species when aggregated. To overcome these limitations, we designed and synthesized a novel iridium complex named Ir-TPA in this study. It incorporates quinoline triphenylamine cyclomethylated ligands that confer AIE characteristics for Ir-TPA. We systematically investigated the photophysical properties, AIE behavior, spectral features, and reactive oxygen generation capacity of Ir-TPA. The results demonstrate that Ir-TPA exhibits excellent optical properties with pronounced AIE phenomenon and robust capability for producing singlet oxygen species. This work not only introduces a new class of metal iridium complex photosensitizer with AIE attributes but also holds promise for achieving remarkable photodynamic therapeutic effects in future cellular experiments and biological studies.

Keywords

aggregation-induced emission (AIE); Iridium(III) complex; phosphorescence; singlet oxygen (1O2)

Subject

Chemistry and Materials Science, Inorganic and Nuclear Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.