Submitted:
06 November 2023
Posted:
07 November 2023
You are already at the latest version
Abstract
Keywords:
1. Brief introduction of Amyotrophic Lateral Sclerosis
2. ALS Associated Genetic Mutations Modeled in C. elegans
3. Mechanisms Investigation of Protein Aggregation, Propagation in C. elegans
4. Cell Signaling Pathways Implicated in C. elegans Based ALS
5. Advances in Therapeutic Application of C. elegans ALS Models
6. Limitations of C. elegans as ALS Models and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Arora, R.D.; Khan, Y.S. Motor Neuron Disease. In StatPearls; Treasure Island (FL) ineligible companies. Disclosure: Yusuf Khan declares no relevant financial relationships with ineligible companies, 2023. [Google Scholar]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2017, 9. [Google Scholar] [CrossRef]
- Chen, S.; Sayana, P.; Zhang, X.; Le, W. Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 2013, 8, 28. [Google Scholar] [CrossRef]
- Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009, 4, 3. [Google Scholar] [CrossRef]
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015, 6, 171. [Google Scholar] [CrossRef]
- Hobson, E.V.; McDermott, C.J. Supportive and symptomatic management of amyotrophic lateral sclerosis. Nat Rev Neurol 2016, 12, 526–538. [Google Scholar] [CrossRef]
- Beeldman, E.; Raaphorst, J.; Klein Twennaar, M.; de Visser, M.; Schmand, B.A.; de Haan, R.J. The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry 2016, 87, 611–619. [Google Scholar] [CrossRef]
- Ringholz, G.M.; Appel, S.H.; Bradshaw, M.; Cooke, N.A.; Mosnik, D.M.; Schulz, P.E. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005, 65, 586–590. [Google Scholar] [CrossRef]
- Broussalis, E.; Grinzinger, S.; Kunz, A.B.; Killer-Oberpfalzer, M.; Haschke-Becher, E.; Hartung, H.P.; Kraus, J. Late age onset of amyotrophic lateral sclerosis is often not considered in elderly people. Acta Neurol Scand 2018, 137, 329–334. [Google Scholar] [CrossRef]
- Karceski, S. Understanding the different types of ALS. Neurology 2020, 94, e880–e883. [Google Scholar] [CrossRef]
- Sathasivam, S. Motor neurone disease: clinical features, diagnosis, diagnostic pitfalls and prognostic markers. Singapore Med J 2010, 51, 367–372. [Google Scholar]
- Roussos, A.; Kitopoulou, K.; Borbolis, F.; Palikaras, K. Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023, 13. [Google Scholar] [CrossRef]
- Van Pelt, K.M.; Truttmann, M.C. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Transl Med Aging 2020, 4, 60–72. [Google Scholar] [CrossRef]
- Caldwell, K.A.; Willicott, C.W.; Caldwell, G.A. Modeling neurodegeneration in Caenorhabditiselegans. Dis Model Mech 2020, 13. [Google Scholar] [CrossRef]
- Li, J.; Le, W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 2013, 250, 94–103. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006, 5, 387–398. [Google Scholar] [CrossRef]
- Shaye, D.D.; Greenwald, I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011, 6, e20085. [Google Scholar] [CrossRef]
- Therrien, M.; Rouleau, G.A.; Dion, P.A.; Parker, J.A. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 2013, 8, e83450. [Google Scholar] [CrossRef]
- Baskoylu, S.N.; Chapkis, N.; Unsal, B.; Lins, J.; Schuch, K.; Simon, J.; Hart, A.C. Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep 2022, 38, 110195. [Google Scholar] [CrossRef]
- Cabreiro, F.; Ackerman, D.; Doonan, R.; Araiz, C.; Back, P.; Papp, D.; Braeckman, B.P.; Gems, D. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 2011, 51, 1575–1582. [Google Scholar] [CrossRef]
- Rudich, P.; Snoznik, C.; Watkins, S.C.; Monaghan, J.; Pandey, U.B.; Lamitina, S.T. Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum Mol Genet 2017, 26, 4916–4928. [Google Scholar] [CrossRef]
- Li, J.; Huang, K.X.; Le, W.D. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol Sin 2013, 34, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Wheelan, S.J.; Boguski, M.S.; Duret, L.; Makalowski, W. Human and nematode orthologs--lessons from the analysis of 1800 human genes and the proteome of Caenorhabditis elegans. Gene 1999, 238, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, C.; Pir, G.J.; Biernat, J.; Koushika, S.P.; Mandelkow, E.; Mandelkow, E.M.; Schmidt, E.; Baumeister, R. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 2012, 21, 3587–3603. [Google Scholar] [CrossRef] [PubMed]
- Oeda, T.; Shimohama, S.; Kitagawa, N.; Kohno, R.; Imura, T.; Shibasaki, H.; Ishii, N. Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 2001, 10, 2013–2023. [Google Scholar] [CrossRef]
- Wang, X.; Su, B.; Lee, H.G.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 2009, 29, 9090–9103. [Google Scholar] [CrossRef] [PubMed]
- Witan, H.; Kern, A.; Koziollek-Drechsler, I.; Wade, R.; Behl, C.; Clement, A.M. Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation. Hum Mol Genet 2008, 17, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Gidalevitz, T.; Krupinski, T.; Garcia, S.; Morimoto, R.I. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 2009, 5, e1000399. [Google Scholar] [CrossRef]
- Yao, X.L.; Ye, C.H.; Liu, Q.; Wan, J.B.; Zhen, J.; Xiang, A.P.; Li, W.Q.; Wang, Y.; Su, H.; Lu, X.L. Motoneuron differentiation of induced pluripotent stem cells from SOD1G93A mice. PLoS One 2013, 8, e64720. [Google Scholar] [CrossRef]
- Murakami, A.; Kojima, K.; Ohya, K.; Imamura, K.; Takasaki, Y. A new conformational epitope generated by the binding of recombinant 70-kd protein and U1 RNA to anti-U1 RNP autoantibodies in sera from patients with mixed connective tissue disease. Arthritis Rheum 2002, 46, 3273–3282. [Google Scholar] [CrossRef]
- Vaccaro, A.; Patten, S.A.; Ciura, S.; Maios, C.; Therrien, M.; Drapeau, P.; Kabashi, E.; Parker, J.A. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 2012, 7, e42117. [Google Scholar] [CrossRef]
- Zhang, T.; Mullane, P.C.; Periz, G.; Wang, J. TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet 2011, 20, 1952–1965. [Google Scholar] [CrossRef]
- Corcia, P.; Lunetta, C.; Vourc’h, P.; Pradat, P.F.; Blasco, H. Time for optimism in amyotrophic lateral sclerosis. Eur J Neurol 2023, 30, 1459–1464. [Google Scholar] [CrossRef]
- Levefaudes, M.; Patin, D.; de Sousa-d’Auria, C.; Chami, M.; Blanot, D.; Herve, M.; Arthur, M.; Houssin, C.; Mengin-Lecreulx, D. Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION. J Biol Chem 2015, 290, 13079–13094. [Google Scholar] [CrossRef]
- Saccon, R.A.; Bunton-Stasyshyn, R.K.; Fisher, E.M.; Fratta, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain 2013, 136, 2342–2358. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016, 138 Suppl 1, 95–111. [Google Scholar] [CrossRef]
- Corcia, P.; Valdmanis, P.; Millecamps, S.; Lionnet, C.; Blasco, H.; Mouzat, K.; Daoud, H.; Belzil, V.; Morales, R.; Pageot, N.; et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations. Neurology 2012, 78, 1519–1526. [Google Scholar] [CrossRef]
- Wang, X.; Schwartz, J.C.; Cech, T.R. Nucleic acid-binding specificity of human FUS protein. Nucleic Acids Res 2015, 43, 7535–7543. [Google Scholar] [CrossRef]
- Ling, S.C.; Dastidar, S.G.; Tokunaga, S.; Ho, W.Y.; Lim, K.; Ilieva, H.; Parone, P.A.; Tyan, S.H.; Tse, T.M.; Chang, J.C.; et al. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. Elife 2019, 8. [Google Scholar] [CrossRef]
- Yang, L.; Gal, J.; Chen, J.; Zhu, H. Self-assembled FUS binds active chromatin and regulates gene transcription. Proc Natl Acad Sci U S A 2014, 111, 17809–17814. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Ebmeier, C.C.; Podell, E.R.; Heimiller, J.; Taatjes, D.J.; Cech, T.R. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev 2012, 26, 2690–2695. [Google Scholar] [CrossRef]
- Smeyers, J.; Banchi, E.G.; Latouche, M. C9ORF72: What It Is, What It Does, and Why It Matters. Front Cell Neurosci 2021, 15, 661447. [Google Scholar] [CrossRef]
- Cleary, J.D.; Ranum, L.P. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017, 44, 125–134. [Google Scholar] [CrossRef]
- Sundaramoorthy, V.; Walker, A.K.; Tan, V.; Fifita, J.A.; McCann, E.P.; Williams, K.L.; Blair, I.P.; Guillemin, G.J.; Farg, M.A.; Atkin, J.D. Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet 2015, 24, 3830–3846. [Google Scholar] [CrossRef]
- Akizuki, M.; Yamashita, H.; Uemura, K.; Maruyama, H.; Kawakami, H.; Ito, H.; Takahashi, R. Optineurin suppression causes neuronal cell death via NF-kappaB pathway. J Neurochem 2013, 126, 699–704. [Google Scholar] [CrossRef]
- Ryan, T.A.; Tumbarello, D.A. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018, 9, 1024. [Google Scholar] [CrossRef]
- Tak, Y.J.; Park, J.H.; Rhim, H.; Kang, S. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef]
- Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226. [Google Scholar] [CrossRef]
- Wang, J.; Farr, G.W.; Hall, D.H.; Li, F.; Furtak, K.; Dreier, L.; Horwich, A.L. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 2009, 5, e1000350. [Google Scholar] [CrossRef]
- Yanase, S.; Onodera, A.; Tedesco, P.; Johnson, T.E.; Ishii, N. SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J Gerontol A Biol Sci Med Sci 2009, 64, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Ash, P.E.; Zhang, Y.J.; Roberts, C.M.; Saldi, T.; Hutter, H.; Buratti, E.; Petrucelli, L.; Link, C.D. Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 2010, 19, 3206–3218. [Google Scholar] [CrossRef] [PubMed]
- Liachko, N.F.; Guthrie, C.R.; Kraemer, B.C. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 2010, 30, 16208–16219. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Yang, S.P.; Xie, L.; Kawano, T.; Fu, D.; Mukai, A.; Bohm, C.; Chen, F.; Robertson, J.; Suzuki, H.; et al. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum Mol Genet 2012, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Labarre, A.; Tossing, G.; Maios, C.; Doyle, J.J.; Parker, J.A. A single copy transgenic mutant FUS strain reproduces age-dependent ALS phenotypes in C. elegans. MicroPubl Biol 2021, 2021. [Google Scholar] [CrossRef]
- Ikenaka, K.; Kawai, K.; Katsuno, M.; Huang, Z.; Jiang, Y.M.; Iguchi, Y.; Kobayashi, K.; Kimata, T.; Waza, M.; Tanaka, F.; et al. dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. PLoS One 2013, 8, e54511. [Google Scholar] [CrossRef] [PubMed]
- Ikenaka, K.; Tsukada, Y.; Giles, A.C.; Arai, T.; Nakadera, Y.; Nakano, S.; Kawai, K.; Mochizuki, H.; Katsuno, M.; Sobue, G.; et al. A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Sci Rep 2019, 9, 10104. [Google Scholar] [CrossRef] [PubMed]
- Corrionero, A.; Horvitz, H.R. A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis. Curr Biol 2018, 28, 1522–1535 e1525. [Google Scholar] [CrossRef]
- Wang, X.; Hao, L.; Saur, T.; Joyal, K.; Zhao, Y.; Zhai, D.; Li, J.; Pribadi, M.; Coppola, G.; Cohen, B.M.; et al. Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes. Front Mol Neurosci 2016, 9, 113. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef]
- Kumar Ghosh, D.; Nanaji Shrikondawar, A.; Ranjan, A. Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of superoxide dismutase 1. J Biomol Struct Dyn 2020, 38, 647–659. [Google Scholar] [CrossRef]
- Zhang, T.; Hwang, H.Y.; Hao, H.; Talbot, C., Jr.; Wang, J. Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. J Biol Chem 2012, 287, 8371–8382. [Google Scholar] [CrossRef] [PubMed]
- Bunton-Stasyshyn, R.K.; Saccon, R.A.; Fratta, P.; Fisher, E.M. SOD1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology: New and Renascent Themes. Neuroscientist 2015, 21, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.Y.; Cali, C.P.; Lee, E.B. RNA metabolism in neurodegenerative disease. Dis Model Mech 2017, 10, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, P.; Robberecht, W.; Van Den Bosch, L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis Model Mech 2017, 10, 537–549. [Google Scholar] [CrossRef]
- Arai, T.; Hasegawa, M.; Akiyama, H.; Ikeda, K.; Nonaka, T.; Mori, H.; Mann, D.; Tsuchiya, K.; Yoshida, M.; Hashizume, Y.; et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, Y.C.; Mullane, P.; Ji, Y.J.; Liu, H.; He, L.; Arora, A.; Hwang, H.Y.; Alessi, A.F.; Niaki, A.G.; et al. FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Mol Cell 2018, 69, 787–801 e788. [Google Scholar] [CrossRef] [PubMed]
- Freischmidt, A.; Muller, K.; Ludolph, A.C.; Weishaupt, J.H.; Andersen, P.M. Association of Mutations in TBK1 With Sporadic and Familial Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. JAMA Neurol 2017, 74, 110–113. [Google Scholar] [CrossRef]
- Rhinn, H.; Tatton, N.; McCaughey, S.; Kurnellas, M.; Rosenthal, A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 2022, 43, 641–652. [Google Scholar] [CrossRef]
- Vaccaro, A.; Tauffenberger, A.; Aggad, D.; Rouleau, G.; Drapeau, P.; Parker, J.A. Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One 2012, 7, e31321. [Google Scholar] [CrossRef]
- Forsberg, K.; Jonsson, P.A.; Andersen, P.M.; Bergemalm, D.; Graffmo, K.S.; Hultdin, M.; Jacobsson, J.; Rosquist, R.; Marklund, S.L.; Brannstrom, T. Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients. PLoS One 2010, 5, e11552. [Google Scholar] [CrossRef]
- Butler, V.J.; Gao, F.; Corrales, C.I.; Cortopassi, W.A.; Caballero, B.; Vohra, M.; Ashrafi, K.; Cuervo, A.M.; Jacobson, M.P.; Coppola, G.; et al. Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response. PLoS Genet 2019, 15, e1008295. [Google Scholar] [CrossRef]
- Lagier-Tourenne, C.; Polymenidou, M.; Hutt, K.R.; Vu, A.Q.; Baughn, M.; Huelga, S.C.; Clutario, K.M.; Ling, S.C.; Liang, T.Y.; Mazur, C.; et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 2012, 15, 1488–1497. [Google Scholar] [CrossRef]
- Tan, A.Y.; Manley, J.L. TLS inhibits RNA polymerase III transcription. Mol Cell Biol 2010, 30, 186–196. [Google Scholar] [CrossRef]
- Zondler, L.; Muller, K.; Khalaji, S.; Bliederhauser, C.; Ruf, W.P.; Grozdanov, V.; Thiemann, M.; Fundel-Clemes, K.; Freischmidt, A.; Holzmann, K.; et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 2016, 132, 391–411. [Google Scholar] [CrossRef]
- Higelin, J.; Catanese, A.; Semelink-Sedlacek, L.L.; Oeztuerk, S.; Lutz, A.K.; Bausinger, J.; Barbi, G.; Speit, G.; Andersen, P.M.; Ludolph, A.C.; et al. NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Res 2018, 30, 150–162. [Google Scholar] [CrossRef]
- Pelegrini, A.L.; Moura, D.J.; Brenner, B.L.; Ledur, P.F.; Maques, G.P.; Henriques, J.A.; Saffi, J.; Lenz, G. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest. Mutagenesis 2010, 25, 447–454. [Google Scholar] [CrossRef]
- Ravits, J.; Appel, S.; Baloh, R.H.; Barohn, R.; Brooks, B.R.; Elman, L.; Floeter, M.K.; Henderson, C.; Lomen-Hoerth, C.; Macklis, J.D.; et al. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 2013, 14 Suppl 1, 5–18. [Google Scholar] [CrossRef]
- Veriepe, J.; Fossouo, L.; Parker, J.A. Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons. Nat Commun 2015, 6, 7319. [Google Scholar] [CrossRef] [PubMed]
- Beers, D.R.; Appel, S.H. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 2019, 18, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014, 14, 463–477. [Google Scholar] [CrossRef]
- Pujol, N.; Zugasti, O.; Wong, D.; Couillault, C.; Kurz, C.L.; Schulenburg, H.; Ewbank, J.J. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 2008, 4, e1000105. [Google Scholar] [CrossRef]
- Couillault, C.; Pujol, N.; Reboul, J.; Sabatier, L.; Guichou, J.F.; Kohara, Y.; Ewbank, J.J. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004, 5, 488–494. [Google Scholar] [CrossRef]
- Ravikumar, B.; Acevedo-Arozena, A.; Imarisio, S.; Berger, Z.; Vacher, C.; O’Kane, C.J.; Brown, S.D.; Rubinsztein, D.C. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 2005, 37, 771–776. [Google Scholar] [CrossRef]
- Komatsu, M.; Wang, Q.J.; Holstein, G.R.; Friedrich, V.L., Jr.; Iwata, J.; Kominami, E.; Chait, B.T.; Tanaka, K.; Yue, Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007, 104, 14489–14494. [Google Scholar] [CrossRef]
- Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2011, 70, 349–359. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Le, W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008, 4, 290–293. [Google Scholar] [CrossRef]
- Fecto, F.; Yan, J.; Vemula, S.P.; Liu, E.; Yang, Y.; Chen, W.; Zheng, J.G.; Shi, Y.; Siddique, N.; Arrat, H.; et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 2011, 68, 1440–1446. [Google Scholar] [CrossRef]
- Deng, H.X.; Chen, W.; Hong, S.T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011, 477, 211–215. [Google Scholar] [CrossRef]
- Buchan, J.R.; Kolaitis, R.M.; Taylor, J.P.; Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013, 153, 1461–1474. [Google Scholar] [CrossRef]
- Wong, Y.C.; Holzbaur, E.L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 2014, 111, E4439–4448. [Google Scholar] [CrossRef] [PubMed]
- Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Muller, K.; Marroquin, N.; Nordin, F.; Hubers, A.; Weydt, P.; et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 2015, 18, 631–636. [Google Scholar] [CrossRef]
- Blokhuis, A.M.; Groen, E.J.; Koppers, M.; van den Berg, L.H.; Pasterkamp, R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013, 125, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Soo, K.Y.; Sultana, J.; King, A.E.; Atkinson, R.; Warraich, S.T.; Sundaramoorthy, V.; Blair, I.; Farg, M.A.; Atkin, J.D. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Virgilio, L.; Silva-Lucero, M.D.; Flores-Morelos, D.S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.M.; Zacapala-Gomez, A.E.; Luna-Munoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.P.; De Calbiac, H.; Kabashi, E.; Barmada, S.J. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2022, 18, 254–282. [Google Scholar] [CrossRef] [PubMed]
- Noormohammadi, A.; Calculli, G.; Gutierrez-Garcia, R.; Khodakarami, A.; Koyuncu, S.; Vilchez, D. Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cell Mol Life Sci 2018, 75, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Hohn, A.; Tramutola, A.; Cascella, R. Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress. Oxid Med Cell Longev 2020, 2020, 5497046. [Google Scholar] [CrossRef] [PubMed]
- Halaschek-Wiener, J.; Khattra, J.S.; McKay, S.; Pouzyrev, A.; Stott, J.M.; Yang, G.S.; Holt, R.A.; Jones, S.J.; Marra, M.A.; Brooks-Wilson, A.R.; et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 2005, 15, 603–615. [Google Scholar] [CrossRef]
- Chistyakova, O.V.; Bondareva, V.M.; Shipilov, V.N.; Sukhov, I.B.; Shpakov, A.O. Intranasal administration of insulin eliminates the deficit of long-term spatial memory in rats with neonatal diabetes mellitus. Dokl Biochem Biophys 2011, 440, 216–218. [Google Scholar] [CrossRef]
- Boccitto, M.; Lamitina, T.; Kalb, R.G. Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PLoS One 2012, 7, e33494. [Google Scholar] [CrossRef] [PubMed]
- Wokke, J.H. [Riluzole treatment in amyotrophic lateral sclerosis]. Ned Tijdschr Geneeskd 1996, 140, 2265–2268. [Google Scholar] [PubMed]
- Saitoh, Y.; Takahashi, Y. Riluzole for the treatment of amyotrophic lateral sclerosis. Neurodegener Dis Manag 2020, 10, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Khalifeh, M.; Barreto, G.E.; Sahebkar, A. Therapeutic potential of trehalose in neurodegenerative diseases: the knowns and unknowns. Neural Regen Res 2021, 16, 2026–2027. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience 2014, 272, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Dibaj, P.; Zschuntzsch, J.; Steffens, H.; Scheffel, J.; Goricke, B.; Weishaupt, J.H.; Le Meur, K.; Kirchhoff, F.; Hanisch, U.K.; Schomburg, E.D.; et al. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 2012, 7, e43963. [Google Scholar] [CrossRef] [PubMed]
- Musteikyte, G.; Ziaunys, M.; Smirnovas, V. Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils. PeerJ 2020, 8, e9719. [Google Scholar] [CrossRef]
- Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 2015, 11, 1437–1438. [Google Scholar] [CrossRef]
- Rivera, V.M.; Breitbach, W.B.; Swanke, L. Letter: Dantrolene in amyotrophic lateral sclerosis. JAMA 1975, 233, 863–864. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Wei, H. Dantrolene: From Malignant Hyperthermia to Alzheimer’s Disease. CNS Neurol Disord Drug Targets 2019, 18, 668–676. [Google Scholar] [CrossRef]
- Lam, V.; Clarnette, R.; Francis, R.; Bynevelt, M.; Watts, G.; Flicker, L.; Orr, C.F.; Loh, P.; Lautenschlager, N.; Reid, C.M.; et al. Efficacy of probucol on cognitive function in Alzheimer’s disease: study protocol for a double-blind, placebo-controlled, randomised phase II trial (PIA study). BMJ Open 2022, 12, e058826. [Google Scholar] [CrossRef] [PubMed]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 2017, 1403, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Javed, S.; Javed, S.; Tariq, A.; Samec, D.; Tejada, S.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Resveratrol and Alzheimer’s Disease: Mechanistic Insights. Mol Neurobiol 2017, 54, 2622–2635. [Google Scholar] [CrossRef] [PubMed]
- Rizvanov, A.A.; Gulluoglu, S.; Yalvac, M.E.; Palotas, A.; Islamov, R.R. RNA interference and amyotrophic lateral sclerosis. Curr Drug Metab 2011, 12, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.G.; Zhou, H.; Zhou, S.; Yu, Y.; Wu, R.; Xu, Z. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase. J Neurochem 2005, 92, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, B.; Qiu, L.; Yang, C.; Kramer, J.; Su, Q.; Guo, Y.; Brown, R.H., Jr.; Gao, G.; Xu, Z. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet 2014, 23, 668–681. [Google Scholar] [CrossRef]
- Fang, T.; Je, G.; Pacut, P.; Keyhanian, K.; Gao, J.; Ghasemi, M. Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Amado, D.A.; Davidson, B.L. Gene therapy for ALS: A review. Mol Ther 2021, 29, 3345–3358. [Google Scholar] [CrossRef] [PubMed]
- Eisen, A. Amyotrophic lateral sclerosis is a multifactorial disease. Muscle Nerve 1995, 18, 741–752. [Google Scholar] [CrossRef]
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019, 13, 1310. [Google Scholar] [CrossRef]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.Q.; Tang, L.T.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ishidate, T.; Ghanta, K.S.; Seth, M.; Conte, D., Jr.; Shirayama, M.; Mello, C.C. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 2014, 197, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Park, H.; Liu, J.; Sternberg, P.W. An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9. G3 (Bethesda) 2018, 8, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
| Model | Strain/Transgene name/Plasmid | Expression in C. elegans | Phenotypes |
|---|---|---|---|
| Pro-aggregant lines: Is[Prab-3::F3ΔK280 + Pmyo-2::mCherry] | BR5270, 5485, 5706, 5944 | Constitutive pan neuronal | Severe locomotive impairment of adulthood at day 1; accelerating aggregate formation; severe developmental deficiency in nervous system; injury in presynaptic transmission [25] |
| Anti-aggregant lines: Is[Prab-3::F3ΔK280(I277P)(I308P) + Pmyo-2::mCherry] | BR5271, 5486, 6427, 6516 | Constitutive pan-neuronal | No overt locomotive impairment; minimum influence on neurodevelopment [25] |
| Is[Phsp-16.2::sod-1 (WT, A4V, G37R,G93A) + Pmyo-3::sod-1(WT, A4V)::gfp + rol-6(su1006)] | n.a. | Heat-shock inducible muscles | Oxidative stress-induced aggregate formation [26] |
| iwIs8[Psnb-1::sod-1(WT, G85R)::yfp] | n.a. | Constitutive pan-neuronal | Severe motor dysfunction accompanied by both soluble oligomers and insoluble aggregate deposits [27] |
| Is[Psng-1::sod-1(WT, A4V, G37R, G93C)::gfp] | n.a. | Constitutive pan-neuronal | Compared to heterodimers, mutant homodimers demonstrate increased aggregate formation but G85R heterodimers are more toxic in functional assays [28] |
| Is[Punc-54::sod-1(WT, G85R, G93A,G127insTGGGstop)::yfp] | AM263, 265 | Constitutive muscle | SOD-1 mutants demonstrate morphologically heterogenous aggregates with variety biophysical properties and mild motility defects [29] |
| ngIs36[Punc-25::sod-1(G93A)::gfp] | n.a. | GABAergic motor neurons | G93A SOD-1 animals demonstrate progressive motor dysfunction, aggregate formation, and axonal guidance defects [30] |
| lin-15(n765ts); [Prgef-1::FUS (WT, R514G, R521G, R522G, R524S, P525L) + Ppab-1:: mCherry; lin-15(+)] | PJH897 | Constitutive pan-neuronal | Form of cytoplasmic FUS aggregates: R522G, P525L, FUS513 and FUS501 demonstrate a significantly shorter lifespan; P525L, FUS513 and FUS501 demonstrate a partially or completely paralyses, severely shrunken by 8 days of age [31] |
|
unc-119(ed3); Is[Punc-47::TDP-43-(WT, A315T) + unc-119(+)] unc-119(ed3); Is[Punc-47::FUS-(WT, S57Δ) + unc-119(+)] |
xqIs132, xqIs133, xqIs173, xqIs98 |
GABAergic motor neurons | Having normal lifespan, but displayed adult-onset, age-dependent damage of motility, progressive paralysis, neuronal degeneration, accumulation of highly insoluble TDP-43 and FUS proteins [32] |
|
iwIs26 [Psnb-1::TDP-43-YFP WT], iwIs22[Psnb-1::TDP-C25-YFP], iwEx20[Psnb-1::TDP-43-YFP Q331 K], iwEx28[Psnb-1::TDP-43-YFP M337 V)], iwIs27[Psnb-1::SOD1-YFP WT], iwIs8[Psnb-1::SOD1-YFP G85R] |
IW63, IW33, IW20, IW46, IW31, IW8 | Constitutive pan-neuronal | Transgenic models developed robust locomotion defects and protein aggregation [33] |
| Pathogenic Molecule | Normal Functions | Pathogenic Mechanism | C. elegans Model | Phonotype |
|---|---|---|---|---|
| C9orf72-SMCR8 complex subunit (C9orf72) [66] | Guanine nucleotide exchange factor (GEF) activity and regulating autophagy [45] | A hexanucleotide repeat (GGGGCC) within the first intron of C9orf72 undergoes expansion with AUG independent producing five separate dipeptide-containing proteins [19] | alfa-1 | Motor neuron degeneration and a motility defect [59] |
| Superoxide dismutase (SOD1) [66] | A cytosolic enzyme, catalyzes the detoxification of superoxide [64] | Mutant alleles of SOD1 generating toxic increase of function in motor neurons; misfold and then eventually aggregate in motor neurons until in vitro; ER stress [62] | a: Pan-neuronal expression of human G85R SOD1; b: Motor neuron overexpression of a human G93A SOD1 [51] |
a: Locomotor deficiency, growth of aggregates and axonal abnormalities; b: Age-dependent paralysis result in the consequence of axonal guidance defects [23] |
| Transactive response (TAR) DNA-binding protein 43 (TDP-43) [67] | Participate in various steps of RNA metabolism, including mRNA splicing, RNA transport, translation, and microRNA biogenesis [65] | a: Deficiency of normal function in the nucleus; b: A toxic GOF by form of cytoplasmic aggregates [63] |
a: Pan-neuronal expression of humanTDP-43; b: C. elegans homologous gene, TDP-1 [53] |
a: Within the GABAergic neurons, occur to slowed and uncoordinated movement, as well as defasciculation of the motor neurons; b: Deficiency of tdp-1 result in lower fertility, slower growth, and a locomotor deficit [55] |
| Progranulin (PGRN) | Participate in a diversity of physiologic and pathological processes, consist of cell proliferation, wound healing, and modulation of inflammation | Decreasing PGRN levels result in the hexanucleotide repeat expansion in the C9orf72 gene | Stress and aging produces PGRN impairing the expression and activity of lysosomal proteases [73] | PGRN deficiency resulted in abnormal expression of multiple lysosomal, immune-related, and lipid metabolic genes lysosomal dysfunction, defects in autophagy, and neuroinflammation [70] |
| RNA-binding protein FUS/TLS (FUS) | DNA repair and several aspects of RNA metabolism involving in transcription alternative splicing mRNA transport, mRNA stability, and microRNA biogenesis [75] | Disturb the nuclear localization signal resulting in mis-localization of FUS to the cytoplasm with protein aggregates [74] | a: Expressing a FUS variant prone to aggregate in GABAergic neurons by the unc-47 promoter; b: Expressing panneuronlly in FUS mutants under control of the rgef-1 promoter; c: C. elegans homologous gene, fust-1 [55,71] |
a: Neurodegeneration, synaptic dysfunction, paralysis and aggregation; b: Motor dysfunction; c: Achieve maximum microRNA (miRNA)-mediated gene silencing [68] |
| TANK-binding kinase 1 (TBK1)/optineurin gene (OPTN) | TBK1conducts to inflammatory pathways via conducting downstream of proteins that sense bacterial lipopolysaccharides and viral RNA/DNA; OPTN involves in ubiquitinated proteins and produces its role as an autophagy adaptor [76] | Malfunctions of the autophagic pathway | a: Loss of function Variants; b: In-Frame Deletions of Single Amino Acids; c: Missense Variants [69] |
Neuronal protein aggregates results in malfunctions of the autophagic pathway [72] |
| NIMA-related serine/threonine kinase protein family (NEK), NEK1 [67] | Controlling cell cycle, DNA damage repair, and ciliogenesis splicing, RNA transport, translation, and microRNA biogenesis [65,78] |
Increasing DNA damage and a compromised DNA damage response [77] | Acting on DDR signaling downstream of ATM/ATR [78] | DNA damage response and repair as well as mitochondrial function [77] |
| Therapeutic Strategies | Functions | Mechanisms of Treatment | |
|---|---|---|---|
| Small molecules | Riluzole [103,104] | Decreasing glutamate release for neuroprotective | Decreasing glutamate release for neuroprotective |
| Trehalose [105] | Autophagy-enhancing properties contributing to clear protein aggregates in ALS | Improving motor function and increasing the lifespan of C. elegans models of ALS | |
| Curcumin [106] | Decreasing oxidative stress and slowing disease progression | Prospective neuroprotective effects | |
| Methylene blue [107,108] | An aggregation inhibitor of the phenothiazine class | Protects against oxidative stress | |
| Bafilomycin [109] | Blocking autophagosome-lysosome fusion and inhibiting acidification and protein degradation in cell lysosomes to produce the effect of inducing apoptosis | Decreasing neurodegeneration via inhibiting autophagic vesicle maturation | |
| Dantrolene [110,111] | A muscle relaxant for noncompetitively inhibiting human erythrocyte glutathione reductase | Decreasing neurodegeneration by inhibition of intracellular calcium free in the ER | |
| Probucol [112] | Regulating blood lipid and anti-lipid peroxidation | Attenuating neurodegeneration by its antioxidant properties | |
| Resveratrol [113,114] | Antioxidant and anti-inflammatory properties | Mitigating ALS-like symptoms via activating cellular protective mechanisms | |
| RNA-based therapies | RNAi (RNA Interference) [115,116,117,118] | A gene therapy for ALS and FTD because of reduction in toxicity induced by the repeat-containing C9orf72 transcripts | Aiming and knocking down genes associated with ALS-related proteins by RNAi |
| Antisense Oligonucleotides (ASOs) [118,119] | Reducing, restoring, or modifying RNA and protein expression | Modulating the expression of ALS-associated genes and potentially reducing toxic protein production | |
| Genetic modifiers | Cell division cycle kinase 7 (CDC7) | Decreasing the transactive response DNA binding protein of 43 KDa (TDP-43) phosphorylation in vitro and vivo | Decreasing phosphorylation of TDP-43 and the consequent neurodegeneration |
| UNC-13A [80] | Regulates the release of neurotransmitters | UNC-13 is required for induction of the degeneration of motor neurons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
