Submitted:
01 November 2023
Posted:
02 November 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Methods
Statistical analysis:
Results
Discussion
Author Contributions
Funding
Ethical approval
Conflicts of interest
References
- Aguirre:, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. Ecohealth 2019, 16, 378–390. [Google Scholar] [CrossRef]
- Holland, G.N. Ocular Toxoplasmosis: The Influence of Patient Age. Mem Inst Oswaldo Cruz 2009, 104, 351–357. [Google Scholar] [CrossRef]
- Robert-Gangneux, F.; Dardé, M.L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin Microbiol Rev 2012, 25, 264–296. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. The History and Life Cycle of Toxoplasma Gondii. In Toxoplasma gondii; Elsevier, 2020; pp. 1–19 ISBN 9780128150412.
- Shapiro, K.; Bahia-Oliveira, L.; Dixon, B.; Dumètre, A.; de Wit, L.A.; VanWormer, E.; Villena, I. Environmental Transmission of Toxoplasma Gondii: Oocysts in Water, Soil and Food. Food Waterborne Parasitol 2019, 15, e00049. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Villavicencio, J.A.; Cañedo-Solares, I.; Correa, D. Anti-Toxoplasma Gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms 2022, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Djurković-Djaković, O.; Dupouy-Camet, J.; Van der Giessen, J.; Dubey, J.P. Toxoplasmosis: Overview from a One Health Perspective. Food Waterborne Parasitol 2019, 15, e00054. [Google Scholar] [CrossRef] [PubMed]
- De Moura, L.; Garcia Bahia-Oliveira, L.M.; Wada, M.Y.; Jones, J.L.; Tuboi, S.H.; Carmo, E.H.; Ramalho, W.M.; Camargo, N.J.; Trevisan, R.; Graça, R.M.T.; et al. Waterborne Toxoplasmosis, Brazil, from Field to Gene. Emerg Infect Dis 2006, 12, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Hua, X.; Yu, Y.; Zhu, P.; Hong, K.; Ke, Y. Effect of Red Blood Cell Transfusion on the Development of Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. PLoS One 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Foroutan-Rad, M.; Majidiani, H.; Dalvand, S.; Daryani, A.; Kooti, W.; Saki, J.; Hedayati-Rad, F.; Ahmadpour, E. Toxoplasmosis in Blood Donors: A Systematic Review and Meta-Analysis. Transfus Med Rev 2016, 30, 116–122. [Google Scholar] [CrossRef]
- Murata, Y.; Sugi, T.; Weiss, L.M.; Kato, K. Identification of Compounds That Suppress Toxoplasma Gondii Tachyzoites & Bradyzoites. PLoS One 2017, 12. [Google Scholar] [CrossRef]
- Vidal, J.E. HIV-Related Cerebral Toxoplasmosis Revisited: Current Concepts and Controversies of an Old Disease. J Int Assoc Provid AIDS Care 2019, 18, 232595821986731. [Google Scholar] [CrossRef]
- Conrad, A.; Le Maréchal, M.; Dupont, D.; Ducastelle-Leprêtre, S.; Balsat, M.; Labussière-Wallet, H.; Barraco, F.; Nicolini, F.E.; Thomas, X.; Gilis, L.; et al. A Matched Case–Control Study of Toxoplasmosis after Allogeneic Haematopoietic Stem Cell Transplantation: Still a Devastating Complication. Clinical Microbiology and Infection 2016, 22, 636–641. [Google Scholar] [CrossRef]
- La Hoz, R.M.; Morris, M.I. Tissue and Blood Protozoa Including Toxoplasmosis, Chagas Disease, Leishmaniasis, Babesia, Acanthamoeba, Balamuthia, and Naegleria in Solid Organ Transplant Recipients— Guidelines from the American Society of Transplantation Infectious Diseases Community. Clin Transplant 2019, 33, 1–20. [Google Scholar] [CrossRef]
- Ramanan, P.; Scherger, S.; Benamu, E.; Bajrovic, V.; Jackson, W.; Hage, C.A.; Hakki, M.; Baddley, J.W.; Abidi, M.Z. Toxoplasmosis in Non-cardiac Solid Organ Transplant Recipients: A Case Series and Review of Literature. Transplant Infectious Disease 2020, 22, e13218. [Google Scholar] [CrossRef]
- Kalogeropoulos, D.; Sakkas, H.; Mohammed, B.; Vartholomatos, G.; Malamos, K.; Sreekantam, S.; Kanavaros, P.; Kalogeropoulos, C. Ocular Toxoplasmosis: A Review of the Current Diagnostic and Therapeutic Approaches. Int Ophthalmol 2022, 42, 295–321. [Google Scholar] [CrossRef] [PubMed]
- De-la-Torre, A.; Pfaff, A.W.; Grigg, M.E.; Villard, O.; Candolfi, E.; Gomez-Marin, J.E. Ocular Cytokinome Is Linked to Clinical Characteristics in Ocular Toxoplasmosis. Cytokine 2014, 68, 23–31. [Google Scholar] [CrossRef]
- Rodriguez Fernandez, V.; Casini, G.; Bruschi, F. Ocular Toxoplasmosis: Mechanisms of Retinal Infection and Experimental Models. Parasitologia 2021, 1, 50–60. [Google Scholar] [CrossRef]
- Ferreira, A.I.C.I.C.; De Mattos, C.C.B.C.B.; Frederico, F.B.B.; Meira, C.S.S.; Almeida, G.C.C.; Nakashima, F.; Bernardo, C.R.R.; Pereira-Chioccola, V.L.L.; De Mattos, L.C.C. Risk Factors for Ocular Toxoplasmosis in Brazil. Epidemiol Infect 2014, 142, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Previato, M.; Frederico, F.B.; Henrique Antunes Murata, F.; Siqueira, R.C.; Barbosa, A.P.; Silveira-Carvalho, A.P.; Da Silva Meira, C.; Pereira-Chioccola, V.L.; Gava, R.; Pereira Martins Neto, P.; et al. A Brazilian Report Using Serological and Molecular Diagnosis to Monitoring Acute Ocular Toxoplasmosis Infectious Diseases. BMC Res Notes 2015, 8, 746. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Design and Baseline Patient Characteristics: ETDRS Report Number 7. Ophthalmology 1991, 98, 741–756. [CrossRef]
- Fabiani, S.; Caroselli, C.; Menchini, M.; Gabbriellini, G.; Falcone, M.; Bruschi, F. Ocular Toxoplasmosis, an Overview Focusing on Clinical Aspects. Acta Trop 2022, 225, 106180. [Google Scholar] [CrossRef] [PubMed]
- Anvari, D.; Saberi, R.; Sharif, M.; Sarvi, S.; Hosseini, S.A.; Moosazadeh, M.; Hosseininejad, Z.; Chegeni, T.N.; Daryani, A. Seroprevalence of Neospora Caninum Infection in Dog Population Worldwide: A Systematic Review and Meta-Analysis. Acta Parasitol 2020, 65, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W.; Greven, C.M.; Jaffe, G.J.; Sudhalkar, H.; Vine, A.K. Atypical, Severe Toxoplasmic Retinochoroiditis in Elderly Patients. Ophthalmology 1997, 104, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Sadighi Akha, A.A. Aging and the Immune System: An Overview. J Immunol Methods 2018, 463, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Boaventura Avelar, J.; Hállison Alves Rezende, H.; Ribeiro Storchilo, H.; Rassan de Lima Candido, R.; Naves do Amaral, W.; Martins Avelino, M.; Maria de Castro, A. Reativação Da Toxoplasmose Durante o Oitavo Mês de Gestação Reactivation of Toxoplasmosis during the Eighth Month of Pregnancy. Revista Norte Mineira de Enfermagem 2015, 4, 57–69. [Google Scholar]
- Silverman, S.M.; Wong, W.T. Microglia in the Retina: Roles in Development, Maturity, and Disease. 2018, 4, 45–77. [CrossRef]
- Hoogewoud, F.; Kowalczuk, L.; Bousquet, E.; Brézin, A.; Touchard, E.; Buggage, R.; Bordet, T.; Behar-Cohen, F. Les Anti-TNF-α Pour Le Traitement Des Uvéites Non Infectieuses. médecine/sciences 2020, 36, 893–899. [Google Scholar] [CrossRef]
- Murenu, E.; Gerhardt, M.J.; Biel, M.; Michalakis, S. More than Meets the Eye: The Role of Microglia in Healthy and Diseased Retina. Front Immunol 2022, 13, 1006897. [Google Scholar] [CrossRef]
- Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front Immunol 2019, 10, 462812. [Google Scholar] [CrossRef]
- Kumari, A.; Borooah, S. The Role of Microglia in Inherited Retinal Diseases. Adv Exp Med Biol 2023, 1415, 197–205. [Google Scholar]
- Guo, L.; Choi, S.; Bikkannavar, P.; Cordeiro, M.F. Microglia: Key Players in Retinal Ageing and Neurodegeneration. Front Cell Neurosci 2022, 16, 804782. [Google Scholar] [CrossRef]
- Araujo, W.M.R.; Ayo, C.M.; Previato, M.; de Faria, G.M.Jr.; Frederico, F.B.; Siqueira, R.C.; de Almeida, G.C.Jr.; Pereira-Chioccola, V.L.; de Mattos, L.C.; Brandão, C.C. Role of Interleukin 1β and Interleukin 10 Variants on Ocular Toxoplasmosis in Brazilian Individuals. Frontiers in Ophthalmology 2023, 3, 1183167. [Google Scholar] [CrossRef]
- Bretagne, S.; Costa, J.M.; Foulet, F.; Jabot-Lestang, L.; Baud-Camus, F.; Cordonnier, C. Prospective Study of Toxoplasma Reactivation by Polymerase Chain Reaction in Allogeneic Stem-Cell Transplant Recipients. Transplant Infectious Disease 2000, 2, 127–132. [Google Scholar] [CrossRef]
- Uğurlar, E. Uğurlar (2023) Reactivation of Latent Toxoplasmosis; Vol. 9;
- Dick, A.D.; Forrester, J. V.; Liversidge, J.; Cope, A.P. The Role of Tumour Necrosis Factor (TNF-α) in Experimental Autoimmune Uveoretinitis (EAU). Prog Retin Eye Res 2004, 23, 617–637. [Google Scholar] [CrossRef]
- Gómez-Chávez, F.; Cañedo-Solares, I.; Ortiz-Alegría, L.B.; Flores-García, Y.; Luna-Pastén, H.; Figueroa-Damián, R.; Mora-González, J.C.; Correa, D. Maternal Immune Response during Pregnancy and Vertical Transmission in Human Toxoplasmosis. Front Immunol 2019, 10, 285. [Google Scholar] [CrossRef]
- Borges, M.; Magalhães Silva, T.; Brito, C.; Teixeira, N.; Roberts, C.W. How Does Toxoplasmosis Affect the Maternal-Foetal Immune Interface and Pregnancy? Parasite Immunol 2019, 41, e12606. [Google Scholar] [CrossRef]
- Damar Çakırca, T.; Can, İ.N.; Deniz, M.; Torun, A.; Akçabay, Ç.; Güzelçiçek, A. Toxoplasmosis: A Timeless Challenge for Pregnancy. Trop Med Infect Dis 2023, 8. [Google Scholar] [CrossRef]
- Sana, M.; Rashid, M.; Rashid, I.; Akbar, H.; Gomez-Marin, J.E.; Dimier-Poisson, I. Immune Response against Toxoplasmosis—Some Recent Updates RH: Toxoplasma Gondii Immune Response. Int J Immunopathol Pharmacol 2022, 36, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Menko, A.S. Immune Responses to Injury and Their Links to Eye Disease. Translational Research 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Meira, C.S.; Pereira-Chioccola, V.L.; Vidal, J.E.; de Mattos, C.C.B.; Motoie, G.; Costa-Silva, T.A.; Gava, R.; Frederico, F.B.; de Mattos, L.C.; Dantas, D.S. de S.; et al. Cerebral and Ocular Toxoplasmosis Related with IFN-γ, TNF-α, and IL-10 Levels. Front Microbiol 2014, 5. [Google Scholar] [CrossRef]
- Shwab, E.K.; Zhu, X.Q.; Majumdar, D.; Pena, H.F.J.; Gennari, S.M.; Dubey, J.P.; Su, C. Geographical Patterns of Toxoplasma Gondii Genetic Diversity Revealed by Multilocus PCR-RFLP Genotyping. Parasitology 2014, 141, 453–461. [Google Scholar] [CrossRef]
- Meireles, L.R.; Bezerra, E.C.M.; Andrade, J.Q.; Cassiano, L.A.; Pena, H.F.J.; Alves, B.F.; Francisco, R.P.V.; de Andrade, H.F. Isolation and Characterization of Toxoplasma Gondii Isolates from Human Congenital Toxoplasmosis Cases Reveal a New Virulent Genotype in São Paulo, Brazil. Parasitol Res 2022, 121, 3223–3228. [Google Scholar] [CrossRef]
- dos Santos, E.H.; Barreira, G.A.; Yamamoto, L.; Rocha, M.C.; Rodrigues, K.A.; Cruz, M.C.P.; Kanunfre, K.A.; Okay, T.S. New Allele-Specific Oligonucleotide (ASO) Amplifications for Toxoplasma Gondii Rop18 Allele Typing: Analysis of 86 Human Congenital Infections in Brazil. Acta Trop 2023, 247, 107011. [Google Scholar] [CrossRef]
- Kalogeropoulos, D.; Kalogeropoulos, C.; Sakkas, H.; Mohammed, B.; Vartholomatos, G.; Malamos, K.; Sreekantam, S.; Kanavaros, P.; de-la-Torre, A. Pathophysiological Aspects of Ocular Toxoplasmosis: Host-Parasite Interactions. Ocul Immunol Inflamm 2021, 1–10. [Google Scholar] [CrossRef]
- Naranjo-Galvis, C.A.; de-la-Torre, A.; Mantilla-Muriel, L.E.; Beltrán-Angarita, L.; Elcoroaristizabal-Martín, X.; McLeod, R.; Alliey-Rodriguez, N.; Begeman, I.J.; de Mesa, C.L.; Gómez-Marín, J.E.; et al. Genetic Polymorphisms in Cytokine Genes in Colombian Patients with Ocular Toxoplasmosis. Infect Immun 2018, 86. [Google Scholar] [CrossRef]
- Cifuentes-González, C.; Zapata-Bravo, E.; Sierra-Cote, M.C.; Boada-Robayo, L.; Vargas-Largo, Á.P.; Reyes-Guanes, J.; de-la-Torre, A. Colombian Ocular Infectious Epidemiology Study (COIES): Ocular Toxoplasmosis Incidence and Sociodemographic Characterization, 2015-2019. International Journal of Infectious Diseases 2022, 117, 349–355. [Google Scholar] [CrossRef]
- Ayo, C.M.; Frederico, F.B.; Siqueira, R.C.; Brandão De Mattos, C.D.C.; Previato, M.; Barbosa, A.P.; Murata, F.H.A.; Silveira-Carvalho, A.P.; De Mattos, L.C. Ocular Toxoplasmosis: Susceptibility in Respect to the Genes Encoding the KIR Receptors and Their HLA Class I Ligands. Sci Rep 2016, 6, 36632. [Google Scholar] [CrossRef] [PubMed]
- de Faria Junior, G.M.; Ayo, C.M.; de Oliveira, A.P.; Lopes, A.G.; Frederico, F.B.; Silveira-Carvalho, A.P.; Previato, M.; Barbosa, A.P.; Murata, F.H.A.; de Almeida Junior, G.C.; et al. CCR5 Chemokine Receptor Gene Polymorphisms in Ocular Toxoplasmosis. Acta Trop 2018, 178, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Ayo, C.M.; Da Silveira Camargo, A.V.; Frederico, F.B.; Siqueira, R.C.; Previato, M.; Murata, F.H.A.; Silveira-Carvalho, A.P.; Barbosa, A.P.; De Mattos, C.D.C.B.; De Mattos, L.C. MHC Class i Chain-Related Gene A Polymorphisms and Linkage Disequilibrium with HLA-B and HLA-C Alleles in Ocular Toxoplasmosis. PLoS One 2015, 10, e0144534. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Yang, Y.; Su, C. Toxoplasma Gondii Infections in Dogs: 2009-2020. Vet Parasitol 2020, 287, 109223. [Google Scholar] [CrossRef] [PubMed]
| Variables | G1 | G2 | G3 | G4 | Univariate | |||||
| N | % | N | % | N | % | N | % | p- value | ||
| Age | ≥60 years | 7 | 13.2 | 6 | 20.7 | 104 | 77 | 21 | 23.6 | p = 0.000 |
| <60 years | 46 | 86.7 | 23 | 79.3 | 31 | 23 | 68 | 76.4 | ||
| Gender | Male | 36 | 67,9 | 18 | 62 | 77 | 57 | 53 | 59,5 | p= 0.894 |
| Female | 17 | 32,1 | 11 | 38 | 58 | 43 | 36 | 40,5 | ||
| Blood transfusion | Yes | 12 | 22.6 | 2 | 6.9 | 17 | 12.6 | 6 | 6.7 | p = 0.000 |
| No | 41 | 77.3 | 27 | 93.1 | 118 | 87.4 | 83 | 93.3 | ||
| Domestic animal | Yes | 45 | 84.9 | 22 | 75.8 | 86 | 63.7 | 69 | 77.5 | p = 0.118 |
| No | 8 | 15.1 | 7 | 24.2 | 49 | 36.3 | 20 | 22.5 | ||
| Have a cat at home | Yes | 15 | 28.3 | 5 | 17.2 | 33 | 24.4 | 20 | 22.5 | p = 0.716 |
| No | 38 | 71.7 | 24 | 82.8 | 102 | 75.6 | 69 | 77.5 | ||
| Go barefoot | Yes | 20 | 37.7 | 15 | 51.7 | 44 | 32.6 | 39 | 43.8 | p = 0.192 |
| No | 33 | 62.3 | 14 | 48.3 | 91 | 67.4 | 50 | 56.2 | ||
| Drink unpasteurized milk | Yes | 30 | 56.6 | 10 | 34.4 | 73 | 54 | 26 | 29.2 | p = 0.000 |
| No | 23 | 43.4 | 19 | 65.6 | 62 | 46 | 63 | 70.8 | ||
| Eat raw or undercooked beef | Yes | 26 | 49 | 6 | 20.7 | 38 | 28.1 | 23 | 25.8 | p = 0.268 |
| No | 27 | 51 | 23 | 79.3 | 97 | 71.9 | 66 | 74.2 | ||
| Eat raw or undercooked pork | Yes | 5 | 9.4 | 2 | 6.9 | 12 | 8.9 | 2 | 2.2 | p = 0.041 |
| No | 48 | 90.6 | 27 | 93.1 | 123 | 91.1 | 87 | 97.3 | ||
| Wash the food | Yes | 51 | 96.2 | 27 | 93.1 | 132 | 97.8 | 83 | 93.3 | p = 0.181 |
| No | 2 | 3.8 | 2 | 6.9 | 3 | 2.2 | 6 | 6.7 | ||
| Had a previous pregnancy | Yes | 13 | 24.5 | 10 | 34.4 | 54 | 40 | 22 | 24.7 | p = 0.000 |
| No | 40 | 75.5 | 19 | 65.6 | 81 | 60 | 67 | 75.3 | ||
| Had a premature child | Yes | 5 | 9.4 | 3 | 10.3 | 8 | 6 | 5 | 5.6 | p = 0.479 |
| No | 48 | 90.6 | 26 | 89.7 | 127 | 94 | 84 | 94.4 | ||
| Had an abortion | Yes | 5 | 9.4 | 1 | 3.4 | 24 | 17.8 | 4 | 4.5 | p = 0.055 |
| No | 48 | 90.6 | 28 | 96.6 | 111 | 82.2 | 85 | 95.5 | ||
| Housing area | Rural | 4 | 7.5 | 3 | 10.3 | 14 | 10.4 | 4 | 4.5 | p = 0.098 |
| Urban | 49 | 92.5 | 26 | 89.7 | 121 | 89.6 | 85 | 95.5 | ||
| Type of housing | Masonry | 47 | 88.6 | 29 | 100 | 132 | 97.8 | 87 | 97.3 | p = 0.285 |
| Wood | 6 | 11.4 | 0 | 0 | 3 | 2.2 | 2 | 2.2 | ||
| Own home | Yes | 35 | 66 | 20 | 69 | 105 | 77.8 | 65 | 73 | p = 0.900 |
| No | 18 | 34 | 9 | 31 | 30 | 22.2 | 24 | 27 | ||
| Has a sewer network | Yes | 51 | 96.2 | 25 | 86.2 | 124 | 91.9 | 87 | 97.3 | p = 0.066 |
| No | 2 | 3.8 | 4 | 13.8 | 11 | 8.1 | 2 | 2.2 | ||
| Consume artesian well water | Yes | 8 | 15 | 2 | 6.9 | 14 | 10.4 | 1 | 1.1 | p = 0.004 |
| No | 45 | 85 | 27 | 93.1 | 121 | 89.6 | 88 | 98.9 | ||
| Consume tap water | Yes | 19 | 35.8 | 12 | 41.4 | 34 | 25.2 | 20 | 22.5 | p = 0.184 |
| No | 34 | 64.2 | 17 | 58.6 | 101 | 74.8 | 69 | 77.5 | ||
| Consume filtered water | Yes | 23 | 43.4 | 15 | 51.7 | 86 | 63.7 | 68 | 76.4 | p = 0.002 |
| No | 30 | 56.6 | 14 | 48.3 | 49 | 36.3 | 21 | 23.6 | ||
| Garbage destination | Burnt | 1 | 1.8 | 1 | 3.4 | 4 | 3 | 3 | 3.4 | p = 0.240 |
| Public collection | 52 | 98.2 | 28 | 96.6 | 131 | 97 | 86 | 96.6 | ||
| There are rats where subject lives | Yes | 7 | 13.2 | 10 | 34.4 | 9 | 6.7 | 8 | 9 | p = 0.449 |
| No | 46 | 86.8 | 19 | 65.6 | 126 | 93.3 | 81 | 91 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
