Submitted:
31 October 2023
Posted:
01 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Aquisition
2.2. Multilayer feed-forward ANNs
2.3. Self-Organizing Map (SOM)
- Weight vector initialization with random values.
- Use of a distance measure -usually the Euclidean distance- to find the best-matching unit (BMU).
- Move closer to the input vector by updating the weight vector of the BMU and the neighboring neurons.
3. Results
3.1. SOM’s Results
3.1. Feed-Forward ANN’s Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Visbeck, M. Ocean science research is key for a sustainable future. Nat. Commun. 2018, 9, 690. [Google Scholar] [CrossRef]
- Islam, S.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Akiner, M.E. The problem of environmental pollution in the Mediterranean Sea along the coast of Turkey. J. Eng. Stud. Res. 2020, 26, 7–14. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr Biol. 2019, 29, 1021–1035. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Xiangmin, X.; Ahamed, R. Protecting the marine and coastal water from land-based sources of pollution in the northern Bay of Bengal: a legal analysis for implementing a national comprehensive act. Environ. Chall. 2021, 4, 100154. [Google Scholar] [CrossRef]
- Smith, V.H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol. Oceanogr. 2006, 51, 377–384. [Google Scholar] [CrossRef]
- Jiang, Z.B.; Liu, J.J.; Chen, J.F.; Chen, Q.Z.; Yan, X.J.; Xuan, J.L.; Zeng, J.N. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 2014, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hadjisolomou, E.; Stefanidis, K.; Papatheodorou, G.; Papastergiadou, E. Assessing the Contribution of the Environmental Parameters to Eutrophication with the Use of the “PaD” and “PaD2” Methods in a Hypereutrophic Lake. Int. J. Environ. Res. Public Health 2016, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Kline, D.; Kuntz, N.; Breitbart, M.; Knowlton, N.; Rohwer, F. Role of Elevated Organic Carbon Levels and Microbial Activity in Coral Mortality. Mar. Ecol. Prog. Ser. 2006, 314, 119–125. [Google Scholar] [CrossRef]
- Tsikoti, C.; Genitsaris, S. Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters. Diversity 2021, 13, 396. [Google Scholar] [CrossRef]
- Benkov, I.; Varbanov, M.; Venelinov, T.; Tsakovski, S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water 2023, 15, 1961. [Google Scholar] [CrossRef]
- Chau, K.-W. A review on integration of artificial intelligence into water quality modelling. Mar. Pollut. Bull. 2006, 52, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Devillers, J. Artificial Neural Network Modeling of the Environmental Fate and Ecotoxicity of Chemicals. In Ecotoxicology Modeling; Devillers, J., Ed.; Springer-Verlag: Boston, USA, 2009. [Google Scholar]
- Youssef, K.; Shao, K.; Moon, S.; Bouchard, L.-S. Landslide susceptibility modeling by interpretable neural network. Commun. Earth Environ. 2023, 4, 162. [Google Scholar] [CrossRef]
- Kilic, H.; Soyupak, S.; Gurbuz, H.; Kivrak, E. Automata networks as preprocessing technique of artificial neural network in estimating primary production and dominating phytoplankton levels in a reservoir: An experimental work. Ecol. Inform. 2006, 1, 431–439. [Google Scholar] [CrossRef]
- Cereghino, R.; Park, Y.-S. Review of the Self-Organizing Map (SOM) approach in water resources: Commentary. Environ. Model. Softw. 2009, 24, 945–947. [Google Scholar] [CrossRef]
- Li, T.; Sun, G.; Yang, C.; Liang, K.; Ma, S.; Huang, L. Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes. Sci. Total Environ. 2018, 628-629, 1446–1459. [Google Scholar] [CrossRef]
- Peeters, L.; Dassargues, A. (2006) Comparison of Kohonen’s self-organizing map algorithm and principal component analysis in the exploratory data analysis of a groundwater quality dataset. Proceedings of the 6th International Conference on Geostatistics for Environmental Applications. Rhodos, Greece, 25–27 October 2006; pp 1–12.
- Park, Y.-S.; Verdonschot, P.F.M.; Chon, T.-S.; Lek, S. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water Res. 2003, 37, 1749–1758. [Google Scholar] [CrossRef]
- Lu, R.S.; Lo, S.L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res. 2002, 36, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, Z.; Wang, G.; Liu, F. Evaluating Spatiotemporal Variations of Groundwater Quality in Northeast Beijing by Self-Organizing Map. Water 2020, 12, 1382. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Antoniadis, K.; Vasiliades, L.; Rousou, M.; Thasitis, I.; Abualhaija, R.; Herodotou, H.; Michaelides, M.; Kyriakides, I. Predicting Coastal Dissolved Oxygen Values with the Use of Artificial Neural Networks: A Case Study for Cyprus. IOP Conf. Ser.: Earth Environ. Sci 2022, 1123. [Google Scholar] [CrossRef]
- Salami, E.S.; Salari, M.; Rastergarc, M.; Sheibani, S.N.; Ehteshami, M. Artificial neural network and mathematical approach for estimation of surface water quality parameters (case study: California, USA). Desalin. Water Treat. 2021, 213, 75–83. [Google Scholar] [CrossRef]
- Melesse, A.; Krishnaswamy, J.; Zhang, K. Modeling Coastal Eutrophication at Florida Bay using Neural Networks. J. Coast. Res. 2009, 24, 190–196. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Stefanidis, K.; Herodotou, H.; Michaelides, M.; Papatheodorou, G.; Papastergiadou, E. Modelling Freshwater Eutrophication with Limited Limnological Data Using Artificial Neural Networks. Water 2021, 13, 1590. [Google Scholar] [CrossRef]
- Georgescu, P.L.; Moldovanu, S.; Iticescu, C.; Calmuc, M.; Calmuc, V.; Topa, C.; Moraru, L. Assessing and forecasting water quality in the Danube River by using neural network approaches. Sci. Total Environ. 2023, 879, 162998. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, T.I. Surface Water under Growing Anthropogenic Loads: From Global Perspectives to Regional Implications. Water 2022, 14, 3730. [Google Scholar] [CrossRef]
- Tselepides, A.; Papadopoulou, N.; Podaras, D.; Plaiti, W.; Koutsoubas, D. Macrobenthic community structure over the continental margin of Crete (South Aegean Sea NE Mediterranean). Prog. Oceanogr. 2000, 46, 401–428. [Google Scholar] [CrossRef]
- Azov, Y. Eastern Mediterranean—a marine desert? Mar. Pollut. Bull. 1991, 23, 225–232. [Google Scholar] [CrossRef]
- Antoniadis, K.; Rousou, M.; Markou, M.; Stavrou, P.; Vasileiou, E.; Vasiliades, V.; Iosiphides, M.; Papadopoulos, V.; Argyrou, M. Review-update report of the coastal waters in accordance with Article 5 of the Water Framework Directive (WFD) 2000/60/EC for the period 2013-2019. Department of Fisheries and Marine Research, Ministry of Agriculture, Rural Development and the Environment, Cyprus [In Greek] 2020. Retrieved from:. http://www.moa.gov.cy/moa/dfmr/.
- Kuo, Y.-M.; Liu, C.-W.; Lin, K.-H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res. 2004, 38, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T.; Kaski, S. Exploratory Data Analysis by The Self Organizing Maps: Structure of Welfare and Poverty in the World. Proceedings of the Third International Conference on Neural Networks in the Capital Markets, London, England, 11-13 October 1995.
- Dedecker, A.P.; Goethals, P. L.M.; Gabriels, W.; De Pauw, N. Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium). Ecol. Model. 2004, 174, 161–173. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef]
- Lee, J.H.W.; Huang, Y.; Dickman, M.; Jayawardena, A.W. Neural networking modelling of coastal algal blooms. Ecol. Model. 2003, 159, 179–201. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organising maps; Springer-Verlag: Berlin Heidelberg, Germany, 2001. [Google Scholar]
- Al-Mudhaf, H.F.; Astel, A.M.; Selim, M.I.; Abu-Shady, A.I. Self-organizing map approach in assessment spatiotemporal variations of trihalomethanes in desalinated drinking water in Kuwait. Desalination, 2010; 252, 97–105. [Google Scholar] [CrossRef]
- Park, Y.-S.; Tison, J.; Lek, S.; Giraudel, J.-L.; Coste, M.; Delmas, F. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 2006; 1, 247–257. [Google Scholar] [CrossRef]
- An, Y.; Zou, Z.; Li, R. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map. Int. J. Environ. Res. Public Health 2016, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Kim, S.-K.; Jeng, K.-S.; Joo, G.-J. Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton. J. Ecol. Environ. 2015, 38, 133–143. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kaluskar, S.; Mugalingam, S.; Arhonditsis, G.B. Evaluating the relationships between watershed physiography, land use patterns, and phosphorus loading in the bay of Quinte basin, Ontario, Canada. J. Great Lakes Res. 2016, 42, 972–984. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E. Clustering of the Self-Organizing Map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Vesanto, J. SOM-based data visualization methods. Intell. Data Anal. 1999, 3, 111–126. [Google Scholar] [CrossRef]
- Kalteh, A. M.; Hjorth, P.; Berndtsson, R. Review of the Self-Organizing Map (SOM) approach in water resources: analysis, modelling and application. Environ. Model. Softw. 2008, 23, 835–845. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E.; Himberg, J.; Parhankangas, J. SOM Toolbox for Matlab. 2000. Available online: http://www.cis.hut.fi/projects/somtoolbox/.
- Garcia-Avila, F.; Loja-Suco, P.; Siguenza-Jeton, C.; Jimenez-Ordonez, M.; Valdiviezo-Gonzales, L.; Cabello-Torres, R.; Aviles-Anazco, A. Evaluation of the water quality of a high Andean lake using different quantitative approaches. Ecol. Indic. 2023, 154, 110924. [Google Scholar] [CrossRef]
- Bernard, J.; Landesberger, T.; Bremm, S.; Schreck, T. Multi-Scale Visual Quality Assessment for Cluster Analysis with Self-Organizing Maps. Proceedings of the SPIE Conference on Visualization and Data Analysis 2011, 7868. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qiao, Q.; Tavares, A.; Liang, Y. Water Quality Prediction Based on Machine Learning and Comprehensive Weighting Methods. Entropy 2023, 25, 1186. [Google Scholar] [CrossRef]
- Zhang, P.; Hong, B.; He, L.; Cheng, F.; Zhao, P.; Wei, C.; Liu, Y. Temporal and spatial simulation of atmospheric pollutant PM2.5 changes and risk assessment on population exposure to pollution using optimization algorithms of the back propagation-Artificial Neural Network model and GIS. Int. J. Environ. Res. Public Health 2015, 12, 12171–12195. [Google Scholar] [CrossRef] [PubMed]
- Papastergiadou, E.; Kagalou, I.; Stefanidis, K.; Retalis, A.; Leonardos, I. Effects of anthropogenic Influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean Lake: Implications for restoration. Water Resour. Manag. 2010, 24, 415–435. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Stefanidis, K.; Papatheodorou, G.; Papastergiadou, E. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps. Int. J. Environ. Res. Public Health 2018, 15, 547. [Google Scholar] [CrossRef] [PubMed]
- Peppa, M.; Vasilakos, C.; Kavroudakis, D. Eutrophication Monitoring for Lake Pamvotis, Greece, Using Sentinel-2 Data. ISPRS Int. J. Geo-Inf. 2020, 9, 143. [Google Scholar] [CrossRef]
- Chon, T.-S. Self-Organizing Maps applied to ecological sciences. Ecol. Inform. 2011, 6, 50–61. [Google Scholar] [CrossRef]
- Qian, J.; Nguyen, N. P.; Oya, Y.; Kikugawa, G.; Okabe, T.; Huang, Y.; Ohuchi, F.S. Introducing self-organized maps (SOM) as a visualization tool for materials research and education. Results Mater. 2019, 4, 100020. [Google Scholar] [CrossRef]
- Krasznai, E.; Boda, P.; Csercsa, A.; Ficsor, M.; Varbiro, G. Use of self-organizing maps in modelling the distribution patterns of gammarids (Crustacea: Amphipoda). Ecol. Inform. 2016, 31, 39–48. [Google Scholar] [CrossRef]
- Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566–4578. [Google Scholar] [CrossRef]
- Varbiro, G.; Acs, E.; Borics, G.; Erces, K.; Feher, G.; Grigorszky, I.; Japport, T.; Kocsis, G.; Krasznai, E.; Nagy, K.; Nagy-Laszlo, Z.; Pilinszky, Z.; Kiss, K.T. Use of Self-Organizing Maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Arch. Hydrobiol. 2007, 17, 383–394. [Google Scholar] [CrossRef]
- Palani, S.; Liong, S.-Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bullet. 2008, 56, 1586–1597. [Google Scholar] [CrossRef]
- Bushra, B.; Bazneh, L.; Deka, L.; Wood, P.J.; McGowan, S.; Das, D.B. Temporal modelling of long-term heavy metal concentrations in aquatic ecosystems. J. Hydroinformatics 2023, 25, 1188–1209. [Google Scholar] [CrossRef]
- Brown, M.G.L.; Skakun, S.; He, T.; Liang, S. Intercomparison of Machine-Learning Methods for Estimating Surface Shortwave and Photosynthetically Active Radiation. Remote Sens. 2020, 12, 372. [Google Scholar] [CrossRef]
- Petrou, A.; Kallianiotis, A.; Hannides, A. K.; Charalambidou, I.; Hadjichristoforou, M.; Hayes, D. R.; Lambridis, C.; Lambridi, V.; et al. Initial Assessment of the Marine Environment of Cyprus: Part I– Characteristics. Ministry of Agriculture, Natural Resources, and the Environment, Department of Fisheries and Marine Research, Nicosia, Cyprus, 2012.
- Fyttis, G.; Zervoudaki, S.; Sakavara, A.; Sfenthourakis, S. Annual cycle of mesozooplankton at the coastal waters of Cyprus (Eastern Levantine basin). J. Plankton Res. 2023, 45, 291–311. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Carreon, T.; Gaxiola-Castro, G.; Robles-Pacheco, J.; Najera-Martínez, S. Temperature, salinity, nutrients and chlorophyll a in coastal waters of the Southern California Bight. Cienc. Mar. 2001, 27, 397–422. [Google Scholar] [CrossRef]
- Georgiou, N.; Fakiris, E.; Koutsikopoulos, C.; Papatheodorou, G.; Christodoulou, D.; Dimas, X.; Geraga, M.; Kapellonis, Z.G.; Vaziourakis, K.-M.; Noti, A.; et al. Spatio-Seasonal Hypoxia/Anoxia Dynamics and Sill Circulation Patterns Linked to Natural Ventilation Drivers, in a Mediterranean Landlocked Embayment: Amvrakikos Gulf, Greece. Geosciences 2021, 11, 241. [Google Scholar] [CrossRef]
- Suursaar, U. Winter upwelling in the Gulf of Finland, Baltic Sea. Oceanologia 2021, 63, 356–369. [Google Scholar] [CrossRef]
- Ren, L.; Huang, J.; Zhu, H.; Jiang, W.; Wu, H.; Pan, Y.; Mao, Y.; Luo, M.; Jeong, T. Effects of Algal Utilization of Dissolved Organic Phosphorus by Microcystis Aeruginosa on Its Adaptation Capability to Ambient Ultraviolet Radiation. J. Mar. Sci. Eng. 2022, 10, 1257. [Google Scholar] [CrossRef]
- Paerl, H.; Dennis, R.; Whitall, D. Atmospheric Deposition of Nitrogen: Implications for Nutrient Over-Enrichment of Coastal Waters. Estuaries Coast. 2002, 25, 677–693. [Google Scholar] [CrossRef]
- Droge, R.; Kroeze, C. Critical load exceedance for nitrogen in the Ebrié Lagoon (Ivory Coast): a first assessment. J. Integr. Environ. Sci. 2007, 4, 5–19. [Google Scholar] [CrossRef]
- Duarte, I.; Ribeiro, M.C.; Pereira, M.J.; Leite, P.P.; Peralta-Santos, A.; Azevedo, L. Spatiotemporal evolution of COVID-19 in Portugal’s Mainland with self-organizing maps. Int J Health aGeogr 2023, 22, 4. [Google Scholar] [CrossRef]
- Varbiro, G.; Borics, G.; Kiss, T.K.; Szabo, K.E.; Plenkovic-Moraj, A.; Acs, E. Use of Kohonen Self Organizing Maps (SOM) for the characterization of benthic diatom associations of the River Danube and its tributaries. Arch. Hydrobiol. 2007, 17, 395–403. [Google Scholar] [CrossRef]
- Scardi, M. Advances in neural network modeling of phytoplankton primary production. Ecol. Model. 2001, 146, 33–45. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Antoniades, K.; Thasitis, I.; Abu Alhaija, R.; Herodotou, H.; Michaelides, M. Exploring the Impact of Coastal Water Quality Parameters on Chlorophyll-a near Cyprus with the use of Artificial Neural Networks. Proceedings of the IAHR World Congress, Granada, Spain, 19-24 June 2022. [CrossRef]
- Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. npj Comput. Mater. 2023, 9, 42. [Google Scholar] [CrossRef]
- Shan, K.; Ouyang, T.; Wang, X.; Yang, H.; Zhou, B.; Wu, Z.; Shang, M. Temporal prediction of algal parameters in Three Gorges Reservoir based on highly time-resolved monitoring and long short-term memory network. J. Hydrol. 2022, 605, 127304. [Google Scholar] [CrossRef]
- Silva, P.L.C.; Borges, A.C.; Lopes, L.S.; Rosa, A.P. Developing a Modified Online Water Quality Index: A Case Study for Brazilian Reservoirs. Hydrology 2023, 10, 115. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agric. Water Manag. 2022, 261, 107343. [Google Scholar] [CrossRef]
- Giangrande, A.; Gravina, M.F.; Rossi, S.; Longo, C.; Pierri, C. Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences. Water 2021, 13, 991. [Google Scholar] [CrossRef]
- Eze, E.; Halse, S.; Ajmal, T. Developing a Novel Water Quality Prediction Model for a South African Aquaculture Farm. Water 2021, 13, 1782. [Google Scholar] [CrossRef]
- Shah, M.I.; Alaloul, W.S.; Alqahtani, A.; Aldrees, A.; Musarat, M.A.; Javed, M.F. Predictive Modeling Approach for Surface Water Quality: Development and Comparison of Machine Learning Models. Sustainability 2021, 13, 7515. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Jui, S.J.J.; Chowdhury, M.A.I.; Ahmed, O.; Sutradha, A. The development of dissolved oxygen forecast model using hybrid machine learning algorithm with hydro-meteorological variables. Environ Sci Pollut Res 2023, 30, 7851–7873. [Google Scholar] [CrossRef]
- Ahmed, A.A.M. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ. Eng. Sci. 2017, 29, 151–158. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
